首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been shown in the literature that myocytes isolated from the ventricular walls at various intramural depths have different action potential durations (APDs). When these myocytes are embedded in the ventricular wall, their inhomogeneous properties affect the sequence of repolarization and the actual distribution of the APDs in the entire wall. In this article, we implement a mathematical model to simulate the combined effect of (a) the non-homogeneous intrinsic membrane properties (in particular the non-homogeneous APDs) and (b) the electrotonic currents that modulate the APDs when the myocytes are embedded in the ventricular myocardium. In particular, we study the effect of (a) and (b) on the excitation and repolarization sequences and on the distribution of APDs in the ventricles. We implement a Monodomain tissue representation that includes orthotropic anisotropy, transmural fiber rotation and homogeneous or heterogeneous transmural intrinsic membrane properties, modeled according to the phase I Luo-Rudy membrane ionic model. Three-dimensional simulations are performed in a cartesian slab with a parallel finite element solver employing structured isoparametric trilinear finite elements in space and a semi-implicit adaptive method in time. Simulations of excitation and repolarization sequences elicited by epicardial or endocardial pacing show that in a homogeneous slab the repolarization pathways approximately follow the activation sequence. Conversely, in the heterogeneous cases considered in this study, we observed two repolarization wavefronts that started from the epi and the endocardial faces respectively and collided in the thickness of the wall and in one case an additional repolarization wave starting from an intramural site. Introducing the heterogeneities along the transmural epi-endocardial direction affected both the repolarization sequence and the APD dispersion, but these effects were clearly discernible only in transmural planes. By contrast, in planes parallel to epi- and endocardium the APD distribution remained remarkably similar to that observed in the homogeneous model. Therefore, the patterns of the repolarization sequence and APD dispersion on the epicardial surface (or any other intramural surface parallel to it) do not reveal the uniform transmural heterogeneity.  相似文献   

2.
Heterogeneities in the densities of membrane ionic currents of myocytes cause regional variations in action potential duration (APD) at various intramural depths and along the apico-basal and circumferential directions in the left ventricle. This work extends our previous study of cartesian slabs to ventricular walls shaped as an ellipsoidal volume and including both transmural and apex-to-base APD heterogeneities. Our 3D simulation study investigates the combined effect on repolarization sequences and APD distributions of: (a) the intrinsic APD heterogeneity across the wall and along the apex-to-base direction, and (b) the electrotonic currents that modulate the APDs when myocytes are embedded in a ventricular wall with fiber rotation and orthotropic anisotropy. Our findings show that: (i) the transmural and apex-to-base heterogeneities have only a weak influence on the repolarization patterns on myocardial layers parallel to the epicardium; (ii) the patterns of APD distribution on the epicardial surface are mostly affected by the apex-to-base heterogeneities and do not reveal the APD transmural heterogeneity; (iii) the transmural heterogeneity is clearly discernible in both repolarization and APD patterns only on transmural sections; (iv) the apex-to-base heterogeneity is clearly discernible only in APD patterns on layers parallel to the epicardium. Thus, in our orthotropic ellipsoidal wall, the complex 3D electrotonic modulation of APDs does not fully mix the effects of the transmural and apex-to-base heterogeneity. The intrinsic spatial heterogeneity of the APDs is unmasked in the modulated APD patterns only in the appropriate transmural or intramural sections. These findings are independent of the stimulus location (epicardial, endocardial) and of Purkinje involvement.  相似文献   

3.
Volatile anaesthetics such as halothane, isoflurane and sevoflurane inhibit membrane currents contributing to the ventricular action potential. Transmural variation in the extent of current blockade induces differential effects on action potential duration (APD) in the endocardium and epicardium which may be pro-arrhythmic. Biophysical modelling techniques were used to simulate the functional impact of anaesthetic-induced blockade of membrane currents on APD and effective refractory period (ERP) in rat endocardial and epicardial cell models. Additionally, the transmural conduction of excitation waves in 1-dimensional cell arrays, the tissue's vulnerability to arrhythmogenesis and dynamic behaviour of re-entrant excitation in 2-dimensional cell arrays were studied. Simulated anaesthetic exposure reduced APD and ERP in both epicardial and endocardial cell models. The reduction in APD was greater in endocardial than epicardial cells, reducing transmural APD dispersion consistent with experimental data. However, the transmural ERP dispersion was augmented. All three anaesthetics increased the width of the tissue's vulnerable window during which a premature stimulus could induce unidirectional conduction block but only halothane reduced the critical size of ventricular substrates necessary to initiate and sustain re-entrant excitation. All three anaesthetics accelerated the rate of re-entrant excitation waves, but only halothane prolonged the lifespan of re-entry. These data illustrate in silico, that modest changes in ion channel conductance abbreviate rat ventricular APD and ERP, reduce transmural APD dispersion, but augment transmural ERP dispersion. These changes collectively enhance the propensity for arrhythmia generation and provide a substrate for re-entry circuits with a longer half life than in control conditions.  相似文献   

