首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AFM studies have been made of the internal structure of pea starch granules. The data obtained provides support for the blocklet model of starch granule structure (Carbohydr. Polym. 32 (1997) 177-191). The granules consist of hard blocklets dispersed in a softer matrix material. High-resolution images have yielded new insights into the detailed structure of growth rings within the granules. The blocklet structure is continuous throughout the granule and the growth rings originate from localised defects in blocklet production distributed around the surface of spheroidal shells within the granules. A mutation at the rb locus did not lead to significant changes in granule architecture. However, a mutation at the r locus led to loss of growth rings and changed blocklet structure. For this mutant the blocklets were distributed within a harder matrix material. This novel composite arrangement was used to explain why the granules had internal fissures and also changes in gelatinisation behaviour. It is suggested that the matrix material is the amylose component of the granule and that both amylose and amylopectin are present within the r mutant starch granules in a partially-crystalline form. Intermediate changes in granule architecture have been observed for the double mutant rrb.  相似文献   

2.
Atomic force microscopy (AFM) has been used to image the internal structure of pea starch granules. Starch granules were encased in a nonpenetrating matrix of rapid-set Araldite. Images were obtained of the internal structure of starch exposed by cutting the face of the block and of starch in sections collected on water. These images have been obtained without staining, or either chemical or enzymatic treatment of the granule. It has been demonstrated that contrast in the AFM images is due to localized absorption of water within specific regions of the exposed fragments of the starch granules. These regions swell, becoming "softer" and higher than surrounding regions. The images obtained confirm the "blocklet model" of starch granule architecture. By using topographic, error signal and force modulation imaging modes on samples of the wild-type pea starch and the high amylose r near-isogenic mutant, it has been possible to demonstrate differing structures within granules of different origin. These architectural changes provide a basis for explaining the changed appearance and functionality of the r mutant. The growth-ring structure of the granule is suggested to arise from localized "defects" in blocklet distribution within the granule. It is proposed that these defects are partially crystalline regions devoid of amylose.  相似文献   

3.
Internal structure of the starch granule revealed by AFM   总被引:9,自引:0,他引:9  
Atomic force microscopy images of sectioned native corn starch granules show evidence of the well-known radial organisation of the starch macromolecules, with the less-ordered hilum region near to the centre. Native granules show blocks 400-500 nm in size that span the growth rings. Lintnerised starch granules, where a mild acid hydrolysis has been used to remove the amorphous and less crystalline parts of the granule, clearly show smaller 'blocklets' within the rings approximately 10-30 nm in size. This level of organisation within the growth rings corresponds to the blocklet or superhelix structures that have been proposed in the literature for the association or clustering of amylopectin helices. Mechanical property imaging techniques have provided enhanced contrast to view this morphology, and shown the deformability of the starch structure under contact mode imaging conditions.  相似文献   

4.
The molecular deposition of starch extracted from normal plants and transgenically modified potato lines was investigated using a combination of light microscopy, environmental scanning electron microscopy (ESEM) and confocal laser scanning microscopy (CLSM). ESEM permitted the detailed (10 nm) topographical analysis of starch granules in their hydrated state. CLSM could reveal internal molar deposition patterns of starch molecules. This was achieved by equimolar labelling of each starch molecule using the aminofluorophore 8-amino-1,3,6-pyrenetrisulfonic acid (APTS). Starch extracted from tubers with low amylose contents (suppressed granule bound starch synthase, GBSS) showed very little APTS fluorescence and starch granules with low molecular weight amylopectin and/or high amylose contents showed high fluorescence. Growth ring structures were sharper in granules with normal or high amylose contents. High amylose granules showed a relatively even distribution in fluorescence while normal and low amylose granules had an intense fluorescence in the hilum indicating a high concentration of amylose in the centre of the granule. Antisense of the starch phosphorylating enzyme (GWD) resulted in low molecular weight amylopectin and small fissures in the granules. Starch granules with suppressed starch branching enzyme (SBE) had severe cracks and rough surfaces. Relationships between starch molecular structure, nano-scale crystalline arrangements and topographical-morphological features were estimated and discussed.  相似文献   

