首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Belete HA  Hubmayr RD  Wang S  Singh RD 《PloS one》2011,6(11):e27469
Cell wounding is an important driver of the innate immune response of ventilator-injured lungs. We had previously shown that the majority of wounded alveolus resident cells repair and survive deformation induced insults. This is important insofar as wounded and repaired cells may contribute to injurious deformation responses commonly referred to as biotrauma. The central hypothesis of this communication states that extracellular adenosine-5' triphosphate (ATP) promotes the repair of wounded alveolus resident cells by a P2Y2-Receptor dependent mechanism. Using primary type 1 alveolar epithelial rat cell models subjected to micropuncture injury and/or deforming stress we show that 1) stretch causes a dose dependent increase in cell injury and ATP media concentrations; 2) enzymatic depletion of extracellular ATP reduces the probability of stretch induced wound repair; 3) enriching extracellular ATP concentrations facilitates wound repair; 4) purinergic effects on cell repair are mediated by ATP and not by one of its metabolites; and 5) ATP mediated cell salvage depends at least in part on P2Y2-R activation. While rescuing cells from wounding induced death may seem appealing, it is possible that survivors of membrane wounding become governors of a sustained pro-inflammatory state and thereby perpetuate and worsen organ function in the early stages of lung injury syndromes. Means to uncouple P2Y2-R mediated cytoprotection from P2Y2-R mediated inflammation and to test the preclinical efficacy of such an undertaking deserve to be explored.  相似文献   

2.
Alveolar epithelial type I cell (ATI) wounding is prevalent in ventilator-injured lungs and likely contributes to pathogenesis of "barotrauma" and "biotrauma." In experimental models most wounded alveolar cells repair plasma membrane (PM) defects and survive insults. Considering the force balance between edge energy at the PM wound margins and adhesive interactions of the lipid bilayer with the underlying cytoskeleton (CSK), we tested the hypothesis that subcortical actin depolymerization is a key facilitator of PM repair. Using real-time fluorescence imaging of primary rat ATI transfected with a live cell actin-green fluorescent protein construct (Lifeact-GFP) and loaded with N-rhodamine phosphatidylethanolamine (PE), we examined the spatial and temporal coordination between cytoskeletal remodeling and PM repair following micropuncture. Membrane integrity was inferred from the fluorescence intensity profiles of the cytosolic label calcein AM. Wounding led to rapid depolymerization of the actin CSK near the wound site, concurrent with accumulation of endomembrane-derived N-rhodamine PE. Both responses were sustained until PM integrity was reestablished, which typically occurs between ~10 and 40 s after micropuncture. Only thereafter did the actin CSK near the wound begin to repolymerize, while the rate of endomembrane lipid accumulation decreased. Between 60 and 90 s after successful PM repair, after translocation of the actin nucleation factor cortactin, a dense actin fiber network formed. In cells that did not survive micropuncture injury, actin remodeling did not occur. These novel results highlight the importance of actin remodeling in ATI cell repair and suggest molecular targets for modulating the repair process.  相似文献   

3.
Locomotory activity of epithelial cells in culture.   总被引:3,自引:0,他引:3  
The movement of epithelial cells in vitro has been studied with time lapse cinemicrography, micromanipulation, marking of the cell surface, and electron microscopy. The cells, in contrast to fibroblasts, spread as contiguous sheets. Locomotion results primarily from the activity of the marginal cells, as determined by the extent and location of cell adhesions to the plane substratum. The locomotory activity of epithelial cells as members of a sheet is similar to that of chick heart fibroblasts, consisting of a fluctuation of the flattened free edge, a backward movement of particles adhering to the upper surface of the lamellipodium, ruffling, blebbing, and microspike activity. Of these, only the first two are invariably associated with movement. These phenomena are discussed in relation to the mechanism of epithelial cell movement. The basic differences between epithelial cells and fibroblasts, as far as locomotory and adhesive properties are concerned, are the tendency of isolated epithelial cells to bleb more vigorously than fibroblasts and the more extensive and apparently stronger lateral adhesion of epithelial cells.  相似文献   

