首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
土壤中重金属形态分析及其环境学意义   总被引:112,自引:6,他引:112  
介绍了土壤重金属的形态及各种分析方法,重点说明了土壤中重金属形态分布及影响因素;讨论了影响土壤环境中重金属形态转化的因素,重金属形态与重金属在土壤中的迁移性、可给性、活性的关系,重金属污染土壤修复与重金属形态分布的关系.形态分析在一定程度上反映自然与人为作用对土壤中重金属来源的贡献,并反映重金属的生物毒性.重金属可以因形态中某一个或几个方面不同而表现出不同的毒性和环境行为.  相似文献   

2.
研究了污染土壤、油菜籽中Cd、Cu、Zn、Pb含量、形态分布特征和重金属富集状况及可能存在的生物毒性.结果表明,土壤中Cd、Zn、Pb以铁锰氧化物结合态、Cu以残留态占5种形态最高比例,分别为31.1%、39.3%、53.79%、46.24%;Cd、Pb交换态比例较高,为23.47%、16.32%,Cu、Zn的交换态比例较小,为3.14%、0.54%;土壤中不同重金属与各重金属形态相关关系有差别,5种重金属形态转化为有效态重金属难易程度不同;油菜籽和油菜籽壳中不同重金属累积趋势有差异,Cu易在油菜籽壳中累积,Cd、Zn、Pb易在油菜籽中累积;油菜籽中不同重金属累积率不同,Cd累积率最高,为0.56.油菜籽中重金属累积率与土壤中重金属总量呈显著负相关关系(P<0.05),土壤中重金属的形态、转化差异是此种负相关关系的主要原因;油菜籽中Cd、Cu、Pb以氯化钠态为主,分别为32.50%、22.94%、34.69%,Zn以EDTA态为主,为45.97%.油菜籽中重金属形态可能影响其毒性,但其毒性的人类膳食风险还需进一步研究证实.油菜籽中重金属形态与油菜中重金属总量相关性不好.  相似文献   

3.
异化铁还原诱导次生铁矿对土壤重金属形态转化的影响   总被引:2,自引:0,他引:2  
土壤重金属具有残留时间长、毒性大、难迁移等特点,其形态转化又是影响重金属毒性和迁移的关键因子。同时,不同形态土壤重金属通过迁移进入到作物、水、大气循环中,对人类的健康构成极大威胁。厌氧条件下,土壤中丰富的铁含量和微生物异化铁还原过程为自然环境中不同晶型次生铁矿的形成提供了有利条件。微生物诱导生成的次生铁矿物有独特的形态和特征,如纳米颗粒、高表面积和高反应活性,这些矿物特征对土壤重金属形态转化起到重要作用。本文重点介绍在异化铁还原微生物驱动下次生铁矿形成过程对土壤重金属形态转化的影响效应及机制。次生铁矿物形成过程直接影响土壤中微量金属污染物的迁移转化及归宿,因此在重金属污染场地修复等方面具有很重要的应用前景。  相似文献   

4.
农作物体内铅,镉,铜的化学形态研究   总被引:67,自引:8,他引:67  
本文报道了农作物体内重金属存在的化学形态。用逐步提取法分析了生长在污染土壤上的水稻、小麦的根与叶。结果表明,在两种作物中,根部的铅以活性较低的醋酸可提取态与盐酸可提取态占优势,而叶中的铅以盐酸可提取态占优势。不论根部或叶部,在各种形态镉中,以氯化钠可提取镉所占比例较高,作用较重要。作物体内的铜活性较强,根部以乙醇可提取态占优势,叶中以水提取态占优势。各种结合形态的重金属迁移能力、毒性效应有显著差异。作物体内重金属化学形态特征与其表观毒性效应有密切联系。  相似文献   

5.
基于近20年的大量相关资料,综述了重金属对蛙蟾类毒性影响方面的研究,介绍了实验动物和实验方法,综合了重金属对蛙蟾类在形态、器官、组织、细胞和分子水平上毒害的主要表现,从重金属致毒过程、环境因素、物种、发育、重金属积累、联合毒性等角度初步分析了重金属对蛙蟾毒性大小的影响因素和毒性作用的主要机理,归纳了蛙蟾的几种抗毒/解毒/避毒反应,对开展进一步的研究提出建议.  相似文献   