5.
Surface studies at ambient conditions of potato starch granules subjected to multiple freezing and thawing, performed by a high resolution non-contact atomic force microscopy (nc-AFM), revealed some details of the starch granule nanostructure. After the treatment, a significant separation and a chain-like organisation of the granule surface elements have been observed. An accurate analysis of the granule surface nanostructure with a single amylopectine cluster resolution could be carried out. The oblong nodules of approximately 20-50 nm in diameter have been observed at the surface of the potato starch granules. The same size particles were precipitated by ethanol from gelatinized potato starch suspensions. They were also detected at the surface of oat and wheat starch granules. After multiple freezing and thawing, the eroded potato granule surface revealed a lamellar structure of its interior. The 30-40 nm inter-lamellar distances were estimated by means of nc-AFM. These findings fit previously proposed dimensions of the structural elements in the crystalline region of the starch granule. The observed surface sub-particles might correspond to the single amylopectine side chain clusters bundled into larger blocklets packed in the lamellae within the starch granule. The results supported the blocklet model of the starch granule structure.  相似文献   

6.
Starch granule types from a variety of botanical sources were selected to represent differences in crystalline polymorph, amylose and phosphate content, and amylopectin chain length distribution. Equimolar labeling of starch molecules with the fluorophore 8-amino-1,3,6-pyrenetrisulfonic acid (APTS) was used to construct a detailed map of the distribution of amylose and amylopectin within the granule by confocal laser scanning microscopy (CLSM) analysis. Medium- and high-resolution scanning electron microscopy (SEM) were used to provide detailed images of granule surface structures. By using a combined surface and internal imaging approach, interpretations of a number of previous structural observations is presented. In particular, internal images of high amylose maize and potato suggest that multiple initiations of new granules are responsible for the compound or elongated structures observed in these starches. CLSM optical sections of rice granules revealed an apparent altered distribution of amylose in relation to the proposed growth ring structure, hinting at a novel mechanism of starch molecule deposition. Well-described granule features, such as equatorial grooves, channels, cracks, and growth rings were documented and related to both the internal and external observations. A new method for probing the phosphate distribution in native granules was developed using a phosphate-binding fluorescent dye and CLSM.  相似文献   

7.
Structural features of non-granular spherulitic maize starch   总被引:4,自引:0,他引:4  
Complementary analyses of the internal structure of spherulites crystallized from high-amylose maize starch were obtained using light, electron and atomic force microscopy. Radially oriented crystalline lamellae were observed in transmission and scanning electron microscopy, as well as AFM. Internal structures consistent with the central hilum region of starch granules were observed. Spherulites were composed largely of linear or lightly branched starch polymers. Degradation of amylopectin at gelatinization temperatures of 180 degrees C was evident, but iodine binding suggested a high molecular weight (>100 DP) for the spherulitic polymers.  相似文献   

8.
Architectural changes of starch granules induced by heat were demonstrated using light microscopy and confocal laser scanning microscopy. Heat treatment (80 °C, 30 min) on mungbean starch, cassava starch and rice flour suspensions resulted in the rearrangement of amylose and granule-associated proteins within the deformed granules. The presence of alginate and carrageenan influenced the RVA pasting characteristics of starch/flour-hydrocolloid mixed suspensions by maintaining the granular structure of amylose-rich swollen granules or inducing the aggregation of the swollen ones. Generally, the addition of hydrocolloid increased peak viscosity, lowered breakdown and reduced setback of the flour-hydrocolloid mixed paste. This study demonstrated that the heat treatment in excess water generated the protein-containing granule envelope encasing the mungbean and cassava starch content within the deformed granules.  相似文献   

