首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth curves of the retinal cell population of embryonic chicks were fitted by a branching-process model of cell population growth, thereby estimating the proliferative ratios and mean cell-cycle times of the generations of cell cycles that underlie retinal growth. The proliferative ratio determines the proportion of cells that divides in the next generation, so the numbers of proliferative and non-proliferative cells in each generation of cell cycles were obtained. The mean cell-cycle times determine the times over which the generations are extant. Assuming growth starts from one cell in generation 0, the proliferative cells reach 3.6 × 106 and the non-proliferative cells reach 1.1 × 106 by generation 23. The next four generations increase the proliferative cell numbers to 13.9 × 106 and produce 20.1 × 106 non-proliferative cells. In the next five generations in the end phase of growth, non-proliferative cells are produced in large numbers at an average of 13.9 × 106 cells per generation as the retinal lineages are completed. The retinal cell population reaches a maximum estimated here at 98.2 × 106 cells. The mean cell-cycle time estimates range between 6.8 and 10.1 h in generations before the end phase of growth and between 10.6 and 17.2 h in generations in the end phase. The retinal cell population growth is limited by the depletion of the proliferative cell population that the production of non-proliferative cells entails. The proliferative ratios and the cell-cycle-time distribution parameters are the likely determinants of retinal growth rates. The results are discussed in relation to other results of spatial and temporal patterns of the cessation of cell cycling in the embryonic chick retina.  相似文献   

2.
Growth of a highly virulent strain of the phytopathogen Corynebacterium fascians on rich media at 37 degrees C resulted in a loss of virulence in a majority of the population within 10 generations. Strains retained virulence during cultivation at 30 degrees C on a minimal medium with ammonia as a nitrogen source. Populations of avirulent strains on the surfaces of pea seedlings decreased, whereas the number of cells of the virulent strain increased 1,000-fold during a 3-week period. All avirulent mutants isolated by growth on rich media at 37 degrees C were unable to grow on media containing agmatine or proline as sole sources of nitrogen. The ability of the mutants to grow on pea seedlings and cause fasciation disease appeared to be related to their ability to utilize nitrogen sources available on plant surfaces.  相似文献   

3.
Growth of a highly virulent strain of the phytopathogen Corynebacterium fascians on rich media at 37 degrees C resulted in a loss of virulence in a majority of the population within 10 generations. Strains retained virulence during cultivation at 30 degrees C on a minimal medium with ammonia as a nitrogen source. Populations of avirulent strains on the surfaces of pea seedlings decreased, whereas the number of cells of the virulent strain increased 1,000-fold during a 3-week period. All avirulent mutants isolated by growth on rich media at 37 degrees C were unable to grow on media containing agmatine or proline as sole sources of nitrogen. The ability of the mutants to grow on pea seedlings and cause fasciation disease appeared to be related to their ability to utilize nitrogen sources available on plant surfaces.  相似文献   

4.
Knowledge of how microorganisms respond and adapt to low-pressure (LP) environments is limited. Previously, Bacillus subtilis strain WN624 was grown at the near-inhibitory LP of 5 kPa for 1,000 generations and strain WN1106, which exhibited increased relative fitness at 5 kPa, was isolated. Genomic sequence differences between ancestral strain WN624 and LP-evolved strain WN1106 were identified using whole-genome sequencing. LP-evolved strain WN1106 carried amino acid-altering mutations in the coding sequences of only seven genes (fliI, parC, ytoI, bacD, resD, walK, and yvlD) and a single 9-nucleotide in-frame deletion in the rnjB gene that encodes RNase J2, a component of the RNA degradosome. By using a collection of frozen stocks of the LP-evolved culture taken at 50-generation intervals, it was determined that (i) the fitness increase at LP occurred rapidly, while (ii) mutation acquisition exhibited complex kinetics. A knockout mutant of rnjB was shown to increase the competitive fitness of B. subtilis at both LP and standard atmospheric pressure.  相似文献   

