首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
功能性低聚糖具有无毒、无残留、稳定性强等特点,作为新型绿色添加剂被广泛应用在食品、饲料、医药行业。国际市场上10余种低聚糖产品中除大豆低聚糖、棉籽糖外,主要采用酶法制备。用于合成功能性低聚糖的酶包括糖苷酶、糖基转移酶和磷酸化酶。本文综述了功能性低聚糖种类、性质和制备方法,分析了酶法合成低聚糖的优缺点,阐述了磷酸化酶种类、催化特性和低聚糖产物。多酶法合成策略和目标酶的分子改造将是酶法合成功能性低聚糖的发展方向。  相似文献   

2.
《Gene》1997,190(1):45-51
The β-glucosidase enzyme is important as the terminal enzyme involved in hydrolysis of cellobiose and short-chain cellodextrins generated during enzymatic cellulose degradation. Under controlled reaction conditions the enzyme also displays cello-oligosaccharide synthesizing ability (based on either the thermodynamic or kinetic approach). We present here the purification of the enzyme β-glucosidase (BGL) of Pichia etchellsii from recombinant pBG55 Escherichia coli clone. The kinetic parameters, substrate specificity and oligosaccharide synthesizing ability of the purified enzyme are also reported. The purified 200-kDa protein (tetramer of 50 kDa) was identified as a broad-substrate-specificity enzyme exhibiting increased temperature and glucose tolerance compared to the native yeast enzyme. Temperature directed substrate specificity for aryl β,1–4 linkage, and β(1–2), β(1–4), β(1–6) and β(2-1) linkages in various natural disaccharides was observed. Glycosylation of the enzyme was found to be unimportant for enzyme activity. With both cellobiose and glucose, oligosaccharide synthesis was detected. The implications of this information with regard to cellulose hydrolysis and oligosaccharide synthesis are discussed.  相似文献   

3.
Reducing oligosaccharides were converted into their corresponding glycosylamines, and these were reacted with 3,4-diethoxy-3-cyclobuten-1,2-dione (squaric acid diethyl ester). The resulting derivatives could be linked to amino-functionalized lipids, solids, or proteins. Treatment of the obtained lipid or solid conjugates with aqueous bromine or, alternatively, with ammonia-ammonium borate cleaved the linkage and regenerated the oligosaccharide glycosylamines, which were in turn rapidly hydrolyzed to the reducing oligosaccharides. To demonstrate the usefulness of this linkage in enzymatic oligosaccharide synthesis, lactose was linked to a lipid or a solid phase, the obtained conjugates were then subjected to two enzymatic glycosylations (either consecutively or 'one-pot'). The resulting materials were then cleaved to give, in both cases, the expected reducing tetrasaccharide (lacto-N-neotetraose) in good yield.  相似文献   

4.
Wang LX 《Carbohydrate research》2008,343(10-11):1509-1522
Homogeneous glycopeptides and glycoproteins are indispensable for detailed structural and functional studies of glycoproteins. It is also fundamentally important to correct glycosylation patterns for developing effective glycoprotein-based therapeutics. This review discusses a useful chemoenzymatic method that takes advantage of the endoglycosidase-catalyzed transglycosylation to attach an intact oligosaccharide to a polypeptide in a single step, without the need for any protecting groups. The exploration of sugar oxazolines (enzymatic reaction intermediates) as donor substrates has not only expanded substrate availability, but also has significantly enhanced the enzymatic transglycosylation efficiency. Moreover, the discovery of a novel mutant with glycosynthase-like activity has made it possible to synthesize homogeneous glycoproteins with full-size natural N-glycans. Recent advances in this highly convergent chemoenzymatic approach and its application for glycopeptide and glycoprotein synthesis are highlighted.  相似文献   

5.
《Trends in biotechnology》1988,6(10):256-264
As the importance of the oligosaccharide moieties of glycoproteins and glycolipids is being increasingly recognized, efforts to synthesize them are expanding. The number of functional groups of carbohydrate monomers and the variety of configurations that oligomers can adopt is greater than with nucleotides/nucleic acids or amino acids/peptides. By reversing the hydrolytic action of glycosidases and by using highly regiospecific glycosyltransferases, enzymatic oligosaccharide synthesis can be performed.  相似文献   