4.
The effects of left ventricular hypertrophy (LVH) on the generation of phase 2 early afterdepolarization (EAD) and transmural dispersion of repolarization (TDR) were assessed using arterially perfused rabbit ventricular wedge preparations. Transmembrane action potentials from epicardium, subendocardium, and endocardium were simultaneously recorded together with a transmural ECG. Transmural action potential duration (APD) was also mapped. LVH (renovascular hypertension model) produced significant prolongation in ventricular APD and QT interval. Preferential APD prolongation in subendocardium and endocardium was associated with a marked increase in TDR. Phase 2 EADs were generated from subendocardium or endocardium in all LVH rabbits (15 of 15) in the absence of APD prolonging agents at basic cycle lengths of 2,000-4,000 ms. Phase 2 EAD could produce "R on T" extrasystoles, initiating polymorphic ventricular tachycardia (VT). This study provides the first direct evidence from intracellular recordings that phase 2 EAD could be generated from rabbit intact hypertrophied LV wall in the absence of APD prolonging agents, resulting in R on T extrasystoles capable of initiating polymorphic VT under enhanced TDR.  相似文献   

5.
Coronary occlusion and reperfusion produce tachyarrhythmias. We tested the hypothesis that variations in transmural activation after global ischemia and reperfusion were responsible for arrhythmias. We arterially perfused 36 isolated transmural wedges from canine left ventricular free walls. After > or =100 min of stabilization, the artery was occluded for 25 min, followed by reperfusion at various flow rates. We recorded 256 channels of fluorescent action potentials on transmural surfaces from preocclusion to >15 min after reperfusion. During endocardial pacing at 300 ms, ischemia of > or =570 +/- 165 s (n = 34) produced 1:1 endocardial conduction and then 2:1 and 4:1 block as the wave fronts conducted toward epicardium. Transmural reentry appeared after 535 +/- 146 s of ischemia (n = 31). Further ischemia caused epicardial inactivation and eliminated reentry (n = 24). During reperfusion, tissues progressed through sequences of epicardial inactivation and reappearance of activation with 1:1, 2:1, and 4:1 conduction; both sustained and nonsustained reentry occurred. We conclude that heterogeneous activation responses to endocardial pacing during acute ischemia provide the substrate for initiating reentry, suppressed reentry during further ischemia, and caused reentry during reperfusion.  相似文献   

6.
Intrinsic spatial variations in repolarization currents in the heart can produce spatial gradients in action potential duration (APD) that serve as possible sites for conduction block and the initiation of reentrant activity. In well-coupled myocardium, however, electrotonic influences at the stimulus site and wavefront collision sites act to modulate any intrinsic heterogeneity in APD. These effects alter APD gradients over an extent larger than that suggested by the length constant associated with propagation and, thus, are hypothesized to play a greater role in smaller hearts used as experimental models of human disease. This study uses computer simulation to investigate how heart size, tissue properties, and the spatial assignment of cell types affect functional APD dispersion. Simulations were carried out using the murine ventricular myocyte model of Pandit et al. or the Luo-Rudy mammalian model in three-dimensional models of mouse and rabbit ventricular geometries. Results show that the spatial extent of the APD dispersion is related to the dynamic changes in transmembrane resistance during recovery. Also, because of the small dimensions of the mouse heart, electrotonic effects on APD primarily determine the functional dispersion of refractoriness, even in the presence of large intrinsic cellular heterogeneity and reduced coupling. APD dispersion, however, is found to increase significantly when the heart size increases to the size of a rabbit heart, unmasking intrinsic cell types.  相似文献   

