首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipoxin A4 stimulates rapid lipid remodeling and a pertussis toxin-sensitive release of arachidonic acid in polymorphonuclear leukocytes (PMN) (Nigam, S., Fiore, S., Luscinskas, F.W., and Serhan, C.N. (1990) J. Cell. Physiol. 143, 512-523) and has been shown to inhibit leukocyte responses in several systems. To examine the basis underlying these actions, we have prepared [11,12-3H]lipoxin A4 (LXA4) and characterized its interactions with human PMN. Time course studies (0-90 min) with intact PMN demonstrated cell association of 3H label which was specific and reversible. PMN bound [3H]LXA4 with a Kd of 0.5 +/- 0.3 nM, representing approximately 1,830 sites/PMN, and the Hill plot value of 1.9 suggests cooperative binding. [3H]LXA4 binding was stereoselective since neither leukotriene B4 (LTB4), lipoxin B4 (LXB4), (6S)-LXA4, 11-trans-LXA4, nor SKF 104353 competed for [3H]LXA4-specific binding while LTD4 and LTC4 partially competed. Subcellular fractionation revealed that specific binding with [3H]LXA4 was associated with membrane (42.1%)-, granule (34.5%)-, and nuclear (23.3%)-enriched fractions, a distribution distinct from that of [14,15-3H] LTB4 binding. [11,12-3H]LXA4-specific binding was modulated by guanosine analogs, suggesting the involvement of G proteins. A fluorescent LXA4 derivative (methyl-7-methoxycoumarin-LXA4) competed with [3H]LXA4 binding to intact PMN and showed specific and reversible binding as monitored by flow cytometric analysis. These results indicate that PMN possess specific recognition sites for LXA4 which may mediate its actions.  相似文献   

2.
Endogenous arachidonic acid was converted to lipoxins A4, B4 and (6S)-lipoxin A4, in ionophore-A23187-stimulated mixtures of human platelets and granulocytes, while no lipoxins were formed when these cells were incubated separately. However, pure platelet suspensions transformed exogenous leukotriene A4 to lipoxins, including lipoxin A4 and (6S)-lipoxin A4, but not lipoxin B4. This compound was produced exclusively in the presence of granulocytes. A common unstable tetraene intermediate in lipoxin formation, 15-hydroxy-leukotriene A4 [5(6)-epoxy-15-hydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid], was indicated by trapping experiments with methanol. Thus, identical profiles of less polar tetraene-containing derivatives were formed from leukotriene A4 in platelet suspensions, from exogenous 15-hydroxyeicosatetraenoic acid in granulocyte suspensions and from endogenous substrate in mixed platelet/granulocyte suspensions. Evidence for the involvement of 12-lipoxygenase in platelet-dependent lipoxin formation was obtained. Thus, lipoxin synthesis from leukotriene A4 and 12-hydroxyeicosatetraenoic acid production from arachidonic acid by human platelets was equally inhibited by 15-hydroxyeicosatetraenoic acid with 50% inhibition obtained at 7.0 microM and 8.2 microM, respectively. In experiments with subcellular preparations from platelets, lipoxin synthesis was observed in both the particulate and soluble fraction and was paralleled by the 12-lipoxygenase activity. Furthermore, lipoxin formation from leukotriene A4 in platelet sonicates was dose-dependently inhibited by exogenous arachidonic acid. Finally, 12-lipoxygenase-deficient platelets from a patient with chronic myelogenous leukemia were totally unable to produce lipoxins from exogenous or granulocyte-derived leukotriene A4. It is concluded that the transcellular lipoxin synthesis is dependent on the platelet 12-lipoxygenase and proceeds via the unstable intermediate, 15-hydroxy-leukotriene A4. This tetraene epoxide is transformed to lipoxin B4 by a granulocyte epoxide hydrolase activity or to lipoxin A4 and lipoxins A4/B4 isomers by enzymatic or nonenzymatic hydrolysis.  相似文献   