9.
The effect of alkaline treatment on the ultrastructure of C-type starch granules was investigated during the alkaline extraction of Araucaria angustifolia (pinhao) starch. The efficiency in protein removal was evaluated using intrinsic fluorescence and Kjeldahl's method. In parallel, morphological changes of starch granules were observed using scanning electron microscopy and atomic force microscopy. The starch crystallinity was monitored by wide-angle X-ray scattering and the lamellar structure was studied by small-angle X-ray scattering (SAXS). The paracrystalline model was employed to interpret the SAXS curves. It was found that the granular organization was significantly altered when alkaline solutions were used during the extraction. A partial degradation of B-type allomorph of starch and a significant compression of semicrystalline growth rings were observed.  相似文献   

10.
The microscopic distribution and dynamic state of water in native potato, maize and pea starch granules are investigated with NMR relaxometry and diffusometry. Besides extra-granular water, three water populations can be identified inside native potato starch granules. These are assigned to water in the amorphous growth rings; water in the semi-crystalline lamellae and “channel water”, which is located in the hexagonal channels within the B-type amylopectin crystals. The first two water populations are orientationally disordered and exchange with each other on a millisecond timescale at 290 K. NMR diffusometry shows that the water in packed granule beds is undergoing translational diffusion in a 2-dimensional space, either in thin layers between granules and/or in amorphous growth rings within the granules. The “channel water” is uniquely characterised by a 1 kHz deuterium doublet splitting and is in slow exchange with water in the other compartments on the NMR timescale. In the smaller maize granules all intra-granular water populations are in fast exchange and there is no evidence for “channel water” in the A-type crystal lattice. The NMR water proton and deuterium data for pea starch are consistent with a composite A and B-type crystal structure.  相似文献   

11.
The degradation of pea starch granules by acid hydrolysis has been investigated using a range of chemical and structural methods, namely through measuring changes in amylose content by both the iodine binding and concanavalin A precipitation methods, along with small angle X-ray scattering (SAXS), wide angle X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The relative crystallinity, intensity of the lamellar peak and the low-q scattering increased during the initial stages of acid hydrolysis, indicating early degradation of the amorphous regions (growth rings and lamellae). In the first 2 days of hydrolysis, there was a rapid decline in amylose content, a concomitant loss of precipitability of amylopectin by concanavalin A, and damage to the surface and internal granular structures was evident. These observations are consistent with both amylose and amylopectin being located on the surface of the granules and attacked simultaneously in the early stages of acid hydrolysis. The results are also consistent with amylose being more concentrated at the core of the granules. More extensive hydrolysis resulted in the simultaneous disruption of amorphous and crystalline regions, which was indicated by a decrease in lamellar peak intensity, decrease in interhelix peak intensity and no further increase in crystallinity. These results provide new insights into the organization of starch granules.  相似文献   

12.
The application of atomic force microscopy (AFM) for observing iodine complexes in starch has been limited due to limitations including granular sample fixation techniques and possible unintended reactions with embedding materials such as epoxy resins or adhesives. In this paper, a new method is described that employs an optical microscopic technique to ensure that the tip of the AFM is scanning a specified granule without any probe-induced particle movement by the AFM probe motion. The direct sprinkling of samples on a two-sided adhesive tape allows investigations in an in situ environment of the un-embedded starch granule surface and thus provides high-resolution images of granule morphology and phase changes of starches in the presence of humidity and with iodine vapor. These observations demonstrate that this novel in situ AFM imaging technique allows us to visualize the hair-like structures on the surface of granular starches when starches are exposed to iodine vapor under humid environments. This study reveals that the hair-like extensions on the starch granule surfaces are strongly dependent on the organization of the glucan polymers within corn or potato starch.  相似文献   