6.
黑土中几种重金属的化学形态   总被引:1,自引:2,他引:1  
在自然界中,重金属元素的总浓度不能正确反映出它们对生物的效应和地球化学的过程。重金属的毒性在很大程度上取决于它们存在的化学形态。重金属进入土壤这个有机、无机复合体后,通过溶解、沉淀、凝聚、络合、吸附等各种反应,形成重金属的不同化学形态,并表现出不同的活性。东北地区的黑土,其主要特征是富含有机质,为了探索土壤有机质含量与土壤重金属的亲合力及其在土壤中存在的各种形态,我们用A.Tesser等提出的连续浸提法,作了重金属元素在黑土中存在形态的研究,这对进一步研究土壤净化功能与土壤环境容量具有一定意义。  相似文献   

7.
水体沉积物中酸可挥发性硫化物(AVS)研究进展   总被引:14,自引:1,他引:14  
刘景春  严重玲  胡俊 《生态学报》2004,24(4):812-818
水体沉积物中酸可挥发性硫化物 (AVS)是总硫含量中活性最高的部分 ,是沉积物中有毒重金属的重要结合形态 ,它的含量在很大程度上影响着沉积物重金属的生物有效性 ,从而作为沉积物中有毒重金属环境污染评价的一个重要指标 ;就十多年来水体沉积物中酸可挥发性硫化物 (AVS)的研究进行了综述。概述了 AVS的测定方法及其影响因素 ;探讨了水体沉积物中 AVS含量时空变化的规律 ;同时就目前“同时可提取重金属”(SEM)与 AVS摩尔浓度比值和水体沉积物重金属生物毒性关系的研究进行了概括和分析。  相似文献   

8.
目前大面积湿地面临着重金属污染和盐渍化问题。利用湿地植物修复这些受损生态系统和提高海水稻的产量、减少毒性金属元素在稻米中的积累是当前面临的重要任务。湿地植物(包括水稻)已发展出各种策略和机制来耐受不同的环境胁迫,它们的根系发育具有可塑性,如根形态和解剖结构会随外界条件的变化而变化,这些变化直接影响其对环境胁迫的适应性能。近年来,对湿地植物根形态和结构、泌氧与其对盐、重金属的吸收、积累和耐性之间的关系方面进行了一些重要研究。本文分别对湿地植物根系形态、质外体屏障、通气组织和泌氧与其对盐和重金属吸收、积累和耐性的关系等方面的研究进展进行了综述,并对该领域未来的发展方向作了展望。  相似文献   

9.
重金属对土壤微生物的生态效应   总被引:40,自引:0,他引:40  
通过分析重金属对土壤微生物生化过程与数量、种群及群落的影响、影响重金属对土壤微生物毒性的因素、重金属对土壤微生物毒性的评价指标、微生物对重金属的耐性与适应性以及重金属毒性的差异 ,综合评述了重金属对土壤微生物的生态效应 .  相似文献   

10.
土壤重金属生物毒性研究进展   总被引:22,自引:2,他引:22  
孙晋伟    黄益宗    石孟春    崔岩山  李小方  招礼军  杜心  高卫国 《生态学报》2008,28(6):2861-2861~2869
世界范围内土壤重金属污染不断加重,由污染所带来的问题以及如何治理污染已经受到人们越来越多的关注.土壤重金属将对土壤生物产生影响,而土壤生物在重金属的胁迫下也会产生不同的响应.综述了国内外近年来土壤重金属生物毒性的研究进展,介绍了土壤重金属污染对陆地生态系统中植物、动物和微生物生长的影响;土壤重金属生物毒性的影响因素;土壤重金属生物毒性的研究方法;土壤重金属生物毒性的预测模型,最后提出了问题和展望.  相似文献   

11.
黔西北土法炼锌废弃地植被重建的限制因子   总被引:7,自引:0,他引:7  
以土法炼锌废弃地的废渣、污染土壤和背景土壤为基质材料,分别种植黑麦草(Lolium perenne)和三叶草(Trifolium pretense),分析各种基质的基本化学特性、重金属(Pb、Zn、Cd)含量及其赋存形态、两种植物生长特性.结果表明,土法炼锌废渣上植被重建的主要限制因子包括高盐碱胁迫、有机质含量低、养分缺乏(TN、碱解N、TK).废渣重金属含量高,有效态含量低,对植物毒性小,但存在潜在危害性.污染土壤重金属含量低于废渣,但生物有效态重金属含量高.污染土壤植被重建的限制因子包括重金属毒性、P和K的有效性.废渣与污染土壤混合是土法炼锌废弃地基质改良的有效途径.  相似文献   