3.
Formyl peptides and leukotriene B4 (LTB4) stimulate disparate neutrophil functional responses and second messenger generation. The hypothesis that differences in receptor-guanine nucleotide-binding proteins (G protein) interaction account for the disparate responses was examined using HL-60 granulocyte plasma membranes. The quantity of receptor-coupled G proteins was determined by guanosine 5'-(gamma-thio)triphosphate (GTP gamma S) equilibrium binding in the presence or absence of f-Met-Leu-Phe and/or LTB4. About one-third of the total GTP gamma S binding sites were coupled to f-Met-Leu-Phe receptors, to LTB4 receptors, and to receptors when both ligands were added simultaneously. The dissociation constant of GTP gamma S-binding sites in the presence of LTB4 was significantly greater than that in the presence of f-Met-Leu-Phe. f-Met-Leu-Phe shifted the GDP dose-inhibition curve for GTP gamma S binding further to the right than did LTB4. The apparent initial rate of GTP hydrolysis and GTP gamma S binding stimulated by f-Met-Leu-Phe was significantly greater than that stimulated by LTB4. There were significantly more formyl peptide receptors than LTB4 receptors, however, formyl peptide and LTB4 receptor density did not differ under GTP gamma S binding assay conditions. The rate of GTP hydrolysis stimulated by LTB4 was not increased in membranes containing twice the LTB4 receptor density. We conclude that formyl peptide receptors stimulate more rapid activation of a common pool of G proteins than LTB4 receptors because of a significantly reduced affinity of formyl peptide receptor-activated G proteins for GDP.  相似文献   

4.
Polymorphonuclear leukocyte (PMN) surface membrane glycoproteins are probably involved in the phenomenon of stimulus-response coupling. Consequently, we examined the effects of either removal or oxidation of surface membrane-associated sialic acid residues on some responses of human PMN to chemotactic factors. Treatment of human PMN with either neuraminidase or sodium metaperiodate did not affect the ability of these cells to migrate randomly, but did inhibit their ability to respond chemotactically to the synthetic peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP). Treated PMN responded normally, however, to the complement-derived peptide C5a, and to the lipoxygenase product leukotriene B4. Enzymatic removal or oxidation of membrane sialic acid residues did not affect either FMLP-induced PMN degranulation or FMLP-induced generation by PMN of superoxide anion radicals. Removal of sialic acid did not significantly alter specific binding of [3H]FMLP to its receptor(s) on the PMN membrane. These findings indicate that sialic acid residues on the PMN surface membrane play an important role in modulating PMN responses to FMLP.  相似文献   

5.
It is of wide interest to understand how opposing extracellular signals (positive or negative) are translated into intracellular signaling events. Receptor-ligand interactions initiate the generation of bioactive lipids by human neutrophils (PMN), which serve as signals to orchestrate cellular responses important in host defense and inflammation. We recently identified a novel polyisoprenyl phosphate (PIPP) signaling pathway and found that one of its components, presqualene diphosphate (PSDP), is a potent negative intracellular signal in PMN that regulates superoxide anion generation by several stimuli, including phosphatidic acid. We determined intracellular PIPP signaling by autocoids with opposing actions on PMN: leukotriene B4 (LTB4), a potent chemoattractant, and lipoxin A4 (LXA4), a 'stop signal' for recruitment. LTB4 receptor activation initiated a rapid decrease in PSDP levels concurrent with activation of PLD and cellular responses. In sharp contrast, activation of the LXA4 receptor reversed LTB4-initiated PSDP remodeling, leading to an accumulation of PSDP and potent inhibition of both PLD and superoxide anion generation. Thus, an inverse relationship was established for PSDP levels and PLD activity with two PMN ligands that evoke opposing responses. In addition, PSDP directly inhibited both isolated human recombinant (Ki = 6 nM) and plant (Ki = 20 nM) PLD. Together, these findings link PIPP remodeling to intracellular regulation of PMN function and suggest a role for PIPPs as lipid repressors in signal transduction, a novel mechanism that may also explain aspirin's suppressive actions in vivo in cell signaling.  相似文献   

