首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
HLA-B27 is strongly associated with spondyloarthropathies, including ankylosing spondylitis and reactive arthritis. The latter disease is triggered by various Gram-negative bacteria. A dodecamer derived from the intracytoplasmic tail of HLA-B27 was a natural ligand of three disease-associated subtypes (B*2702, B*2704, and B*2705) but not of two (B*2706 and B*2709), weakly or not associated to spondyloarthropathy. This peptide was strikingly homologous to protein sequences from arthritogenic bacteria, particularly to a region of the DNA primase from Chlamydia trachomatis. A synthetic peptide with this bacterial sequence bound in vitro disease-associated subtypes equally as the natural B27-derived ligand. The chlamydial peptide was generated by the 20 S proteasome from a synthetic 28-mer with the sequence of the corresponding region of the bacterial DNA primase. Molecular modeling suggested that the B27-derived and chlamydial peptides adopt very similar conformations in complex with B*2705. The results demonstrate that an HLA-B27-derived peptide mimicking arthritogenic bacterial sequences is a natural ligand of disease-associated HLA-B27 subtypes and suggest that the homologous chlamydial peptide might be presented by HLA-B27 on Chlamydia-infected cells.  相似文献   

2.
B*2704 is strongly associated to ankylosing spondylitis in Asian populations. It differs from the main HLA-B27 allotype, B*2705, in three amino acid changes. We analyzed the influence of tapasin, TAP, and immunoproteasome induction on maturation, surface expression, and T cell allorecognition of B*2704 and compared some of these features with B*2705 and B*2706, allotypes not associated to disease. In the tapasin-deficient .220 cell line, this chaperone significantly influenced the extent of folding of B*2704 and B*2705, but not their egress from the endoplasmic reticulum. In contrast, B*2706 showed faster folding and no accumulation in the endoplasmic reticulum in the absence of tapasin. Surface expression of B*2704 was more tapasin dependent than B*2705. However, expression of free H chain decreased in the presence of this chaperone for B*2705 but not B*2704, suggesting that more suboptimal ligands were loaded on B*2705 in the absence of tapasin. Despite its influence on surface expression, tapasin had little effect on allorecognition of B*2704. Both surface expression and T cell recognition of B*2704 were critically dependent on TAP, as established with TAP-deficient and TAP-proficient T2 cells. Both immunoproteasome and surface levels of B*2704 were induced by IFN-gamma, but this had little effect on allorecognition. Thus, except for the differential effects of tapasin on surface expression, the tapasin, TAP, and immunoproteasome dependency of B*2704 for maturation, surface expression, and T cell recognition are similar to B*2705, indicating that basic immunological features are shared by the two major HLA-B27 allotypes associated to ankylosing spondylitis in human populations.  相似文献   

3.
This study addressed the mechanisms by which HLA class I polymorphism modulates allorecognition. CTL 27S69 is an alloreactive clone raised against HLA-B*2705, with a known peptide epitope. This CTL cross-reacts with B*2702, which differs from B*2705 in the D77N, T80I, and L81A changes, but not with B*2701, which has D74Y, D77N, and L81A changes. To explain this differential recognition, B*2705 mutants mimicking subtype changes were used. The A81 mutant was not recognized, despite binding the natural epitope in vivo, suggesting that, when bound to this mutant, this peptide adopts an inappropriate conformation. The N77 and I80 mutations restored recognition in the N77A81 or I80A81 mutants. These compensatory effects explain the cross-reaction with B*2702. The Y74 and the Y74N77 mutants were weakly recognized or not recognized by CTL 27S69. This correlated with the absence or marginal presence of the peptide epitope in the Y74N77-bound pool. As with B*2701, exogenous addition of the peptide epitope sensitized Y74 and Y74N77 targets for lysis, indicating that failure to cross-react with B*2701 or these mutants was due to poor binding of the peptide in vivo and not to inappropriate presentation. The abrogating effect of Y74 was critically dependent upon the K70 residue, conserved among subtypes, as demonstrated with mutants at this position. Thus, HLA polymorphism affects allorecognition by modulating peptide binding or the conformation of bound peptides. Compensatory mutations and indirect effects of a polymorphic residue on residues conserved play a critical role.  相似文献   

