首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The feasibility of assessing microalgal fatty acid composition using near-infrared spectroscopy (NIRS) is described. The chlamydomonad microalga, Rhopalosolen saccatus (previously known as Characium saccatum), was isolated from the Fitzroy River, Central Queensland, Australia. R. saccatus was grown in batch culture with varying phosphorus nutrition and assessed for dry matter, total lipid and fatty acid composition using gas chromatography (GC). Transmission spectra (1100–2500 nm) were acquired of liquid culture, and reflectance spectra were acquired of wet and dry filtrates of cultures and of methyl esters. Partial least square (PLS) regression models were built on biomass, total lipid and a number of fatty acids. All sample presentation models supported PLS regression model with a cross validation correlation coefficient (R cv) >0.87 for biomass and R cv >0.68 for total lipid; however, the use of dry filtrates of culture is recommended as the sample presentation mode of choice. Models for fatty acids based on culture transmission spectra, reflectance spectra of wet and dry culture filtrates, or reflectance spectra of methyl esters in solvent were not acceptable. Dry extracts of methyl esters supported adequate models for fatty acids from C8:0 to C22:0, with the exception of capric and behenic acids, with an R cv of 0.89–0.94; however, in practice, samples processed to this stage can be easily analyzed by GC. Near-infrared spectroscopy can be a potential choice for rapid estimation of biomass (dry matter) and lipid content and composition in microalgae, with further work required to demonstrate oping robustness of the calibration model in prediction of unknown samples.  相似文献   

3.
The aim of this work was the study of the influence of the raw material composition on biodiesel quality, using a transesterification reaction. Thus, ten refined vegetable oils were transesterificated using potassium methoxide as catalyst and standard reaction conditions (reaction time, 1h; weight of catalyst, 1 wt.% of initial oil weight; molar ratio methanol/oil, 6/1; reaction temperature, 60 degrees C). Biodiesel quality was tested according to the standard [UNE-EN 14214, 2003. Automotive fuels. Fatty acid methyl esters (FAME) for diesel engines. Requirements and test methods]. Some critical parameters like oxidation stability, cetane number, iodine value and cold filter plugging point were correlated with the methyl ester composition of each biodiesel, according to two parameters: degree of unsaturation and long chain saturated factor. Finally, a triangular graph based on the composition in monounsaturated, polyunsaturated and saturated methyl esters was built in order to predict the critical parameters of European standard for whatever biodiesel, known its composition.  相似文献   

4.
  1. Download : Download high-res image (117KB)
  2. Download : Download full-size image
  相似文献   

5.
The effect of fatty acids chain length (LC) and its interaction with unsaturation degree (UD) on important biodiesel quality parameters was studied. Low calorific value, kinematic viscosity, flash point, cetane number and cold filter plugging point of biodiesel blends covering a wide range of fatty acids were analyzed. Analytical results were processed with statistical regression to obtain a prediction model for each property, combining LC and UD. Due to the antagonistic effects of the chemical composition over quality properties, the Derringer desirability function was proposed to allow the most suitable fatty acid composition. This target was achieved considering an average of 1.26 double bounds and 17 carbon atoms. A set of combinations of LC and UD values that provides a biodiesel that fits the European standard EN 14214 was proposed. It was found that a reduction of FAME LC allows a lower UD while keeping biodiesel specifications under the standard limits.  相似文献   

6.
ABSTRACT: Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provide significant health benefits and this has led to an increased consumption as dietary supplements. Omega-3 fatty acids EPA and DHA are found in animals, transgenic plants, fungi and many microorganisms but are typically extracted from fatty fish, putting additional pressures on global fish stocks. As primary producers, many marine microalgae are rich in EPA (C20:5) and DHA (C22:6) and present a promising source of omega-3 fatty acids. Several heterotrophic microalgae have been used as biofactories for omega-3 fatty acids commercially, but a strong interest in autotrophic microalgae has emerged in recent years as microalgae are being developed as biofuel crops. This paper provides an overview of microalgal biotechnology and production platforms for the development of omega-3 fatty acids EPA and DHA. It refers to implications in current biotechnological uses of microalgae as aquaculture feed and future biofuel crops and explores potential applications of metabolic engineering and selective breeding to accumulate large amounts of omega-3 fatty acids in autotrophic microalgae.  相似文献   

7.
Nannochloropsis salina was cultured batch-wise to evaluate the potential of the alga to produce biodiesel. The cells were harvested at the end of the exponential growth phase when the concentration was 18 x 10(6) cells/mL culture. The growth estimated as dry weight from this cell number was (3.8 +/- 0.7) mg/L. The lipid and triglyceride contents were 40% and 12% on a dry weight basis, respectively. The amount of the ratio triglycerides/total lipids was approximately 0.3. The composition of triglyceride fatty acid methyl esters (biodiesel) was analysed by gas-liquid chromatography and identified as: C14:0, C16:0, C16:1, C18:0, C18:1, C18:2, C18:3, C20:1, and C20:5. The ratio of unsaturated to saturated fatty acid contents was approximately 4.4. Additionally, the characterization of each individual fatty acid ester was discussed with regard to the fuel properties of biodiesel produced by the alga.  相似文献   