6.
alpha 2-Adrenergic receptor (alpha 2-AR) subtypes couple to pertussis toxin (PT)-sensitive G-proteins to elicit both stimulatory and inhibitory cell responses. Signal specificity may be generated by the ability of the receptor subtypes to "recognize" distinct G-proteins with different affinity. To address this issue we stably expressed three alpha 2-AR subtypes, RNG alpha 2 (alpha 2B-AR), RG10 (alpha 2C-AR), and RG20 (alpha 2D-AR), in NIH-3T3 fibroblasts, which express two PT-sensitive G-proteins (Gi alpha 2, Gi alpha 3), and analyzed receptor/G-protein interactions by determining: 1) functional coupling to adenylylcyclase and 2) the ability of the receptors to exist in a high affinity state for agonist. In alpha 2D-AR transfectants expressing 200 or 2,200 fmol of receptor/mg of protein, epinephrine (10 microM) inhibited forskolin-induced elevation of cellular cAMP by 26 +/- 4.8% and 72 +/- 6.2%, respectively. Similar results were obtained in alpha 2B-AR transfectants. However, in alpha 2C-AR transfectants (200 fmol/mg) the forskolin-induced elevation of cellular cAMP was not altered by agonist treatment. In alpha 2C-AR transfectants expressing higher receptor densities (650-1,200 fmol/mg), epinephrine inhibited the effect of forskolin by 30 +/- 3.2%. This difference in functional coupling among the alpha 2-AR subtypes is reflected at the receptor/G-protein interface. In membrane preparations of alpha 2B and alpha 2D-AR but not alpha 2C-AR transfectants, agonist competition curves were biphasic, indicating high and low affinity states of the receptor for agonist. The high affinity state was guanyl-5'-yl imidodiphosphate- and PT-sensitive, indicative of receptor/G-protein coupling. These data suggest that the alpha 2C-AR differs from the alpha 2B and alpha 2D-AR subtypes in its ability to recognize PT-sensitive G-proteins expressed in NIH-3T3 fibroblasts. The alpha 2C-AR may couple preferentially to PT-sensitive G-proteins (Gi1, Go1,2) not expressed in NIH-3T3 fibroblasts and thereby elicit different cellular responses.  相似文献   

7.
Lipoxins are trihydroxytetraene metabolites which are derived from arachidonic acid through an interaction between different lipoxygenase pathways. Previous work has shown that lipoxin A4 (LXA4) inhibits the chemotactic responsiveness of neutrophils (PMN) to leukotriene B4. We have now assessed the structural determinants of the lipoxin A4 molecule which are necessary for its inhibitory activity, using structural analogs of LXA4 prepared by chemical synthesis. Our results indicate the importance of two adjacent free hydroxyl groups in either the R or the S configuration; one hydroxyl group has to be in the C-6 position, but the other hydroxyl group can be in either the C-5 or the C-7 position for the conferment of inhibitory activity.  相似文献   

8.
There is compelling evidence that G protein-coupled receptors exist as homo- and heterodimers, but the way these assemblies function at the molecular level remains unclear. We used here the purified leukotriene B(4) receptor BLT1 stabilized in its dimeric state to analyze how a receptor dimer activates G proteins. For this, we produced heterodimers between the wild-type BLT1 and a BLT1/ALXR chimera. The latter is no longer activated by leukotriene B(4) but is still activated by ALXR agonists. In this heterodimer, agonist binding to either one of the two protomers induced asymmetric conformational changes within the receptor dimer. Of importance, no G protein activation was observed when using a dimer where the ligand-loaded protomer was not able to trigger GDP/GTP exchange due to specific mutations in its third intracellular loop, establishing that the conformation of the agonist-free protomer is not competent for G protein activation. Taken together, these data indicate that although ligand binding to one protomer in the heterodimer is associated with cross-conformational changes, a trans-activation mechanism where the ligand-free subunit would trigger GDP/GTP exchange cannot be considered in this case for G protein activation. This observation sheds light into the way GPCR dimers, in particular heterodimers, could activate their cognate G proteins.  相似文献   