5.
The standard treatment of altitude decompression sickness (aDCS) caused by nitrogen bubble formation is oxygen breathing and recompression. However, micro air bubbles (containing 79% nitrogen), injected into adipose tissue, grow and stabilize at 25 kPa regardless of continued oxygen breathing and the tissue nitrogen pressure. To quantify the contribution of oxygen to bubble growth at altitude, micro oxygen bubbles (containing 0% nitrogen) were injected into the adipose tissue of rats depleted from nitrogen by means of preoxygenation (fraction of inspired oxygen = 1.0; 100%) and the bubbles studied at 101.3 kPa (sea level) or at 25 kPa altitude exposures during continued oxygen breathing. In keeping with previous observations and bubble kinetic models, we hypothesize that oxygen breathing may contribute to oxygen bubble growth at altitude. Anesthetized rats were exposed to 3 h of oxygen prebreathing at 101.3 kPa (sea level). Micro oxygen bubbles of 500-800 nl were then injected into the exposed abdominal adipose tissue. The oxygen bubbles were studied for up to 3.5 h during continued oxygen breathing at either 101.3 or 25 kPa ambient pressures. At 101.3 kPa, all bubbles shrank consistently until they disappeared from view at a net disappearance rate (0.02 mm(2) × min(-1)) significantly faster than for similar bubbles at 25 kPa altitude (0.01 mm(2) × min(-1)). At 25 kPa, most bubbles initially grew for 2-40 min, after which they shrank and disappeared. Four bubbles did not disappear while at 25 kPa. The results support bubble kinetic models based on Fick's first law of diffusion, Boyles law, and the oxygen window effect, predicting that oxygen contributes more to bubble volume and growth during hypobaric conditions. As the effect of oxygen increases, the lower the ambient pressure. The results indicate that recompression is instrumental in the treatment of aDCS.  相似文献   

6.
An alternative to estimation of cell growth kinetics via continuous culture experiments is proposed in this article. The method employed is based on batch culture experiments with very small inocula (initial cell concentrations being typically less than 5000 cells/mL). Such low initial cell concentrations result in extended exponential cell growth phase during which culture conditions remain unchanged, thereby permitting precise estimation of specific cell growth rates from batch experiments especially for fast-growing microorganisms such as Bacillus species. The effectiveness and utility of this approach are demonstrated via several experiments conducted with a wild-type strain (Bacillus subtilis TN106) and a recombinant strain (B. subtilis TN106[pAT5]). True establishment of exponential growth phase requires insignificant variance of most of the culture conditions during the initial growth phase. Satisfaction of this requirement is demonstrated for microbial systems investigated here. This approach is especially well suited for recombinant microorganisms containing segregationally unstable plasmids, since estimation of growth kinetics of these from continuous cultures is very difficult and highly unreliable due to continual reversion of recombinant ceils to plasmid-free host cells unless some selection pressure is applied at levels sufficient to keep the presence of plasmid-free cells minimal.  相似文献   

7.
L S Siegel  R W Bernlohr 《In vitro》1979,15(7):545-554
Novikoff rat hepatoma cells (subline N1S1-67) grew when 30 mM L-lactate or pyruvate was substituted for D-glucose in Swim's medium 67 supplemented with dialyzed calf bovine serum. A 2.6-fold increase in cell number (1.34 generations) was obtained. RNA, DNA, protein and dry weight increased in proportion to the cell number. In control medium lacking L-lactate, pyruvate or D-glucose, cell growth of 0.42 generation was obtained. Growth with L-lactate was dependent on the L-lactate concentration up to 30 mM at which the greatest increase in cell number occurred. Significant growth did not occur when D-lactate, glycerol, acetate, alpha-ketoglutarate, succinate or malate, each at 30 mM, was substituted for D-glucose. Growth in the medium containing L-lactate was not due to the utilization of D-glucose or some other substrate carried into the culture with the inoculum. Medium contamination by D-glucose was insufficient to explain the growth obtained in the medium containing L-lactate, but could have accounted for growth in the control medium. Throughout growth, the concentration of L-lactate in the medium remained unchanged. The increase in cell number cannot be explained by L-lactate triggering the utilization of glycogen, nor by oxidation and degradation of protein, amino acids, fatty acids, or carbohydrate moieties of glycoprotein in the medium. L-Lactate does not serve as a significant carbon or energy source in the growth of these cells.  相似文献   