4.
Functional dissection of HLA-B27 subtypes using alloreactive or B27-restricted CTL has shown that the structurally related B*2704 and B*2706 are the most distant subtypes relative to the prototype B*2705. In particular, previous studies have failed to find anti-B*2705 CTL cross-reacting with B*2704 or B*2706. Such failure can be accounted for by the drastic effect on T cell recognition of the change at residue 152 in both subtypes relative to B*2705, as established with site-directed mutants. B*2704 and B*2706 are also related in ethnic distribution, as they are restricted to Orientals, jointly being the predominant HLA-B27 subtypes in this population. As far as it is known, there are no differences relative to B*2705 in their linkage to ankylosing spondylitis. In our study, 5 of 13 examined anti-B*2705 limiting dilution CTL lines from a particular HLA-B27- individual were shown to crossreact with B*2704, B*2706 or both. The monoclonal nature of this cross-reaction was established by cold target competition analysis. This result demonstrates that the apparent differences in T cell antigenicity among anti-B27 subtypes are strongly influenced by the responder individual, as the spectrum of clonal specificities in anti-B27 responses may show significant differences among unrelated responders. Fine specificity differences among the cross-reactive CTL allowed unambiguous functional distinction between B*2704 and B*2706. The molecular basis of such cross-reactivity was examined by correlating CTL reaction patterns with the structure of both subtypes, which differ only by two residues located in the beta-pleated sheet bottom of the peptide binding site, and with site-directed mutants mimicking HLA-B27 subtype polymorphism. The results suggest that: 1) distinct peptides are involved in the allospecific epitopes recognized by the various crossreactive CTL, and 2) B*2704, B*2706, and B*2705 differ in their peptide-presenting specificity, but can present some identical or structurally similar peptides.  相似文献   

5.
HLA-B*2702, B*2704, and B*2705 are strongly associated with spondyloarthritis, whereas B*2706 is not. Subtypes differ among each other by a few amino acid changes and bind overlapping peptide repertoires. In this study we asked whether differential subtype association with disease is related to differentially bound peptides or to altered antigenicity of shared ligands. Alloreactive CTL raised against B*2704 were analyzed for cross-reaction with B*2705, B*2702, B*2706, and mutants mimicking subtype changes. These CTL are directed against many alloantigen-bound peptides and can be used to analyze the antigenicity of HLA-B27 ligands on different subtypes. Cross-reaction of anti-B*2704 CTL with B*2705 and B*2702 correlated with overlap of their peptidic anchor motifs, suggesting that many shared ligands have similar antigenic features on these three subtypes. Moreover, the percent of anti-B*2704 CTL cross-reacting with B*2706 was only slightly lower than the overlap between the corresponding peptide repertoires, suggesting that most shared ligands have similar antigenic features on these two subtypes. Cross-reaction with B*2705 or mutants mimicking changes between B*2704 and B*2705 was donor-dependent. In contrast, cross-reaction with B*2702 or B*2706 was less variable among individuals. Conservation of antigenic properties among subtypes has implications for allorecognition, as it suggests that shared peptides may determine cross-reaction across exposed amino acid differences in the MHC molecules and that the antigenic distinctness of closely related allotypes may differ among donors. Our results also suggest that differential association of HLA-B27 subtypes with spondyloarthritis is more likely related to differentially bound peptides than to altered antigenicity of shared ligands.  相似文献   

6.
HLA-B27 is strongly associated with ankylosing spondylitis. Natural HLA-B27 ligands derived from polymorphic regions of its own or other class I HLA molecules might be involved in autoimmunity or provide diversity among HLA-B27-bound peptide repertoires from individuals. In particular, an 11-mer spanning HLA-B27 residues 169-179 is a natural HLA-B27 ligand with homology to proteins from Gram-negative bacteria. Proteasomal digestion of synthetic substrates demonstrated direct generation of the B27-(169-179) ligand. Cleavage after residue 181 generated a B27-(169-181) 13-mer that was subsequently found as a natural ligand of B*2705 and B*2704. Its binding to HLA-B27 subtypes in vivo correlated better than B27-(169-179) with association to spondyloarthropathy. Proteasomal cleavage generated also a peptide spanning B*2705 residues 150-158. This region is polymorphic among HLA-B27 subtypes and class I HLA antigens. The peptide was a natural B*2704 ligand. Since this subtype differs from B*2705 at residue 152, it was concluded that the ligand arose from HLA-B*3503, synthesized in the cells used as a source for B*2704-bound peptides. Thus, polymorphic HLA-B27 ligands derived from HLA-B27 or other class I molecules are directly produced by the 20 S proteasome in vitro, and this can be used for identification of such ligands in the constitutive HLA-B27-bound peptide pool.  相似文献   