9.
Isolated human polymorphonuclear (PMN) leukocyte plasma membranes express high affinity (mean Kd = 0.12 nM) and low affinity (mean Kd = 50 nM) receptors for the chemotactic factor leukotriene B4 (5(S),12(R)-dihydroxy-eicosa-6,14 cis-8,10 trans-tetraenoic acid; LTB4) that are similar to those on intact PMN leukocytes. A portion of high affinity LTB4-R on PMN leukocyte membranes were converted to the low affinity state by GTP (mean +/- SE = 28.6 +/- 14.0%) and nonhydrolyzable GTP analogues, such as 5'-guanylylimidodiphosphate (GMP-PNP), in a concentration-dependent, nucleotide-specific, and reversible manner, without altering the intrinsic binding affinities of either class. [3H]GMP-PNP bound specifically to one class of receptors (mean Kd = 13 nM) on PMN leukocyte membranes. The interdependence of the LTB4-binding membrane protein and guanine nucleotide-binding protein was suggested by the capacity of LTB4 to enhance by a maximum of 150% the binding of [3H]GMP-PNP to PMN leukocyte membranes by increasing the number, but not altering the affinity, of receptors for GMP-PNP. Pertussis toxin, but not cholera toxin, reversed the enhancement of binding of [3H]GMP-PNP produced by LTB4. Guanine nucleotide-binding proteins and high affinity LTB4-R thus exhibit a mutual regulation that differs mechanistically from that of peptide chemotactic factor receptors on PMN leukocytes.  相似文献   

10.
Transformation of leukotriene A4 to lipoxins by rat kidney mesangial cell   总被引:1,自引:0,他引:1  
Incubation of rat mesangial cells with leukotriene A4 in the presence of calcium ionophore A23187 led to a substrate dependent formation of lipoxin and its isomers. The major metabolite coeluted with authentic lipoxin A4 (LXA4) and lipoxin B4 (LXB4) in RP-HPLC system, and possessed a characteristic U.V. spectrum and C-value which were identical to authentic standards. GC/MS analysis on LXA4 further demonstrates that the mesangial cell derived LXA4 was identical to that reported by Serhan et al. (1) as LXA4 [5(S), 6,(R), 15(S)-trihydroxy7,9,13-trans-11-cis-eicosatetraenoic acid]. The formation of LXA4 was linear with substrate (LTA4) concentration. No similar products occurred in boiled controls. Incubation of mesangial cell with 15-HPETE failed to produce any lipoxin-like material. The absence of LX-like substance following incubation of 15-HPETE with mesangial cells suggested that 5-lipoxygenase activity is not expressed in mesangial cells under these conditions. The generation of LXA4 from LTA4 in mesangial cells suggested that there is an active 15- or 12- lipoxygenase activity in the kidney. The production of LX may play an important role in the regulation of renal function and the response to inflammatory stimuli.  相似文献   