12.
PHYCOLOGY AND HEAVY-METAL POLLUTION   总被引:9,自引:0,他引:9  
1. All heavy metals, including those that are essential micronutrients (e.g. copper, zinc, etc.), are toxic to algae at high concentrations. 2. One characteristic feature of heavy-metal toxicity is the poisoning and inactivation of enzyme systems. Many of the physiological and biochemical processes, viz., photosynthesis, respiration, protein synthesis and chlorophyll synthesis, etc., are severely affected at high metal concentrations. 3. Some algae inhabit waters chronically polluted with heavy-metal-laden wastes from mining and smelting operations; Nodularia sp., Oscillatoria sp., Cladophora sp., Hormidium sp., Fucus sp. and Laminaria sp., etc., occur in metal-rich waters. These algal forms are probably more capable of combating the toxic levels of heavy metals and this attribute is a result of physiological and/or genetic adaptations. The sensitivity or tolerance to heavy metals varies amongst different algae. The phenomena of multiple tolerance and co-tolerance may be exhibited by some algae. 4. Heavy-metal pollution causes reduction in species diversity leading to the dominance of a few tolerant algal forms. The primary productivity also decreases after metal supplementation. 5. The uptake and accumulation of heavy metals can be active (energy-dependent), passive (energy-independent), or both. 6. Heavy metals can be safely stored as intranuclear complexes by some algae. Notwithstanding this, some changes in the cell wall can enable the algae to tolerate heavy metals by checking the entry of the metals (exclusion mechanism). 7. The metal content of algae growing in a waterbody may yield valuable information for simulating heavy metal pollution: several species of Cladophora and Fucus have been extensively used for this purpose. 8. Several factors affect and determine toxicity of heavy metals to algae. At low pH, the availability of heavy metals to algae is greatly increased, as a consequence of which pronounced toxicity is evident. Hard waters decrease metal toxicity. Some ions, e.g., calcium, magnesium and phosphorus, can alleviate toxicity of metals. 9. The presence of other metals can influence toxicity of a heavy metal through simple additive effect or by synergistic and antagonistic interactions. Similarly, other pollutants can influence heavy-metal toxicity. 10. The toxicity of heavy metals depends upon their chemical speciation. Various ionic forms of a metal characterized by different valency states, may be differentially toxic to a test alga. 11. Amino acids, organic matter, humic acids, fulvic acid, EDTA, NTA, etc. can complex with heavy metals and render them unavailable. This may eventually lead to less toxicity. 12. Heavy-metal toxicity largely depends upon algal population density: the denser the population the more numerous the cellular sites available, leading to decreased toxicity.  相似文献   

13.
Heavy metals are found in their different forms in the environment. The distribution, mobility, and toxicity of metals are strongly related to these different forms. This necessitates the exploration of different methods for the remediation and speciation of heavy metals. Some direct and indirect physico-chemical methods such as filtration, chemical precipitation, ion-exchange, electro deposition, and membrane systems have been used for the last four decades. However, it is only in last few years that reliable biological methods have also been used. The biological methods include the use of microorganisms (fungi, algae, bacteria), plants (live or dead) and biopolymers. The use of these methods for the speciation of heavy metals is reviewed here.  相似文献   

14.
Abstract

Sediments of a polluted reservoir were evaluated for total contents of Cd, Cr, Cu, Ni, Pb and Zn along with their different geochemical forms (exchangeable, carbonate, Fe–Mn, organic matter and residual). Mineralogy of the sediments and physico-chemical parameters i.e. pH, OC and percentage of sand, silt and clay were also evaluated to see the dependency of heavy metals concentration on these parameters. The total concentration of heavy metals in the sediments varied according to sites and seasons. Except for station H1 which had moderately higher concentration of Cu (45.5 mg kg-1), concentrations of all other metals at all the sites under study were below the standard shale value. Maximum proportions of all metals were associated with the carbonate and residual fractions. The Risk Assessment Code showed a low risk for Cr, Ni and Zn, and a medium risk for Cu at station H3 and H4. On the basis of freshwater sediment quality guidelines, there is a strong possibility of Cr and Cu toxicity for aquatic biota of the reservoir. The data were further processed using Pearson’s correlation and factor analysis to obtain more accurate information about the behaviour of these metals. A positive relationship among the metals confirmed the anthropogenic sources of pollution in the reservoir. Significant positive relationships of heavy metals with the texture of the sediment were also obtained.  相似文献   