8.
The response of lettuce ( Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5–73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.  相似文献   

9.
Mouse embryonic fibroblast (MEF) cells prepared from transgenic mice overexpressing a cancer-specific and growth-related cell surface NADH oxidase with protein disulfide-thiol interchange activity grew at rates approximately twice those of wild-type embryonic fibroblast cells. Growth of transgenic MEF cells overexpressing tNOX was inhibited by low concentrations of the green tea catechin (-)-epigallocatechin-3-gallate (EGCg) or the synthetic isoflavene phenoxodiol. Both are putative tNOX-targeted inhibitors with anti-cancer activity. With both EGCg and phenoxodiol, growth inhibition was followed after about 48 h by apoptosis. Growth of wild-type mouse fibroblast cells from the same strain was unaffected by EGCg and phenoxodiol and neither compound induced apoptosis even at concentrations 100-1,000-fold higher than those that resulted in apoptotic death in the transgenic MEF cells. The findings validate earlier reports of evidence for tNOX presence as contributing to unregulated growth of cancer cells as well as the previous identification of the tNOX protein as the molecular target for the anti-cancer activities attributed to both EGCg and phenoxodiol. The expression of tNOX emerges as both necessary and sufficient to account for the cancer cell-specific growth inhibitions by both EGCg and phenoxodiol.  相似文献   

10.
The objectives of this research were to determine the influence of hypobaria (reduced atmospheric pressure) and reduced partial pressure of oxygen (pO2) [hypoxia] on carbon dioxide (CO2) assimilation (C(A)), dark-period respiration (DPR) and growth of lettuce (Lactuca sativa L. cv. Buttercrunch). Lettuce plants were grown under variable total gas pressures [25 and 101 kPa (ambient)] at 6, 12 or 21 kPa pO2)(approximately the partial pressure in air at normal pressure). Growth of lettuce was comparable between ambient and low total pressure but lower at 6 kPa pO2 (hypoxic) than at 12 or 21 kPa pO2. The specific leaf area of 6 kPa pO2 plants was lower, indicating thicker leaves associated with hypoxia. Roots were most sensitive to hypoxia, with a 50-70% growth reduction. Leaf chlorophyll levels were greater at low than at ambient pressure. Hypobaria and hypoxia did not affect plant water relations. While hypobaria did not adversely affect plant growth or C(A), hypoxia did. There was comparable C(A) and a lower DPR in low than in ambient total pressure plants under non-limiting CO2 levels (100 Pa pCO2, nearly three-fold that in normal air). The C(A)/DPR ratio was higher at low than at ambient total pressure, particularly at 6 kPa pO2- indicating a greater efficiency of C(A)/DPR in low-pressure plants. There was generally no significant interaction between hypoxia and hypobaria. We conclude that lettuce can be grown under subambient pressure ( congruent with25% of normal earth ambient total pressure) without adverse effects on plant growth or gas exchange. Furthermore, hypobaric plants were more resistant to hypoxic conditions that reduced gas exchange and plant growth.  相似文献   

11.
The resistance of Klebsiella pneumoniae to inorganic monochloramine (1.5 mg/liter; 3:1 Cl2:N ratio, pH 8.0) was examined in relation to growth phase, temperature of growth, and growth under decreased nutrient conditions. Growth phase did not impact resistance to chloramines. Mid-exponential and stationary-phase cells, grown in a yeast extract-based medium, had CT99 values and standard deviations of 4.8 +/- 0.1 and 4.6 +/- 0.2 mg.min/liter, respectively. Growth temperature did not alter chloramine resistance at short contact times. CT99 values of cells grown at 15 and 23 degrees C were 4.5 +/- 0.2 and 4.6 +/- 0.2 mg.min/liter, respectively. However, at longer contact times, CT99.99 values of cells grown at 15 and 23 degrees C were 14 and 8 mg.min/liter, respectively, suggesting a small resistant subpopulation for cells grown at the lower temperature. Growth under decreased nutrient conditions resulted in a concomitant increase in resistance to chloramines. When K. pneumoniae was grown in undiluted Ristroph medium and Ristroph medium diluted by 1:100 and 1:1,000, the CT99 values were 4.6 +/- 0.2, 9.6 +/- 0.4, and 24 +/- 7.0 mg.min/liter, respectively. These results indicate that nutrient availability has a greater impact than growth phase or growth temperature in promoting the resistance of K. pneumoniae to inorganic monochloramine.  相似文献   