11.
Lipoxins (LX) are bioactive eicosanoids that can be formed during cell to cell interactions in human tissues to self limit key responses in host defense and promote resolution. Aspirin treatment initiates biosynthesis of carbon 15 epimeric LXs, and both series of epimers (LX and aspirin-triggered 15-epi-LX) display counter-regulatory actions with neutrophils. In this study, we report that synthetic lipoxin A(4) (LXA(4)) and 15-epi-LXA(4) (i.e., 15(R)-LXA(4) or aspirin-triggered LXA(4)) are essentially equipotent in inhibiting human polymorphonuclear leukocytes (PMN) in vitro chemotaxis in response to leukotriene B(4), with the maximum inhibition ( approximately 50% reduction) obtained at 1 nM LXA(4). At higher concentrations, 15-epi-LXA(4) proved more potent than LXA(4) as its corresponding carboxyl methyl ester. Also, exposure of PMN to LXA(4) and 15-epi-LXA(4) markedly decreased PMN transmigration across both human microvessel endothelial and epithelial cells, where 15-epi-LXA(4) was more active than LXA(4) at "stopping" migration across epithelial cells. Differences in potency existed between LXA(4) and 15-epi-LXA(4) as their carboxyl methyl esters appear to arise from cell type-specific conversion of their respective carboxyl methyl esters to their corresponding carboxylates as monitored by liquid chromatography tandem mass spectrometry. Both synthetic LXA(4) and 15-epi-LXA(4) as free acids activate recombinant human LXA(4) receptor (ALXR) to regulate gene expression, whereas the corresponding methyl ester of LXA(4) proved to be a partial ALXR antagonist and did not effectively regulate gene expression. These results demonstrate the potent stereospecific actions shared by LXA(4) and 15-epi-LXA(4) for activating human ALXR-regulated gene expression and their ability to inhibit human PMN migration during PMN vascular as well as mucosal cell to cell interactions.  相似文献   

12.
Incubation of mixed human platelet/granulocyte suspensions with ionophore A23187 led to a platelet dependent formation of several lipoxin isomers from endogenous substrate. The major metabolite coeluted with authentic lipoxin A4 (5(S), 6(R), 15(S)-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid) in several HPLC-systems and showed an identical UV-spectrum. Furthermore, a similar profile of lipoxins was formed in pure platelet suspensions incubated with exogenous leukotriene A4 (5(S) -5, 6-oxido-7,9-trans-11,14-cis-eicosatetraenoic acid). The conversion of exogenous leukotriene A4 to lipoxin A4 was markedly increased in the presence of ionophore A23187.  相似文献   

13.
Rainbow trout macrophages maintained in short term culture when incubated with either calcium ionophore, A23187, or opsonized zymosan synthesize a range of lipoxygenase products including lipoxins and leukotrienes. These cells are unusual in that they generate more lipoxin than leukotriene following such challenge. The main lipoxin synthesized was lipoxin (LX) A4. This compound was identified by cochromatography with authentic standard during reversephase high performance liquid chromatography, by ultra violet spectral analysis, radiolabeling following incorporation of [14C]arachidonic acid substrate into macrophage phospholipids, and gas chromatography electron impact mass spectrometry of the methyl ester, trimethylsilyl ether derivative. Other 4-series lipoxins synthesized by trout macrophages were identified as 11-trans-LXA4, 7-cis-11-trans-LXA4, and 6(S)-LXA4. These cells also produced 5-series lipoxins tentatively identified as LXA5, 11-trans-LXA5 and possibly 6(S)-LXA5. No LXB4 or LXB5 was, however, detected. The dynamics of leukotriene and lipoxin release were also determined. Lipoxin generation was slower than leukotriene generation the latter reaching a maximum after 30 min of exposure to ionophore (5 microM, 18 degrees C) compared with 45 min for the former.  相似文献   