7.
A change in activation sequence electrically remodels ventricular myocardium, causing persistent changes in repolarizing currents (T-wave memory). However, the underlying mechanism for triggering activation sequence-dependent remodeling is unknown. Optical action potentials were mapped with high resolution from the epicardial surface of the arterially perfused canine wedge preparation (n = 23) during 30 min of baseline endocardial stimulation, followed by 40 min of epicardial stimulation, and, finally, restoration of endocardial stimulation. Immediately after the change from endocardial to epicardial stimulation, phase 1 notch amplitude of epicardial cells was attenuated by 74 +/- 8% (P < 0.001) compared with baseline and continued to diminish during the period of epicardial pacing, suggesting progressive remodeling of the transient outward current (Ito). When endocardial pacing was restored, notch amplitude did not immediately recover but remained attenuated by 23 +/- 10% (P < 0.001), also consistent with a remodeling effect. Peak Ito current measured from isolated epicardial myocytes changed by 12 +/- 4% (P < 0.025), providing direct evidence for Ito remodeling occurring on a surprisingly short time scale. The mechanism for triggering remodeling of Ito was a significant reduction (by 14 +/- 4%, P < 0.001) of upstroke amplitude in epicardial cells during epicardial stimulation. Reduction in upstroke amplitude during epicardial pacing was explained by electrotonic load on epicardial cells by fully repolarized downstream endocardial cells. These data suggest a novel mechanism for triggering electrical remodeling in the ventricle. Electrotonic load imposed by a change in activation sequence reduces upstroke amplitude, which, in turn, attenuates Ito according to its known voltage-dependent properties, triggering downregulation of current.  相似文献   

8.
Controversies regarding the genesis of the T wave in the electrocardiogram and the role of midmural M cells in the intact heart include: In normal, intact canine and human hearts there is no significant transmural gradient in repolarization times. The T wave results primarily from apico-basal differences in repolarization times. Also, in the intact heart there is no midmural region of prolonged action potential duration. This contrasts with isolated preparations, such as the wedge preparation or myocardial slices or disaggregated myocytes in which M cells, with action potentials longer than those of endocardial and epicardial myocardium, can be found. This disparity in action potential duration probably results from partial uncoupling of myocardial cells in the regions where measurements are made, e.g., the cut surface of a wedge preparation. In regions of a wedge where cellular coupling is normal, or in isolated myocardial bundles or sheets, no evidence for M cells is detected. In some wedge preparations, a drug-induced large transmural repolarization gradient, involving M cells, can lead to Torsade de Pointes, possibly caused by so-called phase two reentry. In contrast, when a gradient of repolarization times of more than 100?ms was created in intact hearts, no evidence for reentry was found and no spontaneous arrhythmias occurred. In conclusion, in the intact heart, M cells appear not to contribute to repolarization gradients and arrhythmias. Furthermore, no significant repolarization gradients between endocardium and epicardium exist. The T wave in the body surface electrocardiogram is caused by apico-basal and anterior-posterior differences in repolarization times.  相似文献   

9.
Recently, we found that repolarization heterogeneities between subepicardial and midmyocardial cells can form a substrate for reentrant ventricular arrhythmias in failing myocardium. We hypothesized that the mechanism responsible for maintaining transmural action potential duration heterogeneities in heart failure is related to intercellular uncoupling from downregulation of cardiac gap junction protein connexin43 (Cx43). With the use of the canine model of pacing-induced heart failure, left ventricles were sectioned to expose the transmural surface (n = 5). To determine whether heterogeneous Cx43 expression influenced electrophysiological function, high-resolution transmural optical mapping of the arterially perfused canine wedge preparation was used to measure conduction velocity (theta(TM)), effective transmural space constant (lambda(TM)), and transmural gradients of action potential duration (APD). Absolute Cx43 expression in failing myocardium, quantified by confocal immunofluorescence, was uniformly reduced (by 40 +/- 3%, P < 0.01) compared with control. Relative Cx43 expression was heterogeneously distributed and lower (by 32 +/- 18%, P < 0.05) in the subepicardium compared with deeper layers. Reduced Cx43 expression in heart failure was associated with significant reductions in intercellular coupling between transmural muscle layers, as evidenced by reduced theta(TM) (by 18.9 +/- 4.9%) and lambda(TM) (by 17.2 +/- 1.4%; P < 0.01) compared with control. Heterogeneous transmural distribution of Cx43 in failing myocardium was associated with lower subepicardial theta(TM) (by 12 +/- 10%) and lambda(TM) (by 13 +/- 7%), compared with deeper transmural layers (P < 0.05). APD dispersion was greatest in failing myocardium, and the largest transmural APD gradients were consistently found in regions exhibiting lowest relative Cx43 expression. These data demonstrate that reduced Cx43 expression produces uncoupling between transmural muscle layers leading to slowed conduction and marked dispersion of repolarization between epicardial and deeper myocardial layers. Therefore, Cx43 expression patterns can potentially contribute to an arrhythmic substrate in failing myocardium.  相似文献   