12.
The resistance of Klebsiella pneumoniae to inorganic monochloramine (1.5 mg/liter; 3:1 Cl2:N ratio, pH 8.0) was examined in relation to growth phase, temperature of growth, and growth under decreased nutrient conditions. Growth phase did not impact resistance to chloramines. Mid-exponential and stationary-phase cells, grown in a yeast extract-based medium, had CT99 values and standard deviations of 4.8 +/- 0.1 and 4.6 +/- 0.2 mg.min/liter, respectively. Growth temperature did not alter chloramine resistance at short contact times. CT99 values of cells grown at 15 and 23 degrees C were 4.5 +/- 0.2 and 4.6 +/- 0.2 mg.min/liter, respectively. However, at longer contact times, CT99.99 values of cells grown at 15 and 23 degrees C were 14 and 8 mg.min/liter, respectively, suggesting a small resistant subpopulation for cells grown at the lower temperature. Growth under decreased nutrient conditions resulted in a concomitant increase in resistance to chloramines. When K. pneumoniae was grown in undiluted Ristroph medium and Ristroph medium diluted by 1:100 and 1:1,000, the CT99 values were 4.6 +/- 0.2, 9.6 +/- 0.4, and 24 +/- 7.0 mg.min/liter, respectively. These results indicate that nutrient availability has a greater impact than growth phase or growth temperature in promoting the resistance of K. pneumoniae to inorganic monochloramine.  相似文献   

13.
14.
Abscisic acid (ABA) was shown to influence turgor pressure and growth in wheat (Triticum aestivum L.) roots. At a concentrations of 25 mmol·m-3, ABA increased the turgor pressure of cells located within 1 cm of the tip by up to 450 kPa. At 4 to 5 cm from the root tip this concentration of ABA reduced the turgor pressure of peripheral cells (epidermis and the first few cortical cell layers) to zero or close to zero while that of the inner cells was increased. Increases in sap osmolality were dependent on the concentration of ABA and the effect saturated at 5 mmol·m-3 ABA. The increase in osmolality took about 4 h and was partly the result of reducing-sugar accumulation. Levels of inorganic cations were not affected by ABA. Root growth was inhibited at ABA concentrations that caused a turgor-pressure increase. The results show that while ABA can affect root cell turgor pressures, this effect does not result in increased root growth.Abbreviation ABA abscisic acid  相似文献   

15.
A strain of Synechococcus sp. was grown at its optimal growth temperature (58 degrees C) and at 38 degrees C, in order to investigate possible adaptations of membrane-related properties to growth temperature. Light-induced electron transport in thylakoid membranes from both types of cells showed linear Arrhenius plots with the same activation energy (48 kJ/mol). Membranes from cells grown at 58 degrees C had a higher temperature optimum (53 degrees C) than those from cells grown at 38 degrees C (41 degrees C). Growth at 38 degrees C caused an increase in the proportion of unsaturated fatty acids compared to growth at 58 degrees C. The fluidity of the membranes was investigated by measuring the temperature dependence of the parameters derived from electron spin resonance spectra of the spin-labels 5-doxyldecane, 5-doxylstearate and 16-doxylstearate. Only small differences between the dynamic properties of the membranes from cells grown at different temperatures could be detected. This suggests that the observed change in fatty acid composition of the membranes following the change in growth temperature does not serve to maintain a constant viscosity at the growth temperature.  相似文献   

16.
AIM: To maximize the growth (expressed as number of viable cells per millilitre) of the postharvest biocontrol agent Candida sake CPA(-1) at laboratory scale conditions. METHODS AND RESULTS: Growth conditons (aeration, agitation speed and inoculum size) were studied in batch conditions in a 5 l fermenter using molasses and urea as growth medium. Consumption of sugars and urea were analysed. Fed-batch studies were also carried out. Glucose and fructose were consumed during the exponential growth phase and were depleted after 18 h of growth. On the contrary, C. sake cells assimilated sucrose during the stationary phase. There was not growth improvement when fed-batch technology was used. Addition of an extra amount of glucose or molasses after 18 h of growth did not contribute to increase final population. CONCLUSIONS: Maximum growth (about 8 x 10(8 )CFU ml(-1)) was obtained at batch fermentation after 30 h growth at 400 rev min(-1), 150 l h(-1) of air and initial concentration of 106 CFU ml(-1). SIGNIFICANCE AND IMPACT OF THE STUDY: The results obtained in this study are an approach for further upscaling of C. sake production.  相似文献   