14.
Previously, we reported that a derivative of wheat germ agglutinin (termed WGA-D) specifically inhibits human polymorphonuclear leukocyte (PMN) chemotaxis to FMLP by blocking reexpression (or recycling) of formyl peptide receptors. WGA-D (? formyl peptide receptor probe) binds to a protein on the PMN membrane that exhibits the same m.w. as the formyl peptide receptor. Since clustering (i.e., capping) of ligand-receptor complexes most likely precedes their internalization, we examined the ability of normal and stimulated PMN to cap fluoresceinated WGA-D. We found that, in contrast to capping of fluoresceinated Con A, PMN cap WGA-D in a chemotactic factor-specific fashion. Fluoresceinated WGA-D (5.0 to 20 micrograms/ml) alone did not induce either PMN shape changes (i.e., activation) or capping. Both FMLP (1 to 1000 nM) and human C5a (0.1 to 1.0 nM) induced PMN to polarize and to cap bound WGA-D, in a concentration-dependent fashion. Interestingly, leukotriene B4 (LTB4) (5.0 nM), while inducing the same degree of PMN polarization as FMLP (100 nM) and C5a (0.5 nM), failed to induce PMN to cap bound WGA-D. In contrast, FMLP (100 nM), C5a (0.5 nM), and LTB4 (5.0 nM) induced PMN to cap bound fluoresceinated Con A (10 micrograms/ml) to the same extent. The effect of suboptimal concentrations of FMLP and C5a on capping of WGA-D by PMN was additive. LTB4 did not enhance either FMLP or C5a-induced capping of WGA-D by PMN. Also, FMLP and C5a (but not LTB4) were capable of inducing both desensitization and cross-desensitization of WGA-D capping by PMN. Studies using rhodamine-labeled WGA-D and a fluoresceinated analog of FMLP revealed that both capped to the same place on the PMN membrane. Thus, the data suggest that WGA-D binds to a site on the PMN membrane that is either the FMLP receptor or very closely associated with it.  相似文献   

15.
N-Formyl-methionyl-leucyl-phenylalanine (fMLP) and leukotriene B4 stimulate human polymorphonuclear neutrophils (PMN) to translocate protein kinase C from the cytosol to plasmalemma as judged by their abilities to increase PMN binding of and receptor numbers for [3H]phorbol dibutyrate [( 3H]PDB) (O'Flaherty, J.T., Jacobson, D.P., Redman, J.F., and Rossi, A.G. (1990) J. Biol. Chem. 265, 9146-9152). Platelet-activating factor (PAF) had these same effects. Moreover, two potent PAF analogs (but not an inactive analog) increased [3H]PDB binding; a PAF antagonist blocked responses to PAF without altering those to fMLP; and PMN treated with PAF became desensitized to PAF while retaining sensitivity to fMLP. Indeed, PMN incubated with 1-100 nM PAF for 5-40 min had markedly enhanced [3H]PDB binding responses to fMLP. PAF thus acted through its receptors to stimulate and prime protein kinase C translocation. Its effects, however, did not necessarily proceed by a standard mechanism: Ca2(+)-depleted PMN failed to raise Fura-2-monitored cytosolic Ca2+ concentrations [( Ca2+]i), yet increased [3H]PDB binding and receptor numbers almost normally after PAF challenge. PAF also primed Ca2(+)-depleted PMN to fMLP. Nevertheless, [3H]PDB binding responses to PAF were blocked in PMN loaded with Ca2+ chelators, viz. Quin 2, Fura-2, or 5,5'-dimethyl-1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Exogenous Ca2+ reversed Quin 2 inhibition, and a weak chelator 4,4'-difluoro-BAPTA, lacked inhibitory actions. The chelators similarly influenced fMLP and leukotriene B4. Thus, PMN can by-pass [Ca2+]i to translocate protein kinase C. They may achieve this using a regulatable pool of Ca2+ that evades conventional [Ca2+]i monitors or a signal that needs cell Ca2+ to form and/or act. This signal may mediate function in Ca2(+)-depleted cells, the actions of [Ca2+]i-independent stimuli, cell priming, and protein kinase C movements that otherwise seem [Ca2+]i-induced.  相似文献   