7.
HLA-B*2705 is strongly associated with ankylosing spondylitis (AS) and reactive arthritis. In contrast, B*2709 has been reported to be more weakly or not associated to AS. These two molecules differ by a single amino acid change: aspartic acid in B*2705 or histidine in B*2709 at position 116. In this study, we analyzed the degree of T cell epitope sharing between the two subtypes. Ten allospecific T cell clones raised against B*2705, 10 clones raised against B*2703 but cross-reactive with B*2705, and 10 clones raised against B*2709 were examined for their capacity to lyse B*2705 and B*2709 target cells. The anti-B*2705 and anti-B*2703 CTL were peptide dependent as demonstrated by their failure to lyse TAP-deficient B*2705-T2 transfectant cells. Eight of the anti-B*2705 and five of the anti-B*2703 CTL clones lysed B*2709 targets. The degree of cross-reaction between B*2705 and B*2709 was donor dependent. In addition, the effect of the B*2709 mutation (D116H) on allorecognition was smaller than the effect of the other naturally occurring subtype change at this position, D116Y. These results demonstrate that B*2705 and B*2709 are the antigenically closest HLA-B27 subtypes. Because allospecific T cell recognition is peptide dependent, our results imply that the B*2705- and B*2709-bound peptide repertoires are largely overlapping. Thus, to the extent to which linkage of HLA-B27 with AS is related to the peptide-presenting properties of this molecule, our results would imply that peptides within a relatively small fraction of the HLA-B27-bound peptide repertoire influence susceptibility to this disease.  相似文献   

8.
Recognition of self peptides bound to the class I major histocompatibility complex molecule HLA-B27 is thought to trigger proliferation of autoreactive T cells and result in autoimmune arthritic diseases. Previous work from other laboratories established that a predominant feature of endogenous peptides eluted from purified B27 is an arginine at position 2. We studied the binding of peptides containing both natural and unnatural amino acids by the subtype HLA-B*2702, with the goal of gaining insight into peptide binding by this B27 subtype that is associated with susceptibility to arthritic disease. A soluble from of B*2702 was depleted of endogenous peptides. We tested the binding of peptides substituted with cysteine, homocysteine, or an alpha-amino-epsilon-mercapto hexanoic acid side chain (Amh) instead of the naturally occurring arginine at position 2, to determine whether the peptide sulfhydryl residue could be covalently linked to cysteine 67 in the B*2702 binding cleft. Although none of the altered peptide sequences bound covalently to B*2702, the affinities of the homocysteine- and Amh-substituted peptides were close to that of the native peptide sequence. Substitutions at position 2 with other side chains, such as glutamine and methionine, also resulted in peptides that bound with only slightly reduced affinity. These results demonstrate that peptide side chains other than arginine at position 2 can be accomodated within the B*2702 peptide binding site with only minor reductions in affinity. This extended repertoire of permissible B27-binding peptides should be taken into account for a consideration of disease-associated peptide sequences.  相似文献   

9.
The F pocket of major histocompatibility complex (in humans HLA) class I molecules accommodates the C terminus of the bound peptide. Residues forming this pocket exhibit considerable polymorphism, and a single difference (Asp116 in HLA-B*2705 and His116 in HLA-B*2709 heavy chains) confers differential association of these two HLA-B27 subtypes to the autoimmune disease ankylosing spondylitis. As peptide presentation by HLA molecules is of central importance for immune responses, we performed thermodynamic (circular dichroism, differential scanning calorimetry, fluorescence polarization) and X-ray crystallographic analyses of both HLA-B27 subtypes complexed with the epidermal growth factor response factor 1-derived self-peptide TIS (RRLPIFSRL) to understand the impact of the Asp116His exchange on peptide display. This peptide is known to be presented in vivo by both subtypes, and as expected for a self-peptide, TIS-reactive cytotoxic T lymphocytes are absent in the respective individuals. The thermodynamic analyses reveal that both HLA-B27:TIS complexes exhibit comparable, relatively high thermostability (Tm approximately 60 degrees C) and undergo multi-step unfolding reactions, with dissociation of the peptide in the first step. As shown by X-ray crystallography, only subtle structural differences between the subtypes were observed regarding the architecture of their F pockets, including the presence of distinct networks of water molecules. However, no consistent structural differences were found between the peptide presentation modes. In contrast to other peptides displayed by the two HLA-subtypes which show either structural or dynamical differences in their peptide presentation modes, the TIS-complexed HLA-B*2705 and HLA-B*2709 subtypes are an example for thermodynamic and structural equivalence, in agreement with functional data.  相似文献   