17.
SYNOPSIS. Log-phase cultures of Acanthamoeba castellanii , Neff strain, have been maintained at elevated hydrostatic pressures over periods of several days and the population has been recounted at the end of the experimental period. A pressure of 2,000 psi (136 atm) depressed growth of the population, but was quickly reversed on release. A pressure of 4,000 psi (272 atm) severely depressed population growth, and any increase was slight and short-lasting at 5,000 psi (340 atm). Growth of the population was resumed only after an interval of 1 or more days after release.  相似文献   

18.
The stimulating effect of pancreatic DNAse on Bacillus subtilis growth was studied in relation to the content of "slowly growing" cells in the inoculation culture in the phase of decelerated growth. Three cell fractions of B. subtilis were obtained using the stepwise separation of the population in terms of buoyant density in the phase of decelerated growth. In contrast to fractions II and III, fraction I contained cells with decelerated growth, competent, permeable to exogenous DNAase I, and sensitive to the action of this enzyme. The faster growth of bacterial cells in fraction I was shown to be associated with the shorter lag period of these cells having a longer generation time.  相似文献   

19.
Intergenotic Transformation of the Bacillus subtilis Genospecies   总被引:8,自引:11,他引:8       下载免费PDF全文
A multiple auxotrophic derivative of Bacillus subtilis 168 (strain BR151 carrying lys-3, trpC2, metB10) was transformed with deoxyribonucleic acid (DNA) isolated from B. subtilis 168, Bacillus amyloliquefaciens H, B. subtilis HSR, Bacillus pumilus, and Bacillus licheniformis. Transformation with heterologous DNA occurred at a very low frequency for the three auxotrophic markers. Heterologous transformation to rifampin resistance was 100 to 1,000 times more efficient than transformation to prototrophy. Transformants from the various heterologous exchanges were used to prepare donor DNA. The fragment of integrated DNA from the heterologous (foreign) species, termed the "intergenote," was capable of transforming BR151 with an efficiency almost equal to that of homologous DNA. When BR151 DNA contained the Rfm(R) (rifampin resistance) intergenote from B. amyloliquefaciens H, the frequency of transformation was frequently greater than that of the homologous DNA. Accompanying this increased efficiency was a marked change in the physiology of the cells. The growth rate of the transformants carrying this intergenote was approximately one-half that of either parental strain. Thus, in a prokaryotic transformation system, adverse side effects can occur after incorporation of a segment of foreign DNA.  相似文献   

20.
In the mammalian heart the metabolic costs of pressure loading exceed those of volume loading. As evidence suggests that the opposite may be true in fish, we evaluated the metabolic costs of volume and pressure loading in the isolated trout heart and compared the results with the mammalian heart based on the biomechanical properties of cardiac muscle. The highest power output (2.33+/-0.32 mW g(-1), n=5) appeared at the highest preload pressure tested (0.3 kPa) and at an afterload of 5 kPa. At a higher afterload, power did not increase because stroke volume fell. The highest mechanical efficiency (20.7+/-2.0%, n=5) was obtained at a preload of 0.15 kPa and an afterload of 5 kPa. Further increases in preload or afterload did not increase mechanical efficiency, probably because of increases in ventricular wall stress which increased the oxygen consumed disproportionately more than the stroke work. Under pressure unloading (25% decrease in power output), mechanical efficiency was significantly higher in comparison with volume unloading. Given that stiffness of the ventricular tissue is larger in trout than in rat papillary muscles, it is suggested that the increased strain during volume loading is energetically disadvantageous for stiff muscles like those of trout, but it is advantageous when muscle stiffness is lower as it occurs in the rat papillary muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号