10.
The biophysical characteristics and alpha subunits underlying calcium-independent transient outward potassium current (Ito) phenotypes expressed in ferret left ventricular epicardial (LV epi) and endocardial (LV endo) myocytes were analyzed using patch clamp, fluorescent in situ hybridization (FISH), and immunofluorescent (IF) techniques. Two distinct Ito phenotypes were measured (21-22 degrees C) in the majority of LV epi and LV endo myocytes studied. The two Ito phenotypes displayed marked differences in peak current densities, activation thresholds, inactivation characteristics, and recovery kinetics. Ito,epi recovered rapidly [taurec, -70 mV = 51 +/- 3 ms] with minimal cumulative inactivation, while Ito,endo recovered slowly [taurec, -70 mV = 3,002 +/- 447 ms] with marked cumulative inactivation. Heteropoda toxin 2 (150 nM) blocked Ito,epi in a voltage-dependent manner, but had no effect on Ito,endo. Parallel FISH and IF measurements conducted on isolated LV epi and LV endo myocytes demonstrated that Kv1.4, Kv4.2, and Kv4.3 alpha subunit expression in LV myocyte types was quite heterogenous: (a) Kv4.2 and Kv4.3 were more predominantly expressed in LV epi than LV endo myocytes, and (b) Kv1.4 was expressed in the majority of LV endo myocytes but was essentially absent in LV epi myocytes. In combination with previous measurements on recovery kinetics (Kv1.4, slow; Kv4.2/4.3, relatively rapid) and Heteropoda toxin block (Kv1.4, insensitive; Kv4.2, sensitive), our results strongly support the hypothesis that, in ferret heart, Kv4.2/Kv4.3 and Kv1.4 alpha subunits, respectively, are the molecular substrates underlying the Ito,epi and Ito,endo phenotypes. FISH and IF measurements were also conducted on ferret ventricular tissue sections. The three Ito alpha subunits again showed distinct patterns of distribution: (a) Kv1.4 was localized primarily to the apical portion of the LV septum, LV endocardium, and approximate inner 75% of the LV free wall; (b) Kv4. 2 was localized primarily to the right ventricular free wall, epicardial layers of the LV, and base of the heart; and (c) Kv4.3 was localized primarily to epicardial layers of the LV apex and diffusely distributed in the LV free wall and septum. Therefore, in intact ventricular tissue, a heterogeneous distribution of candidate Ito alpha subunits not only exists from LV epicardium to endocardium but also from apex to base.  相似文献   

11.
We have constructed computational models of canine ventricular cells and tissues, ultimately combining detailed tissue architecture and heterogeneous transmural electrophysiology. The heterogeneity is introduced by modifying the Hund–Rudy canine cell model in order to reproduce experimentally reported electrophysiological properties of endocardial, midmyocardial (M) and epicardial cells. These models are validated against experimental data for individual ionic current and action potential characteristics, and their rate dependencies. 1D and 3D heterogeneous virtual tissues are constructed, with detailed tissue architecture (anisotropy and orthotropy, due to fibre orientation and sheet structure) of the left ventricular wall wedge extracted from a diffusion tensor imaging data set. The models are used to study the effects of tissue heterogeneity and class III drugs on transmural propagation and tissue vulnerability to re-entry.