6.
Huang KT  Wu BC  Lin CC  Luo SC  Chen C  Wong CH  Lin CC 《Carbohydrate research》2006,341(12):2151-2155
An enzymatic one-pot three-step glycosylation strategy was developed for the synthesis of sLex moiety of truncated PSGL-1 glycopeptide with and without sulfation. The method provided an efficient way to afford complex glycopeptides in a semi-preparative scale without further complicated and time-consuming purification process in each glycosylation step.  相似文献   

7.
王玥  叶新山 《生命科学》2011,(6):592-597
作为生物大分子之一,糖链的研究还没有像蛋白质和核酸那样深入。现阶段糖链的获得仍然存在很大的挑战,阻碍了糖生物学的发展。鉴于通过分离手段得到所需的糖链很困难,酶法合成糖链亦存在着诸多问题,因此目前化学方法合成糖链是最佳的选择。对近年来糖链的化学合成所取得的最新进展进行简要的介绍,主要包括一釜合成、固相合成和标签辅助的合成三个方面。  相似文献   

8.
Penta-O-acetyl-alpha-D-glucopyranose was selectively deacetylated in aqueous media by lipases from Candida cilindracea (CCL) adsorbed on octyl-agarose support. Enzymatic hydrolyses was regioselective at the 4-position under neutral pH and towards the 6 position under acidic conditions. This enzymatic approach allows the one step synthesis of 1,2,3,6-tetra-O-acetyl-alpha-D-glucopyranoses 1, a useful intermediate in oligosaccharide synthesis.  相似文献   

9.
A chemical synthesis of uridine 5’-diphospho-N-acetyllactosamine (Galβ(1→4)GlcNAc-UDP; UDP-LacNAc) and Galβ(1→3)GlcNAc-UDP is described. Coupling of the disaccharide imidate derivatives with dibenzylphosphate gave the corresponding 1-phosphates, which were condensed with UMP-imidazolate to give the target UDP-oligosaccharides after purification by anion exchange HPLC and gel filtration column chromatography. Using this methodology a variety of oligosaccharide nucleotide analogues can be synthesized. These UDP-oligosaccharides may be useful for finding so-called `oligosaccharide transferases’, the glycosyltransferases which transfer the oligosaccharide moiety onto glycosyl acceptors.  相似文献   

10.
A method for the enzymatic synthesis and purification of [3′-32P]coenzyme. A is described.  相似文献   

11.
The central reaction in the process of N-linked protein glycosylation in eukaryotic cells, the transfer of the oligosaccharide Glc(3)Man(9)GlcNAc(2) from the lipid dolicholpyrophosphate to selected asparagine residues, is catalyzed by the oligosaccharyltransferase (OTase). This enzyme consists of multiple subunits; however, purification of the complex has revealed different results with respect to its protein composition. To determine how many different loci are required for OTase activity in vivo, we performed a novel, specific screen for mutants with altered OTase activity. Based on the synthetic lethal phenotype of OTase mutants in combination with a deficiency of dolicholphosphoglucose biosynthesis which results in non-glucosylated lipid-linked oligosaccharide, we identified seven complementation groups with decreased OTase activity. Beside the known OTase loci, STT3, OST1, WBP1, OST3, SWP1 and OST2, a novel locus, OST5, was identified. OST5 is an intron-containing gene encoding a putative membrane protein of 9.5 kDa present in highly purified OTase preparations. OST5 protein is not essential for growth but its depletion results in a reduced OTase activity. Suppression of an ost1 mutation by overexpression of OST5 indicates that this small membrane protein directly interacts with other OTase components, most likely with Ost1p. A strong genetic interaction with a stt3 mutation implies a role in complex assembly.  相似文献   