16.
Individual human neutrophils (PMN) isolated by Hypaque-Ficoll gradient sedimentation, dextran sedimentation, or buffy coat preparation were assessed for the effects of leukotriene B4 (5S,12R dihydroxy 6,14-cis-8, 10 trans eicosatetraenoic acid (LTB4)-pretreatment on N-formylmethionyl-leucyl-phenylalanine (FMLP)-mediated membrane potential or oxidative responses by using flow cytometry and a lipophilic probe of membrane potential (di-pentyl-oxacarbocyanine, di-O-C(5)3), or the nitroblue tetrazolium dye (NBT) reduction test, respectively. Although exposure to LTB4 (10(-7) M) had no effect on the membrane potential of resting PMN and little effect on oxidant production, pretreating PMN with LTB4 followed by FMLP (10(-6) M) demonstrated a significant enhancement in the proportion of depolarizing PMN over that seen with FMLP alone (p = 0.0014, N = 9). This recruitment of previously unresponsive cells by LTB4 was dose and time dependent, with the maximal relative increase in the proportion of depolarizing cells occurring at LTB4 concentrations of 10(-8) to 10(-7) M and within 1 min of LTB4 addition. The recruitment effect persisted despite vigorous washing of the cells. LTB4 also increased the proportion of NBT-positive PMN in response to FMLP. Although LTB4 alone did not depolarize PMN it did induce a light scatter shift indicative of cell activation. 3H-FMLP binding studied at 0 degree C comparing buffer and LTB4-treated PMN indicated no significant change in the number or affinity of FMLP binding. The data provide evidence for the recruitment of a greater proportion of cells into a FMLP-responsive state as a mechanism for the enhanced functional response of PMN pretreated with LTB4, as well as for a dissociation of the membrane potential and light scattering responses of cells to this pro-inflammatory LT. The mechanism of recruitment remains unclear, but it most likely involves the modulation of a post-FMLP binding step.  相似文献   

17.
Lipoxin A (5,6,15L-trihydroxy-7,9,11,13-eicosatetraenoic acid) and lipoxin B (5D,14,15-trihydroxy-6,8,10,12-eicosatetraenoic acid), two newly isolated compounds derived from the oxygenation of arachidonic acid in human leukocytes, inhibit the cytotoxic activity of human natural killer (NK) cells. Dose-response studies showed that both lipoxin A and lipoxin B inhibit, at submicromolar concentrations (ID50 10(-7) M), NK cell activity assayed against K562 target cells. Prostaglandin E2 (PGE2) also inhibited cytotoxicity, whereas both 15-HETE (5(S)-hydroxy-5,8,11,13-eicosatetraenoic acid) and leukotriene B4 (synthetic and biologically derived) were ineffective. PGE2 stimulated a time- and dose-dependent increase in intracellular cAMP, which was accompanied by a decrease in NK target cell binding. Lipoxin A and lipoxin B did not elevate intracellular cAMP, nor did they inhibit target cell binding. Together these findings suggest that lipoxin A and lipoxin B abrogate NK cell cytotoxicity at a step distal to target effector cell recognition. In contrast, PGE2 appears to exert its effect, at least in part, on cytotoxicity indirectly by decreasing the binding between target and effector cells (in vitro). Moreover, they suggest that novel oxygenated derivatives of arachidonic acid (i.e., lipoxin A, lipoxin B) may regulate the activities of NK cells.  相似文献   