4.
During the normal embryogenesis of the killifish Fundulus heteroclitus deep cells migrate in an apparently random fashion throughout the subepithelial space of the yolk sac. These cells migrate by blebbing locomotion, and individual cells show tendencies for persistence in the directionality of their movement. Immediately after the wounding of the yolk sac epithelium (the enveloping layer), these deep cells reorient and migrate directionally toward the site of wound closure. This directional migration results in the aggregation of a large number of cells at the wound site. The response is both rapid and widespread; cells as far away as 800 micron respond as quickly as those nearby, and by 100 min after wounding up to 90% of the blebbing deep cells within this radius have clustered about the wound site. Then, cells begin to disperse, and by 150 min after wounding, it is almost impossible to tell where the wound had been made. Because of the transparency of the Fundulus yolk sac, this phenomenon can be utilized as a model system for observing details of in vivo directional cell movements. Time-lapse video micrography has revealed that the modes, rates, and overall cell morphologies during locomotion are identical for cells migrating in both unwounded and wounded embryos. What is different in the wounded embryos is that a single directionality is imposed upon a large population of cells, resulting in aggregation. Several aspects of the aggregation phenomenon suggest that a possible attractant originating at the wound site may travel through the subepithelial space by diffusion.  相似文献   

5.
Restitution is a crucial event during the healing of superficial injury of the gastric mucosa involving epithelial cell sheet movement into the damaged area. We demonstrated that growth factors promote the restitution of human gastric epithelial cells. However, the intracellular signaling pathways that transmit extracellular cues as well as regulate basal and growth factor-stimulated gastric epithelial cell migration are still unclear. Herein, confluent human gastric epithelial cell monolayers (HGE-17) or primary cultures of gastric epithelial cells were wounded with a razor blade and the migration response was analyzed in presence or absence of TGFalpha or of pharmacological inhibitors of signaling proteins. Kinase activation profile analysis and phase-contrast microscopy were also performed in parallel. We report that ERK1/2 and Akt activities are rapidly stimulated following wounding of HGE-17 cells. Treatment of confluent HGE-17 cells or primary cultures of gastric epithelial cells with the phosphatidylinositol 3-kinase inhibitor LY294002, but not the MEK1 inhibitor, PD98059, significantly inhibits basal and TGFalpha-induced migration following wounding. Conversely, treatment of wounded HGE-17 cells with phosphatidylinositol(3,4,5)-triphosphate is sufficient to stimulate basal cell migration by 235%. In addition, pp60c-src kinase activity and tyrosine phosphorylation of epidermal growth factor receptors (EGFR) are also rapidly enhanced after wounding and pharmacological inhibition of both these activities strongly attenuates basal and TGFalpha-induced migration as well as Akt phosphorylation levels. In conclusion, the present results indicate that EGFR-dependent PI3K activation promotes restitution of wounded human gastric epithelial monolayers.  相似文献   

6.
7.
We have previously examined the ability of air pollution particles (PM(10)) to promote release of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) from human peripheral blood mononuclear cells and demonstrated a role for calcium as a signaling molecule in this process. We have now studied the ability of oxidative stress induced by a synthetic oxidant tert-butyl hydroperoxide (tBHP) to induce TNF-alpha production via calcium signaling in the mouse macrophage cell line (J774). The oxidant tBHP significantly increased intracellular calcium and the release of TNF-alpha in J774 cells, an effect that was reduced to control levels by inhibition of calcium signaling with verapamil, BAPTA-AM, and W-7. This study also investigated interactions between PM(10)-treated macrophages and epithelial cells by using conditioned medium (CM) from PM(10)-treated mononuclear cells to stimulate the release of the neutrophil chemoattractant chemokine IL-8 from A549 lung epithelial cells. TNF-alpha protein release was demonstrated in human mononuclear cells after PM(10) treatment, an effect that was inhibited by calcium antagonists. Treatment of A549 cells with monocyte/PM(10) CM produced increased IL-8 release that was reduced with CM from monocyte/PM(10)/calcium antagonist treatments. The expression of ICAM-1 was increased after incubation with CM from monocyte/PM(10) treatment, and this increase was prevented by treatment with CM from monocyte/PM(10)/calcium antagonist. These data demonstrate a link between oxidative stress, calcium, and inflammatory mediator production in macrophages and lung epithelial cells.  相似文献   