10.
HLA-B27 subtype polymorphism is amenable to differential recognition by CTL. Site-directed mutagenesis was used to construct a series of HLA-B27 mutants reproducing most of the changes occurring in the natural subtypes. The reactivity of 21 anti-HLA-B27 CTL clones was examined with these mutants to address three issues concerning the alloreactive response against HLA-B27: 1) diversity of clonotypic specificities, 2) structural features of the epitopes recognized by these clones, and 3) role of individual positions in the differential recognition of HLA-B27 subtypes. Virtually all CTL clones displayed unique reaction patterns with the mutants, indicating a corresponding diversity of epitopes. However, these share some molecular features, such as certain amino acid residues and related locations. Individual mutations induced complex effects on multiple B27-specific CTL epitopes, revealing some of their very precise stereochemical constrains. An important feature of HLA-B27 subtype polymorphism is that every individual change was relevant, altering recognition by many CTL clones. Although the specific set affected by each mutation was partially different, the global number of clones affected by most changes was very similar. This suggests that the antigenic profile of any given subtype is not dominated by one particular change but is uniquely defined by its corresponding set of changes. An exception was the change at position 152, which totally abrogated recognition by all 20 anti-B*2705 CTL clones. This effect decisively influences the profound differences in T cell recognition between B*2705 and the two subtypes, B*2704 and B*2706, carrying this change. The results are compatible with the idea that HLA-B27 allorecognition may involve multiple peptides bound to the alloantigen on the cell surface.  相似文献   

11.
Two HLA-B27 subtypes, B*2702 and B*2705, both associated with ankylosing spondylitis, were tested for binding affinity with a panel of polyalanine model nonapeptides carrying Arg at position 2 (P2) and a series of different amino acids at position 9 (P9). The alpha chains were isolated from BTB(B*2705), C1R/B*2702 (a B*2702 transfectant cell line) and from the NW(B*2702) cell line that has a peculiar peptide presentation behavior. Peptide binding was measured by the HLA alpha chain refolding assay. The results obtained show that: 1) Peptides with basic residues (Arg and Lys) and also aliphatic (Leu) and aromatic (Phe and Tyr) peptides at P9 have a similar high affinity in the binding to B*2705; 2) B*2702 binds well to P9 aliphatic and aromatic peptides but only very weakly to P9 basic peptides. Since both B*2702 and B*2705 are associated with AS the presumed arthritogenic peptide is hypothesized to have an aromatic or aliphatic residue at position 9. Peptides with basic residues in this position would be excluded as candidates because of their low binding affinity with B*2702.  相似文献   

12.
HLA分子抗原表位提呈模式的分析,在自身免疫病和肿瘤的病因与治疗研究方面有重要意义。本研究采用组合肽库的策略合成19组ORX7型肽亚库,通过与荧光素标记肽的竞争结合试验,分析了与强直性脊柱炎有强相关的HLA-B27分子的抗原提呈模式。结果显示HLA-B27与P1为不同氨基酸残基的19种肽亚库有相近的结合率,提示P1为非锚定残基;中国人群最常见的二种HLA-B27亚型B*2704和B*2705,在提呈肽表位的P1模式方面存在一些小差异,P1为D或E的肽亚库与HLA-B*2704的结合能力要强一些,而P1为K的肽亚库则与HLA-B*2705的结合能力强一些。本研究为HLA-B27与强直性脊柱炎关联机制的研究提供了线索,为开展HLA分子的抗原提呈模式分析打下了基础。  相似文献   