We have determined relationships between the transmural dispersion of action potential duration (APD) and the vulnerable window in the 1D virtual ventricular wall, and demonstrated how changes in the transmural heterogeneity, and hence tissue vulnerability, can lead to generation of re-entry in the 3D ventricular wedge. Two class III drugs with opposite qualitative effects on transmural APD heterogeneity are considered: d-sotalol that increases transmural APD dispersion, and amiodarone that decreases it. Simulations with the 1D virtual ventricular wall show that under d-sotalol conditions the vulnerable window is substantially wider compared to amiodarone conditions, primarily in the epicardial region where unidirectional conduction block persists until the adjacent M cells are fully repolarised.

Further simulations with the 3D ventricular wedge have shown that ectopic stimulation of the epicardial region results in generation of sustained re-entry under d-sotalol conditions, but not under amiodarone conditions or in control. Again, APD increase in M cells was identified as the major contributor to tissue vulnerability—re-entry was initiated primarily due to ectopic excitation propagating around the unidirectional conduction block in the M cell region. This suggests an electrophysiological mechanism for the anti- and proarrhythmic effects of the class III drugs: the relative safety of amiodarone in comparison to d-sotalol can be explained by relatively low transmural APD dispersion, and hence, a narrow vulnerable window and low probability of re-entry in the tissue.  相似文献   


12.
We set a twofold investigation: we assess left ventricular (LV) rotation and twist in the human heart through 3D-echocardiographic speckle tracking, and use representative experimental data as benchmark with respect to numerical results obtained by solving our mechanical model of the LV. We aim at new insight into the relationships between myocardial contraction patterns and the overall behavior at the scale of the whole organ. It is concluded that torsional rotation is sensitive to transmural gradients of contractility which is assumed linearly related to action potential duration (APD). Pressure-volume loops and other basic strain measures are not affected by these gradients. Therefore, realistic torsional behavior of human LV may indeed correspond to the electrophysiological and functional differences between endocardial and epicardial cells recently observed in non-failing hearts. Future investigations need now to integrate the mechanical model proposed here with minimal models of human ventricular APD to drive excitation-contraction coupling transmurally.  相似文献   

13.
The cellular basis of the T-wave morphology of surface ECG remains controversial in clinical cardiology. We examined the effect of action potential duration (APD) distribution on T-wave morphology using a realistic model of the human ventricle and torso. We developed a finite-element model of the ventricle consisting of ~26 million elements, including the conduction system, each implemented with the ion current model of cardiomyocytes. This model was embedded in a torso model with distinct organ structures to obtain the standard ECG leads. The APD distribution was changed in the transmural direction by locating the M cells in either the endocardial or epicardial region. We also introduced apicobasal gradients by modifying the ion channel parameters. Both the transmural gradient (with M cells on the endocardial side) and the apicobasal gradient produced positive T waves, although a very large gradient was required for the apicobasal gradient. By contrast, T waves obtained with the transmural gradient were highly symmetric and, therefore, did not represent the true physiological state. Only combination of the transmural and the moderate apicobasal gradients produced physiological T waves in surface ECG. Positive T waves in surface ECG mainly originated from the transmural distribution of APD with M cells on the endocardial side, although the apicobasal gradient was also required to attain the physiological waveform.  相似文献   

14.
T-wave alternans, characterized by a beat-to-beat change in T-wave morphology, amplitude, and/or polarity on the ECG, often heralds the development of lethal ventricular arrhythmias in patients with left ventricular hypertrophy (LVH). The aim of our study was to examine the ionic basis for a beat-to-beat change in ventricular repolarization in the setting of LVH. Transmembrane action potentials (APs) from epicardium and endocardium were recorded simultaneously, together with transmural ECG and contraction force, in arterially perfused rabbit left ventricular wedge preparation. APs and Ca(2+)-activated chloride current (I(Cl,Ca)) were recorded from left ventricular myocytes isolated from normal rabbits and those with renovascular LVH using the standard microelectrode and whole cell patch-clamping techniques, respectively. In the LVH rabbits, a significant beat-to-beat change in endocardial AP duration (APD) created beat-to-beat alteration in transmural voltage gradient that manifested as T-wave alternans on the ECG. Interestingly, contraction force alternated in an opposite phase ("out of phase") with APD. In the single myocytes of LVH rabbits, a significant beat-to-beat change in APD was also observed in both left ventricular endocardial and epicardial myocytes at various pacing rates. APD alternans was suppressed by adding 1 microM ryanodine, 100 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), and 100 microM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS). The density of the Ca(2+)-activated chloride currents (I(Cl,Ca)) in left ventricular myocytes was significantly greater in the LVH rabbits than in the normal group. Our data indicate that abnormal intracellular Ca(2+) fluctuation may exert a strong feedback on the membrane I(Cl,Ca), leading to a beat-to-beat change in the net repolarizing current that manifests as T-wave alternans on the ECG.  相似文献   