8.
Repair of superficial gastric mucosal injury is accomplished by the process of restitution-migration of epithelial cells to restore continuity of the mucosal surface. Actin filaments, focal adhesions, and focal adhesion kinase (FAK) play crucial roles in cell motility essential for restitution. We studied whether epidermal growth factor (EGF) and/or indomethacin (IND) affect cell migration, actin stress fiber formation, and/or phosphorylation of FAK and tensin in wounded gastric monolayers. Human gastric epithelial monolayers (MKN 28 cells) were wounded and treated with either vehicle or 0.5 mM IND for 16 hr followed by EGF. EGF treatment significantly stimulated cell migration and actin stress fiber formation, and increased FAK localization to focal adhesions, and phosphorylation of FAK and tensin, whereas IND inhibited all these at the baseline and EGF-stimulated conditions. IND-induced inhibition of FAK phosphorylation preceded changes in actin polymerization, indicating that actin depolymerization might be the consequence of decreased FAK activity. In in vivo experiments, rats received either vehicle or IND (5 mg/kg i.g.), and 3 min later, they received water or 5% hypertonic NaCl; gastric mucosa was obtained at 1, 4, and 8 hr after injury. Four and 8 hr after hypertonic injury, FAK phosphorylation was induced in gastric mucosa compared with controls. IND pretreatment significantly delayed epithelial restitution in vivo, and reduced FAK phosphorylation and recruitment to adhesion points, as well as actin stress fiber formation in migrating surface epithelial cells. Our study indicates that FAK, tensin, and actin stress fibers are likely mediators of EGF-stimulated cell migration in wounded human gastric monolayers and potential targets for IND-induced inhibition of restitution.  相似文献   

9.
Although 12-day-old chick embryo retinal pigment epithelial (RPE) cells in situ do not express the proliferating cell nuclear antigen (PCNA) which is known to function as an auxiliary protein of DNA polymerase delta, they do so when cultured on glass. Conversely, PCNA was not expressed by RPE cells of the same age maintained in organ culture. If, however, the organ cultures were wounded, allowing the RPE cells to spread and migrate over the exposed basal lamina, the nuclei of cells along the wound edge were stained for PCNA. The time required for cells to express PCNA was longer in organ culture than in tissue culture. This time lag in the expression of PCNA was independent of the time in culture prior to wounding and occurred regardless of whether or not the continuity of the epithelial sheet was reestablished. In organ culture, the staining did not persist as long as in tissue culture. We found that only in wounds exceeding 125 +/- 48 microns did the RPE cells along the wound edge express PCNA. This suggests that a certain degree of either spreading or migration is required for PCNA expression in the wounded region.  相似文献   

10.
Hypoxia, mainly caused by eutrophication, is a common and growing problem on marine soft bottoms. Echinoderms are known for their ability to regenerate tissue after wounding but hypoxia has a negative influence on regeneration and also on reproduction in echinoderms. We have investigated the cellular and molecular responses to wounding stress and hypoxia in the sea star Asterias rubens by using the total coelomocyte count (TCC) and the expression of heat shock proteins (HSPs). As early as 1 h after wounding, sea stars under hypoxic conditions show significantly increased TCC and, after 6 h, cell numbers increase approximately two-fold. After a 3-h hypoxia exposure of wounded animals, Western blot analysis reveals highly elevated coelomocyte cytoplasmic HSP70 expression. Non-wounded sea stars exposed to hypoxia and wounded animals kept in normoxia show enhanced HSP70 expression only after 24 h. Immunocytochemical analysis has not demonstrated any translocation of HSP70 from the cytoplasm to the nucleus. We conclude that both wounding and hypoxia elicit a stress response in sea stars and that the combined stress produces synergistic effects that may inhibit the initial processes of wound healing and regeneration.  相似文献   