13.
In contrast to HLA-B*2705, B*2709 is weakly or not associated to ankylosing spondylitis. Both allotypes differ by a single D116H change. We compared the B*2705- and B*2709-bound peptide repertoires by mass spectrometry to quantify the effect of B*2709 polymorphism on peptide specificity. In addition, shared and differentially bound ligands were sequenced to define the structural features of the various peptide subsets. B*2705 shared 79% of its peptide repertoire with B*2709. Shared ligands accounted for 88% of the B*2709-bound repertoire. All B*2705 ligands not bound to B*2709 had C-terminal basic or Tyr residues. Most B*2709-bound peptides had C-terminal aliphatic and Phe residues, but two showed C-terminal Arg or Tyr. The B*2709-bound repertoire included 12% of peptides not found in B*2705. These had aliphatic C-terminal residues, which are also favored in B*2705. However, these peptides bound weakly B*2705 in vitro, indicating distinct contribution of secondary anchor residues in both subtypes. Differences in peptide binding did not affect the ratio of native to beta2-microglobulin-free HLA-B27 heavy chain at the cell surface. Our results suggest that weaker association of B*2709 with ankylosing spondylitis is based on differential binding of a limited subset of natural ligands by this allotype.  相似文献   

14.
Human major histocompatibility complex class I (MHC I) – or human leukocyte antigen (HLA) – proteins present intracellularly processed peptides to cytotoxic T lymphocytes in the adaptive immune response to pathogens. A high level of polymorphism in human MHC I proteins defines the peptide-binding specificity of thousands of different MHC alleles. However, polymorphism as well as the peptide ligand can also affect the global dynamics of the complex. In this study, we conducted classical molecular dynamics simulations of two HLA alleles, the ankylosing spondylitis (AS) associated/tapasin-dependent HLA-B*27:05 and nondisease-associated/tapasin-independent HLA-B*27:09, both in peptide-free forms as well as complex with four different peptides ligands. Our results indicate that in peptide-free form, the single amino acid substitution distinguishing the two alleles (D116H), leads to a weaker dynamic coupling of residues in the tapasin-dependent HLA-B*27:05. In peptide-bound form, several residues of the binding-groove, mostly in A and B pockets, show hinge-like behavior in the global motion of the MHC. Moreover, allele-dependent changes are shown in residue interactions, affecting the B-pocket as well as the beta-2-microglobulin (β2m)-facing residues of the HLA chain.  相似文献   

15.
A single residue polymorphism distinguishes HLA-B*4402(D116) from HLA-B*4405(Y116), which was suggested to allow HLA-B*4405 to acquire peptides without binding to tapasin-TAP complexes. We show that HLA-B*4405 is not inherently unable to associate with tapasin-TAP complexes. Under conditions of peptide deficiency, both allotypes bound efficiently to TAP and tapasin, and furthermore, random nonamer peptides conferred higher thermostability to HLA-B*4405 than to HLA-B*4402. Correspondingly, under conditions of peptide sufficiency, more rapid peptide-loading, dissociation from TAP complexes, and endoplasmic reticulum exit were observed for HLA-B*4405, whereas HLA-B*4402 showed greater endoplasmic reticulum retention and enhanced tapasin-TAP binding. Together, these studies suggest that position 116 HLA polymorphisms influence peptide occupancy, which in turn determines binding to tapasin and TAP. Relative to HLA-B*4405, inefficient peptide loading of HLA-B*4402 is likely to underlie its stronger tapasin dependence for cell surface expression and thermostability, and its enhanced susceptibility to pathogen interference strategies.  相似文献   

16.
The single amino acid replacement Asp116His distinguishes the two subtypes HLA-B*2705 and HLA-B*2709 which are, respectively, associated and non-associated with Ankylosing Spondylitis, an autoimmune chronic inflammatory disease. The reason for this differential association is so far poorly understood and might be related to subtype-specific HLA:peptide conformations as well as to subtype/peptide-dependent dynamical properties on the nanoscale. Here, we combine functional experiments with extensive molecular dynamics simulations to investigate the molecular dynamics and function of the conserved Arg62 of the α1-helix for both B27 subtypes in complex with the self-peptides pVIPR (RRKWRRWHL) and TIS (RRLPIFSRL), and the viral peptides pLMP2 (RRRWRRLTV) and NPflu (SRYWAIRTR). Simulations of HLA:peptide systems suggest that peptide-stabilizing interactions of the Arg62 residue observed in crystal structures are metastable for both B27 subtypes under physiological conditions, rendering this arginine solvent-exposed and, probably, a key residue for TCR interaction more than peptide-binding. This view is supported by functional experiments with conservative (R62K) and non-conservative (R62A) B*2705 and B*2709 mutants that showed an overall reduction in their capability to present peptides to CD8+ T cells. Moreover, major subtype-dependent differences in the peptide recognition suggest distinct TCR binding modes for the B*2705 versus the B*2709 subtype.  相似文献   