13.
Native corn starch was hydrolyzed with 0.36% HCl in methanol at 25 and 45 °C for periods of time up to 240 h. The action of acid penetration and hydrolysis was investigated by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), high-performance anion-exchange chromatography (HPAEC) and high-performance size-exclusion chromatography (HPSEC) equipped with viscometry, right-angle laser light scattering (RALLS) and refractive index (RI) detectors. Corn starch hydrolyzed at 45 °C for 240 h showed strong intensity of APTS (8-amino-1,3,6-pyrenetrisulfonic acid) fluorescence and sharp growth ring structure. Exocorrosion over the surface of corn starch was only observed on the corn starch hydrolyzed at 25 °C for 240 h and observed on all corn starch hydrolyzed at 45 °C. The Mw and Rh of acid-hydrolyzed corn starch decreased with increasing the degree of hydrolysis. The acid hydrolysis rate in methanol of corn starch was mainly dependent on the temperature, which dominated the penetration efficiency of acid.  相似文献   

14.
Molecular arrangement in blocklets and starch granule architecture   总被引:3,自引:0,他引:3  
The main hypotheses and the data regarding the starch granule structure and behaviour were gathered and considered comprehensively in this paper. The starch molecules such as amylopectin, amylose and intermediate materials, the non-starch molecules such as bound phosphates and lipids, and the crystal dimensions etc. their roles were demonstrated in the architectures of blocklet and granular ultrastructure. A normal blocklet is mainly constructed by the crystalline and amorphous lamellaes that are formed with the clusters of amylopectin molecule(s). The reducing terminal of the amylopectins in the blocklets may be toward an equal course. However, the defective blocklet production may be due to the participation of lower branching molecules such as amylose and intermediate materials. From the viewpoint of the physicochemical properties of the starch granules, the blocklet of two types may be arranged into the two formations, heterogeneous shell and homogenous shell. The amylopectin plays main role in blocklet architecture, while the other component is important in contributing to the strength and flexibility of starch granule.  相似文献   

15.
The granular structure and gelatinisation properties of starches from a range of pea seed mutants were studied. Genes which affect the supply of substrate during starch synthesis (rb, rug3, rug4) affected the total crystallinity and possibly increased the content of A polymorphs in the starch. Conversely, genes directly affecting the synthesis of starch polymers (r, rug5, lam) increased the content of B polymorphs, but had a minimal effect on total crystallinity. During gelatinisation, starches from the rb, rug3, rug4 and lam mutants had narrow endothermic peaks which were similar to starch from the wild-type, although all the starches had different peak temperatures and enthalpy changes. Starches from r and rug5 mutants were very different to all other starches, having a very wide transition during gelatinisation. In addition, the amylopectin in starch from these mutants had altered chain lengths for those parts of the polymer which form the ordered structures in the granule.  相似文献   

16.
Effects of hollow heart on growth of peas   总被引:1,自引:0,他引:1  
Hollow heart of pea seed (Pisum sativum L.) delayed germination and reduced seedling growth. Plants from seeds with the disorder were smaller and yielded less than those from normal seeds. Affected cells were dead, but immobilization of starch reserves within them could not wholly account for the reduced growth and evidence suggested the presence of a germination and growth inhibitor.  相似文献   

17.
Alison M. Smith 《Planta》1990,182(4):599-604
The aim of this work was to identify the starch-granule-bound starch synthase of developing pea embryos. When starch-granule-bound proteins were solubilised by digestion of granules with α-amylase and fractionated on a Mono Q anion-exchange column, activity of starch synthase eluted as three peaks. The distribution of activity in fractions from the column coincided with that of a 77-kDa protein. An antibody to this protein inhibited starch-synthase activity both in solubilised, starch-granule-bound protein and on intact starch granules. Recoveries of activity through extraction, solubilisation and chromatography indicate that this protein is the major, if not the only, form of starch synthase on the starch granule. The major, 59-kDa protein of the pea starch granule is antigenically related to the product of thewaxy locus of potato, which has previously been identified as the starch-granule-bound starch synthase of the tuber. However, the distribution of the 59-kDa protein did not coincide with that of starch-synthase activity in fractions from the Mono Q column. An antibody to the 59-kDa protein did not inhibit starch-synthase activity. The results raise questions about the relationship between “waxy” proteins and starch-granule-bound starch synthases generally. I am grateful to my colleagues Kay Denyer, Ian Dry (CSIRO, Adelaide, Australia), Rob Ireland (Mount Allison University, New Brunswick, Canada), Cathie Martin and Steve Rawsthorne for useful discussions during the course of this work, Cliff Hedley for the gift of pea seeds, and Ian Bedford for preparing pea starch and gels of starch-granule-bound proteins. This work was supported by the Agriculture and Food Research Council via a grant-in-aid to the John Innes Institute.  相似文献   