11.
We present plasma membrane (PM) internalization responses of type I alveolar epithelial cells to a 50 mosmol/l increase in tonicity. Our research is motivated by interest in ATI repair, for which endocytic retrieval of PM appears to be critical. We validated pharmacological and molecular tools to dissect the endocytic machinery of these cells and used these tools to test the hypothesis that osmotic stress triggers a pathway-specific internalization of PM domains. Validation experiments confirmed the fluorescent analogs of lactosyl-ceramide, transferrin, and dextran as pathway-specific cargo of caveolar, clathrin, and fluid-phase uptake, respectively. Pulse-chase experiments indicate that hypertonic exposure causes a downregulation of clathrin and fluid-phase endocytosis while stimulating caveolar endocytosis. The tonicity-mediated increase in caveolar endocytosis was associated with the translocation of caveolin-1 from the PM and was absent in cells that had been transfected with dominant-negative dynamin constructs. In separate experiments we show that hypertonic exposure increases the probability of PM wound repair following micropuncture from 82 ± 4 to 94 ± 2% (P < 0.01) and that this effect depends on Src pathway activation-mediated caveolar endocytosis. The therapeutic and biological implications of our findings are discussed.  相似文献   

12.
In the early stages of breast cancer metastasis, epithelial cells penetrate the basement membrane and invade the surrounding stroma, where they encounter fibroblasts. Paracrine signaling between fibroblasts and epithelial tumor cells contributes to the metastatic cascade, but little is known about the role of adhesive contacts between these two cell types in metastasis. Here we show that MCF-7 breast cancer epithelial cells and normal breast fibroblasts form heterotypic adhesions when grown together in co-culture, as evidenced by adhesion assays. PCR and immunoblotting show that both cell types express multiple members of the cadherin superfamily, including the atypical cadherin, cadherin-23, when grown in isolation and in co-culture. Immunocytochemistry experiments show that cadherin-23 localizes to homotypic adhesions between MCF-7 cells and also to heterotypic adhesions between the epithelial cells and fibroblasts, and antibody inhibition and RNAi experiments show that cadherin-23 plays a role in mediating these adhesive interactions. Finally, we show that cadherin-23 is upregulated in breast cancer tissue samples, and we hypothesize that heterotypic adhesions mediated by this atypical cadherin may play a role in the early stages of metastasis.  相似文献   

13.
Fine particulate matter (PM2.5) is the primary air pollutant that is able to induce airway injury. Compelling evidence has shown the involvement of IL‐17A in lung injury, while its contribution to PM2.5‐induced lung injury remains largely unknown. Here, we probed into the possible role of IL‐17A in mouse models of PM2.5‐induced lung injury. Mice were instilled with PM2.5 to construct a lung injury model. Flow cytometry was carried out to isolate γδT and Th17 cells. ELISA was adopted to detect the expression of inflammatory factors in the supernatant of lavage fluid. Primary bronchial epithelial cells (mBECs) were extracted, and the expression of TGF signalling pathway‐, autophagy‐ and PI3K/Akt/mTOR signalling pathway‐related proteins in mBECs was detected by immunofluorescence assay and Western blot analysis. The mitochondrial function was also evaluated. PM2.5 aggravated the inflammatory response through enhancing the secretion of IL‐17A by γδT/Th17 cells. Meanwhile, PM2.5 activated the TGF signalling pathway and induced EMT progression in bronchial epithelial cells, thereby contributing to pulmonary fibrosis. Besides, PM2.5 suppressed autophagy of bronchial epithelial cells by up‐regulating IL‐17A, which in turn activated the PI3K/Akt/mTOR signalling pathway. Furthermore, IL‐17A impaired the energy metabolism of airway epithelial cells in the PM2.5‐induced models. This study suggested that PM2.5 could inhibit autophagy of bronchial epithelial cells and promote pulmonary inflammation and fibrosis by inducing the secretion of IL‐17A in γδT and Th17 cells and regulating the PI3K/Akt/mTOR signalling pathway.  相似文献   