12.
The cell surface pool of metabolically labeled platelet-derived growth factor (PDGF) receptors in BALB/c3T3 fibroblasts was studied using an antiphosphotyrosine antibody. Exposure of intact cells to PDGF stimulates autophosphorylation of surface PDGF receptors and allowed immunoaffinity purification of only PDGF-activated receptors. Pulse-chase experiments demonstrated appearance of newly synthesized receptors in a surface activatable pool within 30-45 min of synthesis. In the absence of exogenous PDGF, the apparent half-life of this pool was 2 h. The presence of both N- and O-linked oligosaccharide chains on cell surface PDGF receptors was demonstrated. Enzymatic removal of the N-linked oligosaccharide chains reduced the receptor's apparent Mr by approximately 40 kDa and removal of O-linked oligosaccharide caused approximately a 7-kDa reduction. Activation of receptor tyrosine autophosphorylation by PDGF did not require either processing of high-mannose N-linked oligosaccharides to complex forms or the presence of sialic acid on receptor oligosaccharide chains. Tryptic cleavage of PDGF-activated surface receptors in intact cells yielded two discrete phosphotyrosine-containing fragments of 107 and 85 kDa. Cleveland digest patterns from each fragment indicate that both are derived from the intact PDGF receptor. These data indicate that PDGF receptors are synthesized and turn over rapidly in the absence of ligand. Partial characterization of the extracellular domain oligosaccharide contribution to receptor function and trypsin susceptibility is provided.  相似文献   

13.
The online solid-phase synthesis of oligonucleotides conjugated at the 3' end with [1-6]-linked oligosaccharide mimics having the O-glycosidic linkages replaced by amide bonds is here described. The assembly of the carbohydrate domain has been carried out by exploiting classical solid phase peptide synthetic protocols, starting from solid supports functionalized with 1-azido sugars, in association with suitably protected 1-azido uronic acids of glucose and lactose, chosen as model addition monomers. After the insertion of a flexible linker, elongation of the oligodeoxyribonucleotide (ODN) chain was performed by standard automated phosphoramidite protocols. 3'-Glycoconjugated 18-mers exhibited an increased enzymatic stability with respect to the same unmodified ODN sequence. UV thermal denaturation experiments showed that the presence of the oligosaccharide tail at the 3' end of the oligonucleotides did not negatively interfere with their duplex formation abilities.  相似文献   

14.
Solvolytic depolymerization of chondroitin and dermatan sulfates   总被引:1,自引:0,他引:1  
It is essential to establish a library of glycosaminoglycan oligosaccharides from the chondroitin and dermatan sulfates to investigate their biological functions and structure-activity relationships (SARs). There are several approaches to obtain oligosaccharides using chemical and enzymatic degradation procedures; however, purification of each resulting oligosaccharide is complicated because of the diversity of sulfonation patterns present in these oligosaccharides. We have developed a new method for the solvolytic degradation for chondroitin and dermatan sulfates to obtain an oligosaccharide mixture that can be easily purified into chondro/dermato oligosaccharides for characterization by both 1H NMR and MALDI-TOFMS. These oligosaccharides have a methyl-esterified uronate residue and a methyl 2-acetamido-2-deoxy-d-galactofuranoside at the nonreducing and reducing ends, respectively. All other internal repeating disaccharide units were desulfonated, but maintained their core carbohydrate structures.  相似文献   

15.
海藻糖生产菌株筛选过程中产物鉴定的研究   总被引:4,自引:0,他引:4  
在海藻糖生产菌的筛选过程中,微生物胞内酶转化淀粉生成的产物复杂,将产物逐一纯化是非常烦琐的,但又必须确证产物中是否含有海藻糖。本文将薄层层析、高效液相电喷雾电离质谱联用及核磁共振等分析手段综合应用于海藻糖生产菌株的筛选,在酶反应产物不必被纯化的前提下,准确、快捷地鉴定了酶反应产物中的未知糖组分,最终证明食尼古丁节杆菌(Arthrobacter nicotinovorus)D97利用淀粉或麦芽寡糖的酶反应产物中含有海藻糖。该方法在筛选海藻糖及其它功能性葡二糖生产菌株时较为严密。  相似文献   