18.
Mutants of Pisum sativum L. with seeds containing low-amylose starch were isolated by screening a population derived from chemically mutagenized material. In all of the mutant lines selected, the low-amylose phenotype was caused by a recessive mutation at a single locus designated lam. In embryos of all but one mutant line, the 59 kDa granule-bound starch synthase (GBSSI) was absent or greatly reduced in amount. The granule-bound starch synthase activity in developing embryos of the mutants was reduced but not eliminated. These results provide further evidence that amylose synthesis is unique to GBSSI. Other granule-bound isoforms of starch synthase cannot substitute for this protein in amylose synthesis. Examination of iodine-stained starch granules from mutant embryos by light microscopy revealed large, blue-staining cores surrounded by a pale-staining periphery. In this respect, the low-amylose mutants of pea differ from those of other species. The differential staining may indicate that the structure of amylopectin varies between the core and peripheral regions.  相似文献   

19.
The aim of this study was to investigate whether there is a relationship between hydration of the embryo axes and cotyledons and the resumption of the oxidative metabolism in both organs of germinating seeds of pea (Pisum sativum L. cv. Piast). Nuclear magnetic resonance (1H-NMR) spectroscopy and imaging were used to study temporal and spatial water uptake and distribution in pea seeds. The observations revealed that water penetrates into the seed through the hilum, micropyle and embryo axes, and cotyledons hydrate to different extents. Thus, inhomogeneous water distribution may influence the resumption of oxidative metabolism. Electron paramagnetic resonance (EPR) measurements showed that seed germination was accompanied by the generation of free radicals with g1 and g2 values of 2.0032 and 2.0052, respectively. The values of spectroscopic splitting coefficients suggest that they are quinone radicals. The highest content of free radicals was observed in embryo axes immediately after emergence of the radicle. Glutathione content decreased during the entire germination period in both embryo axes and cotyledons. A different profile was observed for ascorbate, with significant increases in embryo axes, coinciding with radicle protrusion. Electrophoretic analysis showed that superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) were present in dry seeds and were activated later during germination, especially in embryo axes. The presence of all antioxidative enzymes as well as low molecular antioxidants in dry seeds allowed the antioxidative machinery to be active as soon as the enzymes were reactivated by seed imbibition. The observed changes in free radical levels, antioxidant contents and enzymatic activities in embryo axes and cotyledons appear to be more closely related to metabolic and developmental processes associated with preparation for germination, and do not correspond directly to the hydration of the tissues.  相似文献   

20.
Using genetic variability existing amongst nine pea genotypes (Pisum sativum L.), the biochemical basis of sink strength in developing pea seeds was investigated. Sink strength was considered to be reflected by the rate of starch synthesis (RSS) in the embryo, and sink activity in the seed was reflected by the relative rate of starch synthesis (RRSS). These rates were compared to the activities of three enzymes of the starch biosynthetic pathway [sucrose synthase (Sus), ADP-glucose pyrophosphorylase and starch synthase] at three developmental stages during seed filling (25, 50 and 75% of the dry seed weight). Complete sets of data collected during seed filling for the nine genotypes showed that, for all enzyme activities (expressed on a protein basis), only Sus in the embryo and seed coat was linearly and significantly correlated to RRSS. The contribution of the three enzyme activities to the variability in RSS and RRSS was evaluated by multiple regression analysis for the first two developmental stages. Only Sus activity in the embryo could explain, at least in part, the significant variability observed for both the RSS and the RRSS at each developmental stage. We conclude that Sus activity is a reliable marker of sink activity in developing pea seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号