8.
Whereas microbial fermentation processes for producing ethanol and related alcohol biofuels are well established, biodiesel (methyl esters of fatty acids) is exclusively derived from plant oils. Slow cycle times for engineering oilseed metabolism and the excessive accumulation of glycerol as a byproduct are two major drawbacks of deriving biodiesel from plants. Although most bacteria produce fatty acids as cell envelope precursors, the biosynthesis of fatty acids is tightly regulated at multiple levels. By introducing four distinct genetic changes into the E. coli genome, we have engineered an efficient producer of fatty acids. Under fed-batch, defined media fermentation conditions, 2.5 g/L fatty acids were produced by this metabolically engineered E. coli strain, with a specific productivity of 0.024 g/h/g dry cell mass and a peak conversion efficiency of 4.8% of the carbon source into fatty acid products. At least 50% of the fatty acids produced were present in the free acid form.  相似文献   

9.
  1. Download : Download high-res image (149KB)
  2. Download : Download full-size image
  相似文献   

10.
Cultivation temperature is one of the major factors affecting the growth and lipid accumulation of microalgae. In this study, the effects of temperature on the growth, lipid content, fatty acid composition and biodiesel properties of the marine microalgae Chaetoceros sp. FIKU035, Tetraselmis suecica FIKU032 and Nannochloropsis sp. FIKU036 were investigated. These species were cultured at different temperatures (25, 30, 35 and 40 °C). The results showed that the specific growth rate, biomass and lipid content of all microalgae decreased with increasing temperature. With regards to fatty acids, the presence of saturated fatty acids (SFAs) in T. suecica FIKU032 and Nannochloropsis sp. FIKU036 decreased with increasing temperature, in contrast with polyunsaturated fatty acids (PUFAs). Moreover, Chaetoceros sp. FIKU035 was the only species that could grow at 40 °C. The highest lipid productivity was observed in Chaetoceros sp. FIKU035 when cultivated at 25 °C (66.73 ± 1.34 mg L?1 day?1) and 30 °C (61.35 ± 2.89 mg L?1 day?1). Moreover, the biodiesel properties (cetane number, cold filter plugging point, kinematic viscosity and density) of the lipids obtained from this species were in accordance with biodiesel standards. This study indicated that Chaetoceros sp. FIKU035 can be considered as a suitable species for biodiesel production in outdoor cultivation.  相似文献   

11.
Presence of unreacted glycerides in biodiesel may reduce drastically its quality. This is why conversion of raw material in biodiesel through transesterification needs to readjust reaction parameter values to complete. In the present work, monitoring of glycerides transformation in biodiesel during the transesterification of vegetable oils was carried out. To check the influence of the chemical composition on glycerides conversion, selected vegetable oils covered a wide range of fatty acid composition. Reactions were carried out under alkali-transesterification in the presence of methanol. In addition, a multiple regression model was proposed. Results showed that kinetics depends on chemical and physical properties of the oils. It was found that the optimal reaction temperature depends on both length and unsaturation degree of vegetable oils fatty acid chains. Vegetable oils with higher degree of unsaturation exhibit faster monoglycerides conversion to biodiesel. It can be concluded that fatty acid composition influences reaction parameters and glycerides conversion, hence biodiesel yield and economic viability.  相似文献   

12.
The fatty acid composition of the total lipid fractions of five different Leishmania organisms grown on Eagle's medium was determined by gas chromatography. The major fatty acids identified in the total lipid fractions of L. donovani, L. tropica major, L. tropica minor, L. tropica (England strain), and L. enriettii were C12:0, C13:0, C14:0, C15:0, C16:0, C17:0, C18:0, C18:1, C18:2, and C18:3. The statistical differences among the fatty acid methyl esters of different Leishmania organisms are discussed.Gas chromatographic analysis of the fatty acid methyl esters of the total lipid fractions of the original Eagle's medium and the media after harvesting of various Leishmania species revealed the presence of C18:3 fatty acid in the total lipid fraction of the medium of L. donovani and the complete absence of 18-carbon unsaturated fatty acids in the total lipid fraction of the medium of L. enriettii. The use of such differences in the differentiation of various Leishmania species is discussed.  相似文献   