16.
Disaccharides 2-O-, 3-O-, and 4-O-beta-D-galactopyranosyl-D-xyloses (2, 3, and 1, respectively) were obtained by beta-galactosidase-catalyzed reactions for their use in the evaluation of intestinal lactase activity in vivo. Their administration to suckling rats followed by determination of the derived D-xylose in the urine and measurement of lactase activity in intestinal homogenates showed 1 to be the most suitable disaccharide for a potential test of the deficiency of intestinal lactase. The synthesis of 1 was further studied by evaluating the effect of different variables on the yield and regioselectivity of the enzymatic galactosylation, and the purification process was optimized.  相似文献   

17.
It has been found that rabbit reticulocyte plasma membranes contain the enzymatic activities responsible for the synthesis of all the polyprenol-bound sugars that are intermediates in the glycosylation of proteins. The final reaction in which an oligosaccharide is transferred from a dolichol pyrophosphate derivative to an endogenous protein was detected in reticulocyte but not in erythrocyte plasma membranes.  相似文献   

18.
A detailed protocol is described for the application of a programmable one-pot oligosaccharide synthesis methodology to the synthesis of fucosyl GM1. This serves as a general example of the application of this method to the synthesis of any desired oligosaccharide. The method relies on a large database of relative reactivities for differentially protected tolyl thioglycoside donor molecules and a computer program to suggest the best order of addition for assembly of the oligosaccharide in optimal yield and with the fewest operations. The product is a protected form of the desired oligosaccharide isolated in 47% yield, which is then deprotected using standard procedures to provide fucosyl GM1 oligosaccharide (1) in 44% yield. The total time for synthesis of 1 from building blocks 3, 4 and 5 is approximately 4 d, whereas synthesis of the same compound by traditional stepwise procedures would take significantly longer. Protocols for the synthesis of thioglycoside building blocks 3 and 4 are also described.  相似文献   

19.
Glycosidases were used to prepare oligosaccharide structures of physiological and medicinal relevance. The study included an extensive screening of crude enzymatic preparations for α- and β-galactosidase, α- and β-mannosidase, β-N-acetylglucosaminidase, β-N-acetylgalactosaminidase and α-l-fucosidase activities. The enzymes were assessed with respect to regioselectivity of glycosyl transfer on to carbohydrate acceptors. The purification procedures for individual biocatalysts are described in detail.  相似文献   

20.
The structure of the oligosaccharide chain of the lipid-linked oligosaccharide that serves as a donor of oligosaccharide chain to proteins of hen oviduct membranes has been investigated. A [Man-14C]glycopeptide fraction was prepared from membrane glycoproteins labeled with GDP-[14C]mannose. Reductive alkaline cleavage of this glycopeptide yielded a reduced oligosaccharide that, by four criteria, was identical with reduced [Man-14C]oligosaccharide prepared from [Man-14C]oligosaccharide-lipid. The structure of the oligosaccharide chain of the [Man-14C]glycopeptide was investigated by cleavage with a specific endo-beta-N-acetylglucosaminidase, followed by treatment of the released oligosaccharide with purified al alpha-and beta-mannosidases. By this procedure it was possible to establish the structure of the cleavage product as (alpha-Man)n-beta-Man-(1 leads to 4)-GlcNAc. Similar studies were performed on the [GlcNAc-14C]oligosaccharide prepared by hydrolysis of [GlcNAc-14C]oligosaccharide-lipid. The results indicate that the structure of the intact oligosaccharide is (alpha-Man)n-beta-Man-(1 leads 4)-beta-GlcNAc-(1 leads to 4)-GlcNAc. These experiments, coupled with earlier enzymatic studies on synthesis of the glycoproteins from the lipid-linked oligosaccharide, provide strong evidence that the structure of the oligosaccharide intermediate and the oligosaccharide chain of the glycoprotein product contain the same core structure found in many secretory glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号