17.
For more than 30 years, human leukocyte antigen B27 (HLA-B27) has been known to be closely related to the autoimmune disease ankylosing spondylitis, yet little is known about the molecular mechanisms of pathogenesis. Crystal structures of two closely related, but differently disease-associated, subtypes (B*2705 and B*2709) also did not resolve this situation as they revealed the bound nonapeptide in essentially identical conformations. As the peptide is part of putative binding epitopes for the T cell receptor, we performed molecular dynamics simulations to gain deeper insight into the dynamic behaviour of HLA-B27 molecules. We find increased flexibility of the peptide in the binding groove of subtype B*2709 due to weaker interactions in the F pocket. Possible implications of this flexibility for T cell recognition and signalling are discussed.Abbreviations 2m 2-microglobulin - AS ankylosing spondylitis - CDR complementarity determining region - HC heavy chain - HLA human leukocyte antigen - MD molecular dynamics - MHC major histocompatibility complex - pMHC peptide-loaded MHC - RMSD root mean square deviation - RMSF root mean square fluctuation - TCR T cell receptor An erratum to this article can be found at  相似文献   

18.
Residue 116 of major histocompatibility complex (MHC) class I heavy chains is an important determinant of assembly, that can influence rates of ER-Golgi trafficking, binding to the transporter associated with antigen processing (TAP), tapasin dependence of assembly, and the efficiency and specificity of peptide binding. Here, we investigated assembly and peptide-binding differences between HLA-B*3501(S116) and HLA-B*3503(F116), two alleles differing only at position 116 of the MHC class I heavy chain, that are associated respectively with normal or rapid AIDS progression. A reduced intracellular maturation rate was observed for HLA-B*3503 in HIV-infected and uninfected cells, which correlated with enhanced binding of HLA-B*3503 to TAP. No significant differences in the intrinsic efficiency of in vitro peptide binding by HLA-B*3501 and HLA-B*3503 were measurable with several common peptides or peptide libraries, and both allotypes were relatively tapasin-independent for their assembly. However, thermostability differences between the two allotypes were measurable in a CD4+ T cell line. These findings suggest that compared to HLA-B*3501, a reduced intracellular peptide repertoire for HLA-B*3503 could contribute to its slower intracellular trafficking and stronger association with rapid AIDS progression.  相似文献   