15.
重金属对昆虫的生态生理效应   总被引:1,自引:0,他引:1  
本文综述了重金属对昆虫生态生理学研究的最新进展,指出了研究的不足和应着重关注的研究方向。短期重金属暴露对昆虫有急性毒性,而长期暴露有引起昆虫对重金属污染产生适应性进化的风险。重金属对昆虫的毒性依重金属浓度、暴露时间和染毒方式而异,也会通过食物链传递和积累而影响昆虫及其天敌之间的关系。重金属对昆虫的生理毒性包括降低血细胞或血淋巴内的能量物质、引起氧化还原平衡失调、抑制细胞免疫和体液免疫、破坏昆虫细胞或组织的完整性。昆虫对重金属胁迫的生理和生态适应包括对重金属的储存和排出,解毒相关蛋白的诱导,甚至重金属耐性的进化。  相似文献   

16.
金属硫蛋白和植物螯合肽在植物重金属耐性中的作用   总被引:20,自引:0,他引:20  
植物螯合肽和金属硫蛋白广泛存在于植物界中,它们对植物耐重金属特别重要,能够与重金属形成复合物,以缓解重金属对植物的危害。本文就这两种金属螯合蛋白的结构、生物合成和基因调控,以及在植物体内缓解重金属毒害的作用方面作了简要介绍。  相似文献   

17.
Pollution coming from agricultural practices can exist: pesticides, veterinary drugs, heavy metals but also mycotoxins. However, these contaminants are always at low or trace doses in our environment (foods, water, air, soils). In terms of foods, two concepts have been developed to protect the consumers: acceptable daily intake (ADI) and maximum residue limits (MRL). The impact of this pollution on public health is not evident, in contradiction with the level of fear in the population. Moreover, the distinction made between natural and synthetic substances by the public in terms of toxicity is quite nonsense scientifically. Human beings and all living organisms have a good defence system against chemical xenobiotics which ensures their protection.  相似文献   

18.
Superficial (0 to 2 cm) sediments were sampled from 62 sites in Kattegat and Skagerrak during autumn 1989 and spring 1990, tested for toxicity to Daphnia magna and Nitocra spinipes (Crustacea) and analyzed for heavy metals (Cd, Cr, Cu, Hg, N, Pb, Zn), nutrients (N and P) and organic carbon. Whole sediment toxicity to Nitocra spinipes, expressed as 96-h LC50, ranged from 1.8 to > > 32 percent sediment (wet wt), which is equivalent to 0.63 to 53 percent dry wt. Sediment total metal concentrations (mg kg-1 dry wt) ranged from 0.01 to 0.32 for Cd, 8 to 57 for Cr, 3 to 40 for Cu, 0.03 to 0.86 for Hg, 3 to 43 for Ni, 6 to 37 for Pb and 21 to 156 for Zn. Analyzed concentrations of heavy metals were tested for correlation with whole sediment toxicity normalized to dry wt, and significant correlations (Spearman p<0.05) were found for Cd, Cr, Cu, Hg, and Ni. However, the analyzed concentrations of these metals were below the spiked sediment toxicity of these heavy metals to N. spinipes, except for Cr and Zn for which analyzed maximum concentrations approached the 96-h spiked sediment LC50s. There was no improvement in correlation between the sum of heavy metal concentrations normalized to their spiked toxic concentrations (Toxic Unit approach) and the whole sediment toxicity. Calculated heavy-metal-derived toxicity based on toxic units and whole sediment toxicity ranged from 0.1 to 24 (mean value 2.3 and SD 4.2). Theoretically, a value of 1.0 would explain whole sediment toxicity from measured metal concentrations using this approach. Thus, in spite of the fact that the total concentrations of the heavy metals were sufficient to cause toxicity based on an additive model for most of these sediments, the observed toxicity of the sediments from Kattegat and Skagerrak could not exclusively be explained by the concentrations of heavy metals, except for Cr and Zn at their maximum concentrations. Therefore, other pollutants than these heavy metals must also be considered as possible sediment toxicants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号