13.
The production of low-cost biofuels in engineered microorganisms is of great interest due to the continual increase in the world's energy demands. Biodiesel is a renewable fuel that can potentially be produced in microbes cost-effectively. Fatty acid methyl esters (FAMEs) are a common component of biodiesel and can be synthesized from either triacylglycerol or free fatty acids (FFAs). Here we report the identification of a novel bacterial fatty acid methyltransferase (FAMT) that catalyzes the formation of FAMEs and 3-hydroxyl fatty acid methyl esters (3-OH-FAMEs) from the respective free acids and S-adenosylmethionine (AdoMet). FAMT exhibits a higher specificity toward 3-hydroxy free fatty acids (3-OH-FFAs) than FFAs, synthesizing 3-hydroxy fatty acid methyl esters (3-OH-FAMEs) in vivo. We have also identified bacterial members of the fatty acyl-acyl carrier protein (ACP) thioesterase (FAT) enzyme family with distinct acyl chain specificities. These bacterial FATs exhibit increased specificity toward 3-hydroxyacyl-ACP, generating 3-OH-FFAs, which can subsequently be utilized by FAMTs to produce 3-OH-FAMEs. PhaG (3-hydroxyacyl ACP:coenzyme A [CoA] transacylase) constitutes an alternative route to 3-OH-FFA synthesis; the coexpression of PhaG with FAMT led to the highest level of accumulation of 3-OH-FAMEs and FAMEs. The availability of AdoMet, the second substrate for FAMT, is an important factor regulating the amount of methyl esters produced by bacterial cells. Our results indicate that the deletion of the global methionine regulator metJ and the overexpression of methionine adenosyltransferase result in increased methyl ester synthesis.  相似文献   

14.
The fatty acid composition of five strains ofCorallococcus coralloides and three reference species ofMyxococcus were determined by gas-liquid chromatography. Methyl esters of fatty acid containing from 12 to 22 carbon atoms were identified. The major fatty acids present were C15 and C17 saturated branched chain, and both C16 saturated and unsaturated straight chain acids. The C17 saturated branched and straight chain acids, which were in valuable concentration in species ofMyxococcus, were not, however, detected in all strains ofC. coralloides. The application of these results in the distinction ofC. coralloides from the genusMyxococcus is discussed.  相似文献   

15.
The content of unsaturated fatty acids in enterococcal cells has been found to have no essential relation to the composition of the culture medium. When cultivated in the same media, S. faecium had the degree of lipid unsaturation 1.5-2 times higher than S. faecalis. Mobile enterococci are sharply differentiated from immobile species by the content of cyclopropanic acid with 19 carbon atoms, constitute a heterogenous group and consist of at least 2 taxons, differing in the content of acids with 18 carbon atoms and the degree of lipid unsaturation.  相似文献   

16.
Bifunctional peptidylglycine alpha-amidating enzyme (alpha-AE) catalyzes the O2-dependent conversion of C-terminal glycine-extended prohormones to the active, C-terminal alpha-amidated peptide and glyoxylate. We show that alpha-AE will also catalyze the oxidative cleavage of N-acylglycines, from N-formylglycine to N-arachidonoylglycine. N-Formylglycine is the smallest amide substrate yet reported for alpha-AE. The (V/K)app for N-acylglycine amidation varies approximately 1000-fold, with the (V/K)app increasing as the acyl chain length increases. This effect is largely an effect on the KM,app; the KM,app for N-formylglycine is 23 +/- 0.88 mM, while the KM,app for N-lauroylglycine and longer chain N-acylglycines is in the range of 60-90 microM. For the amidation of N-acetylglycine, N-(tert-butoxycarbonyl)glycine, N-hexanoylglycine, and N-oleoylglycine, the rate of O2 consumption is faster than the rate of glyoxylate production. These results indicate that there must be the initial formation of an oxidized intermediate from the N-acylglycine before glyoxylate is produced. The intermediate is shown to be N-acyl-alpha-hydroxyglycine by two-dimensional 1H-13C heteronuclear multiple quantum coherence (HMQC) NMR.  相似文献   

17.
18.
19.
  • 1.1. The constituent fatty acids of the neutral and phospholipids of Macrobdella ditetra, Nephelopsis obscura, Philobdella gracilis and Hirudo medicinalis have been determined.
  • 2.2. Unsaturated fatty acids predominated in both neutral and phospholipid fractions of all leech species examined.
  • 3.3. Arachidonic acid (20:4) was the most prevalent fatty acid in all species, accounting for as much as 36.7% of the total phospholipid fatty acids.
  相似文献   

20.
The fatty acid composition of twelve Bdellovibrio strains isolated upon the growth on bacteria of various taxonomic groups was studied. A dependence of the lipid composition of bdellovibrios on that of bacteria they were parasitizing on was shown. Data pointing to the selective incorporation of fatty acids of host bacteria by bdellovibrios were obtained. Bdellovibrio membranes were shown to contain monounsatured fatty acids with different positions of double bonds indicating that there are at least two alternative mechanisms of synthesis of these acids in the parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号