14.
Aquaporin-5 (AQP5) is a water channel protein expressed in lung, salivary gland, and lacrimal gland epithelia. Each of these sites may experience fluctuations in surface liquid osmolarity; however, osmotic regulation of AQP5 expression has not been reported. This study demonstrates that AQP5 is induced by hypertonic stress and that induction requires activation of extracellular signal-regulated kinase (ERK). Incubation of mouse lung epithelial cells (MLE-15) in hypertonic medium produced a dose-dependent increase in AQP5 expression; AQP5 protein peaked by 24 h and returned to baseline levels within hours of returning cells to isotonic medium. AQP5 induction was observed only with relatively impermeable solutes, suggesting an osmotic pressure gradient is required for induction. ERK was selectively activated in MLE-15 cells by hypertonic stress, and inhibition of ERK activation with two distinct mitogen-activated extracellular regulated kinase kinase (MEK) inhibitors, U0126 and PD98059, blocked AQP5 induction. AQP5 induction was also observed in the lung, salivary, and lacrimal glands of hyperosmolar rats, suggesting potential physiologic relevance for osmotic regulation of AQP5 expression. This report provides the first example of hypertonic induction of an extrarenal aquaporin, as well as the first association between mitogen-activated protein kinase signaling and aquaporin expression.  相似文献   

15.
We previously reported that cardiotonic steroids stimulate collagen synthesis by cardiac fibroblasts in a process that involves signaling through the Na-K-ATPase pathway (Elkareh et al. Hypertension 49: 215-224, 2007). In this study, we examined the effect of cardiotonic steroids on dermal fibroblasts collagen synthesis and on wound healing. Increased collagen expression by human dermal fibroblasts was noted in response to the cardiotonic steroid marinobufagenin in a dose- and time-dependent fashion. An eightfold increase in collagen synthesis was noted when cells were exposed to 10 nM marinobufagenin for 24 h (P < 0.01). Similar increases in proline incorporation were seen following treatment with digoxin, ouabain, and marinobufagenin (10 nM x 24 h, all results P < 0.01 vs. control). The coadministration of the Src inhibitor PP2 or N-acetylcysteine completely prevented collagen stimulation by marinobufagenin. Next, we examined the effect of digoxin, ouabain, and marinobufagenin on the rate of wound closure in an in vitro model where human dermal fibroblasts cultures were wounded with a pipette tip and monitored by digital microscopy. Finally, we administered digoxin in an in vivo wound healing model. Olive oil was chosen as the digoxin carrier because of a favorable partition coefficient observed for labeled digoxin with saline. This application significantly accelerated in vivo wound healing in rats wounded with an 8-mm biopsy cut. Increased collagen accumulation was noted 9 days after wounding (both P < 0.01). The data suggest that cardiotonic steroids induce increases in collagen synthesis by dermal fibroblasts, as could potentially be exploited to accelerate wound healing.  相似文献   

16.
Epithelial wound repair represents an important process by which the epithelial barrier integrity recovers after wounding. To evaluate and quantify the dynamics of surface airway cell movement during the wound repair process, we developed an in vitro wounding model of human respiratory cells in culture and we analyzed the wound repair by using videomicroscopic and image analysis techniques. We observed that wound closure occurred within 6 hours, due to the spreading and migration of the cells surrounding the wounded surface. The migration rate of the cells at the leading edge of the wound surface increased progressively up to 26 microns/h during the repair process which was characterized by a uniform centripetal direction of cell movement. The distance travelled by these cells was 2.5 fold longer than the distance travelled by ciliated cells which were located far from the wound area. These results suggest that cell migration after wounding is an important process by which the respiratory epithelial barrier integrity is maintained.  相似文献   