15.
Macroscopic T wave alternans (TWA) associated with increased occurrence of ventricular arrhythmias has been reported in patients with Brugada syndrome. However, the mechanisms in this syndrome are still unclear. We evaluated the hypothesis that TWA in Brugada syndrome was caused by the dynamic instability and heterogeneity of action potentials (APs) in the right ventricle. Using an optical mapping system, we mapped APs on the epicardium or transmural surfaces of 28 isolated and arterially perfused canine right ventricular preparations having drug-induced Brugada syndrome (in micromol/l: 2.5-15 pinacidil, 5.0 terfenadine, and 5.0-13 pilsicainide). Bradycardia at cycle length (CL) of 2,632 +/- 496 ms (n = 19) induced alternating deep and shallow T waves in the transmural electrocardiogram. Compared with the shallow T waves, deep T waves were associated with epicardial APs having longer durations and larger domes. Adjacent regions having APs with alternating domes, with constant domes, and without domes coexisted simultaneously in the epicardium and caused TWA. In contrast to the alternating epicardial APs, midmyocardial and endocardial APs did not change during TWA. Alternans could be terminated by rapid (CL: 529 +/- 168 ms, n = 7) or very slow (CL: 3,000 ms, n = 7) pacing. The heterogeneic APs during TWA augmented the dispersion of repolarization both within the epicardium and from the epicardium to the endocardium and caused phase 2 reentry. In this drug-induced model of Brugada syndrome, heterogeneic AP contours and dynamic alternans in the dome of right ventricular epicardial, but not midmyocardial or endocardial, APs caused TWA and heightened arrhythmogenicity in part by increasing the dispersion of repolarization.  相似文献   

16.
Our study compared the contributions of activation sequence and local repolarization durations distribution in the organization of epicardial repolarization in animals with fast (rabbit) and slow (frog) myocardial activation under sinus rhythm. Activation times, repolarization times and activation-recovery intervals (ARI) were obtained from ventricular epicardial unipolar electrograms recorded in 13 Chinchilla rabbits (Oryctolagus cuniculus) and 10 frogs (Rana temporaria). In frogs, depolarization travels from the atrioventricular ring radially. ARIs increased progressively from the apex to the middle portion and finally to the base (502+/-75, 557+/-73, 606+/-79 ms, respectively; P<0.01). In rabbits, depolarization spread from two epicardial breakthroughs with the duration of epicardial activation being lower than that in frogs (17+/-3 vs. 44+/-18 ms; P<0.001). ARI durations were 120+/-37, 143+/-45, and 163+/-40 ms in the left ventricular apex, left, and right ventricular bases, respectively (P<0.05). In both species, repolarization sequence was directed from apex to base according to the ARI distribution with dispersion of repolarization being higher than that of activation (P<0.001). Thus, excitation spread sequence and velocity per se do not play a crucial role in the formation of ventricular epicardial repolarization pattern, but the chief factor governing repolarization sequences is the distribution of local repolarization durations.  相似文献   