19.
HLA-B27 is strongly associated with ankylosing spondylitis (AS). We analyzed the relationship between structure, peptide specificity, folding, and stability of the seven major HLA-B27 subtypes to determine the role of their constitutive peptidomes in the pathogenicity of this molecule. Identification of large numbers of ligands allowed us to define the differences among subtype-bound peptidomes and to elucidate the peptide features associated with AS and molecular stability. The peptides identified only in AS-associated or high thermostability subtypes with identical A and B pockets were longer and had bulkier and more diverse C-terminal residues than those found only among non-AS-associated/lower-thermostability subtypes. Peptides sequenced from all AS-associated subtypes and not from non-AS-associated ones, thus strictly correlating with disease, were very rare. Residue 116 was critical in determining peptide binding, thermodynamic properties, and folding, thus emerging as a key feature that unified HLA-B27 biology. HLA-B27 ligands were better suited to TAP transport than their N-terminal precursors, and AS-associated subtype ligands were better than those from non-AS-associated subtypes, suggesting a particular capacity of AS-associated subtypes to bind epitopes directly produced in the cytosol. Peptides identified only from AS-associated/high-thermostability subtypes showed a higher frequency of ERAP1-resistant N-terminal residues than ligands found only in non-AS-associated/low-thermostability subtypes, reflecting a more pronounced effect of ERAP1 on the former group. Our results reveal the basis for the relationship between peptide specificity and other features of HLA-B27, provide a unified view of HLA-B27 biology and pathogenicity, and suggest a larger influence of ERAP1 polymorphism on AS-associated than non-AS-associated subtypes.The current ideas concerning the pathogenetic role of HLA-B27 in ankylosing spondylitis (AS) emphasize specific antigen presentation (1), misfolding (2), or immunomodulation mediated by heavy chain homodimers (3) expressed at the cell surface upon endosomal recycling (4). Recent research provided evidence that both misfolded HLA-B27 heavy chains and surface expressed B27 homodimers may activate the IL-23/IL-17 axis, a key inflammatory pathway in spondyloarthropathies, through distinct mechanisms, namely the unfolded protein response (5) and the stimulation of IL-17-producing T cells (6). In contrast, the fact that CD8+ T cells are not required for the HLA-B27-associated disease in transgenic rats (7, 8), and the failure to identify specific arthritogenic peptides, point out to a pathogenetic role of HLA-B27 based on its folding and/or non-canonical forms, rather than to an autoimmune mechanism based on molecular mimicry between foreign and self-derived peptides. Yet, on the basis of genetic and immunological studies (9, 10), an involvement of CD8+T cells in the human disease cannot be ruled out.Beyond the pathogenetic relevance of specific peptides, the constitutive HLA-B27-bound peptidome is related to the folding and stability of HLA-B27, because both features are peptide-dependent (11). This is strongly supported by the association of ERAP1, an aminopeptidase that trims peptides to their optimal size for MHC-I binding (12, 13), with ankylosing spondylitis (AS)1 among HLA-B27-positive individuals (14), and by the demonstration that AS-associated ERAP1 polymorphism has a substantial effect on the HLA-B27 peptidome in live cells (15).Any pathogenetic mechanism must account for the differential association of HLA-B27 subtypes with AS. Whereas B*27:02, B*27:04 and B*27:05 are clearly associated with this disease, B*27:06 and B*27:09 are not (16, 17). B*27:07, a subtype present in multiple populations, is generally associated with AS, with one reported exception (18, 19). All these subtypes have the same structure in the A and B pockets of their peptide binding site, which accommodate the two N-terminal residues of their peptide ligands, but they differ in one or more positions in the F pocket, which binds the C-terminal peptide residue, as well as in other positions of the peptide binding site. In contrast, B*27:03, a subtype prevalent only in populations of Sub-Saharan African ancestry, differs from the B*27:05 prototype by a single Y59H change in the A pocket (20, 21), a difference that also sets it apart from all other subtypes (supplemental Table S1) and affects the binding preferences for N-terminal peptide residues (2224). The nature of B*27:03 as a putative susceptibility factor for AS is unclear (19). In African populations in which this subtype is prevalent, neither this subtype nor B*27:05 are associated with this disease (25), presumably because of concurrent protective factor(s).In this study we carried out an extensive sequence analysis of HLA-B27 subtype-bound peptidomes to define their differential features as well as the extent and nature of peptide sharing among subtypes. The results revealed the basis for the intimate relationship between peptide specificity, folding, and stability of HLA-B27, provided a unified explanation on how subtype polymorphism alters the molecular biology of HLA-B27 and its association with AS, and demonstrated a differential influence of TAP and ERAP1 on AS-associated and non-AS-associated subtypes.  相似文献   

20.
Genes located outside the HLA region (6p21) have been considered as candidates for susceptibility to ankylosing spondylitis. We tested the hypothesis that the G22A polymorphism of the adenosine deaminase gene (ADA; 20q13.11) is associated with ankylosing spondylitis in 166 Brazilian subjects genotyped for the HLA*27 gene (47 patients and 119 controls matched for gender, age and geographic origin). The HLA-B*27 gene and the G22A ADA polymorphism were identified by PCR with sequence-specific oligonucleotide probes and PCR-RFLP, respectively. There were no significant differences in frequencies of ADA genotypes [odds ratio (OR) = 1.200, 95% confidence interval (CI) = 0.3102-4.643, P > 0.8] and ADA*01 and ADA*02 alleles (OR = 1.192, 95%CI = 0.3155-4.505, P > 0.8) in patients versus controls. We conclude that the G22A polymorphism is not associated with ankylosing spondylitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号