17.
The luminal airway surface is lined with epithelial cells that provide a protective barrier from the external environment and clear inhaled pathogens from the lung. To accomplish this important function, human bronchial epithelial (HBE) cells must be able to rapidly regenerate a mucociliary layer of cells following epithelial injury. Whereas epithelial-fibroblast interactions are known to modulate the airway architecture during lung development and repair, little is known about how these two cells interact. Using a primary HBE and lung fibroblast coculture system, we demonstrate that 1) subepithelial fibroblasts provide a suitable environment for differentiation of HBE cells into a polarized ciliated phenotype despite being cultured in media that induces terminal squamous differentiation and growth arrest in the absence of fibroblasts, 2) HBE cells cocultured with subepithelial fibroblasts exhibit augmented ciliogenesis, accelerated wound repair, and diminished polarized ion transport compared with cells grown in control conditions, and 3) hepatocyte growth factor (HGF) is important for subepithelial fibroblast modulation of HBE cell differentiation. These results provide a model to study fibroblast modulation of epithelial phenotype and indicate that HGF secreted by subepithelial fibroblasts contributes to HBE cell differentiation.  相似文献   

18.

Purpose

This study investigated ocular surface components that contribute to matrix-metalloproteinase (MMP)-2 and MMP-9 found in tears following corneal epithelial wounding.

Methods

Laboratory short-haired cats underwent corneal epithelial debridement in one randomly chosen eye (n = 18). Eye-flush tears were collected at baseline and during various healing stages. Procedural control eyes (identical experimental protocol as wounded eyes except for wounding, n = 5) served as controls for tear analysis. MMP activity was analyzed in tears using gelatin zymography. MMP staining patterns were evaluated in ocular tissues using immunohistochemistry and used to determine MMP expression sites responsible for tear-derived MMPs.

Results

The proMMP-2 and proMMP-9 activity in tears was highest in wounded and procedural control eyes during epithelial migration (8 to 36 hours post-wounding). Wounded eyes showed significantly higher proMMP-9 in tears only during and after epithelial restratification (day 3 to 4 and day 7 to 28 post-wounding, respectively) as compared to procedural controls (p<0.05). Tears from wounded and procedural control eyes showed no statistical differences for pro-MMP-2 and MMP-9 (p>0.05). Immunohistochemistry showed increased MMP-2 and MMP-9 expression in the cornea during epithelial migration and wound closure. The conjunctival epithelium exhibited highest levels of both MMPs during wound closure, while MMP-9 expression was reduced in conjunctival goblet cells during corneal epithelial migration followed by complete absence of the cells during wound closure. The immunostaining for both MMPs was elevated in the lacrimal gland during corneal healing, with little/no change in the meibomian glands. Conjunctival-associated lymphoid tissue (CALT) showed weak MMP-2 and intense MMP-9 staining.

Conclusions

Following wounding, migrating corneal epithelium contributed little to the observed MMP levels in tears. The major sources assessed in the present study for tear-derived MMP-2 and MMP-9 following corneal wounding are the lacrimal gland and CALT. Other sources included stromal keratocytes and conjunctiva with goblet cells.  相似文献   

19.
This review reports the role of oxidative stress in impairing the function of lung exposed to particulate matter (PM). PM constitutes a heterogeneous mixture of various types of particles, many of which are likely to be involved in oxidative stress induction and respiratory diseases. Probably, the ability of PM to cause oxidative stress underlies the association between increased exposure to PM and exacerbations of lung disease. Mostly because of their large surface area, ultrafine particles have been shown to cause oxidative stress and proinflammatory effects in different in vivo and in vitro studies. Particle components and surface area may act synergistically inducing lung inflammation. In this vein, reactive oxygen species elicited upon PM exposure have been shown to activate a number of redox-responsive signaling pathways and Ca2+ influx in lung target cells that are involved in the expression of genes that modulate relevant responses to lung inflammation and disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号