17.
Cardiac ischemia reduces excitability in ventricular tissue. Acidosis (one component of ischemia) affects a number of ion currents. We examined the effects of extracellular acidosis (pH 6.6) on peak and late Na(+) current (I(Na)) in canine ventricular cells. Epicardial and endocardial myocytes were isolated, and patch-clamp techniques were used to record I(Na). Action potential recordings from left ventricular wedges exposed to acidic Tyrode solution showed a widening of the QRS complex, indicating slowing of transmural conduction. In myocytes, exposure to acidic conditions resulted in a 17.3 ± 0.9% reduction in upstroke velocity. Analysis of fast I(Na) showed that current density was similar in epicardial and endocardial cells at normal pH (68.1 ± 7.0 vs. 63.2 ± 7.1 pA/pF, respectively). Extracellular acidosis reduced the fast I(Na) magnitude by 22.7% in epicardial cells and 23.1% in endocardial cells. In addition, a significant slowing of the decay (time constant) of fast I(Na) was observed at pH 6.6. Acidosis did not affect steady-state inactivation of I(Na) or recovery from inactivation. Analysis of late I(Na) during a 500-ms pulse showed that the acidosis significantly reduced late I(Na) at 250 and 500 ms into the pulse. Using action potential clamp techniques, application of an epicardial waveform resulted in a larger late I(Na) compared with when an endocardial waveform was applied to the same cell. Acidosis caused a greater decrease in late I(Na) when an epicardial waveform was applied. These results suggest acidosis reduces both peak and late I(Na) in both cell types and contributes to the depression in cardiac excitability observed under ischemic conditions.  相似文献   

18.
The formation of the coronary vessel system is vital for heart development, an essential step of which is the establishment of a capillary plexus that displays a density gradient across the myocardial wall, being higher on the epicardial than the endocardial side. This gradient in capillary plexus formation develops concurrently with transmural gradients of myocardium-derived growth factors, including FGFs. To test the role of the FGF expression gradient in patterning the nascent capillary plexus, an ectopic FGF-over-expressing site was created in the ventricular myocardial wall in the quail embryo via retroviral infection from E2-2.5, thus abolishing the transmural gradient of FGFs. In FGF virus-infected regions of the ventricular myocardium, the capillary density across the transmural axis shifted away from that in control hearts at E7. This FGF-induced change in vessel patterning was more profound at E12, with the middle zone becoming the most vascularized. An up-regulation of FGFR-1 and VEGFR-2 in epicardial and subepicardial cells adjacent to FGF virus-infected myocardium was also detected, indicating a paracrine effect on induction of vascular signaling components in coronary precursors. These results suggest that correct transmural patterning of coronary vessels requires the correct transmural expression of FGF and, therefore, FGF may act as a template for coronary vessel patterning.  相似文献   

19.
This review examines the role of spatial electrical heterogeneity within the ventricular myocardium on the function of the heart in health and disease. The cellular basis for transmural dispersion of repolarization (TDR) is reviewed, and the hypothesis that amplification of spatial dispersion of repolarization underlies the development of life-threatening ventricular arrhythmias associated with inherited ion channelopathies is evaluated. The role of TDR in long QT, short QT, and Brugada syndromes, as well as catecholaminergic polymorphic ventricular tachycardia (VT), is critically examined. In long QT syndrome, amplification of TDR is often secondary to preferential prolongation of the action potential duration (APD) of M cells; in Brugada syndrome, however, it is thought to be due to selective abbreviation of the APD of the right ventricular epicardium. Preferential abbreviation of APD of the endocardium or epicardium appears to be responsible for the amplification of TDR in short QT syndrome. In catecholaminergic polymorphic VT, reversal of the direction of activation of the ventricular wall is responsible for the increase in TDR. In conclusion, long QT, short QT, Brugada, and catecholaminergic polymorphic VT syndromes are pathologies with very different phenotypes and etiologies, but they share a common final pathway in causing sudden cardiac death.  相似文献   

20.
The ventricular myocardium is characterized by heterogeneity of activation-recovery interval durations. The transmural ARI gradients are present in the right ventricular apex (ARIs monotonically decreased as one moved from the endocardium to the epicardium), and in the left ventricular base (repolarization in the subepicardial layers was significantly shorter than that in the midmyo cardial layers whereas subendocardial ARIs did not differ from the others). The repolarization pattern of these myocardial regions is governed by the distribution of ARIs. In the apical left ventricular and basal right ventricular areas, no significant transmural differences in the repolarization durations were found. The repolarization pattern of these myocardial regions is governed by the activation sequence. In the right ventricle, ARIs were significantly longer at the base and shorter at the apex. In contrast, in the left ventricle, the apical ARIs were prolonged whereas the basal ARIs were abbreviated. The apex-to-base sequence of myocardial repolarization seems to depend on apex-to-base gradient of activation-recovery intervals durations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号