18.
M Romano  C N Serhan 《Biochemistry》1992,31(35):8269-8277
Human platelets convert leukocyte-derived leukotriene (LT) A4 to lipoxins during transcellular lipoxin biosynthesis. Here, we examined lipoxin generation in intact human platelets and compared it with that elicited from permeabilized platelets. Conversion of LTA4 to lipoxins by permeabilized cells exceeded (10-15 times) that to peptidoleukotrienes, while intact cells exposed to thrombin generated similar amounts of these two series (LT/LX). Permeabilized platelets also generated 3-5 times more lipoxins than intact cells. Lipoxin A4 (LXA4), lipoxin B4 (LXB4), and their respective all-trans isomers were identified by physical methods including HPLC and GC-MS. Chiral analysis of platelet-derived all-trans-containing LXs revealed that greater than 69.5 +/- 0.5% carried alcohol groups in the R configuration at carbons 6 and 14 (e.g., 11-trans-LXA4 and 8-trans-LXB4), respectively. More than 50% of these all-trans LX were formed by isomerization of native LXA4 and LXB4 during isolation. Lipoxin formation with permeabilized platelets gave an apparent Km of 8.9 microM and Vmax of 83.3 ng/(min-10(9) platelets) with maximal conversion in pH range 7-9. In addition, permeabilized platelets converted 14,15-LTA4 and LTA5, but not LTA3, to lipoxins. Consecutive exposure to LTA4 did not alter LXA4 generation but inhibited LXB4 by 40-50%, suggesting that LXB4 formation can be regulated by suicide inactivation. Unlike platelets, human endothelial cells did not convert LTA4 to lipoxins. These results indicate that lipoxin formation is a major route of LTA4 metabolism in thrombin-activated platelets and those that have undergone a loss of membrane barriers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The CD45 Ag family is a group of high m.w. glycoproteins that are expressed on the plasma membranes of all leukocytes. CD45 has protein tyrosine phosphatase activity and appears to regulate signal transduction and lymphocyte activation by specific association with receptor molecules on T and B lymphocytes. However, little is known about CD45 function in neutrophils (PMN). In this study, PMN were incubated with CD45 mAb and tested for their chemotactic responses to four unrelated chemo-attractants: FMLP, leukotriene B4 (LTB4), recombinant human C5a (C5a), and recombinant human neutrophil-activating protein-1, recently designated IL-8. A panel of CD45 mAb including an IgM mAb, AHN-12.1, and six IgG1 mAb, AHN-12, AHN-12.2, AHN-12.3, AHN-12.4, HLe-1, and KC56(T200), were tested for their effects on PMN chemotaxis. PMN chemotaxis was evaluated with two different membrane assays; one assay quantified the total number of migrating PMN and the other assayed the leading front of migrating PMN. AHN-12.1 and KC56(T200) significantly inhibited PMN chemotaxis to LTB4 and C5a. AHN-12.1 slightly inhibited PMN chemotaxis to FMLP, but KC56(T200) did not. In contrast, AHN-12 and HLe-1 did not significantly inhibit PMN chemotaxis to any of the chemoattractants. None of the CD45 mAb inhibited PMN chemotaxis to neutrophil-activating protein-1/IL-8. None of the CD45 mAb inhibited PMN superoxide production. These results suggest that PMN CD45 epitopes may interact with LTB4 and C5a receptor-associated molecules and regulate chemotactic responses.  相似文献   

20.
Arachidonic acid (AA) directly activates protein kinases C (PKC) and may thereby serve as a regulatory signal during cell stimulation. The effect, however, requires a > or =20 microm concentration of the fatty acid. We find that human polymorphonuclear neutrophils (PMN) equilibrated with a ligand for the diacylglycerol receptor on PKC, [(3)H]phorbol dibutyrate (PDB), increased binding of [(3)H]PDB within 15 s of exposure to > or =10-30 nm AA. Other unsaturated fatty acids, but not a saturated fatty acid, likewise stimulated PDB binding. These responses, similar to those caused by chemotactic factors, resulted from a rise in the number of diacylglycerol receptors that were plasma membrane-associated and therefore accessible to PDB. Unlike chemotactic factors, however, AA was fully active on cells overloaded with Ca(2+) chelators. The major metabolites of AA made by PMN, leukotriene B(4) and 5-hydroxyicosatetraenoate, did not mimic AA, and an AA antimetabolite did not block responses to AA. AA also induced PMN to translocate cytosolic PKCalpha, beta(II), and delta to membranes. This response paralleled PDB binding with respect to dose requirements, time, Ca(2+)-independence, resistance to an AA antimetabolite, and induction by another unsaturated fatty acid but not by a saturated fatty acid. Finally, HEK 293 cells transfected with vectors encoding PKCbeta(I) or PKCdelta fused to the reporter enhanced green fluorescent protein (EGFP) were studied. AA caused EGFP-PKCbeta translocation from cytosol to plasma membrane at > or =0.5 microm, and EGFP-PKCdelta translocation from cytosol to nuclear and, to a lesser extent, plasma membrane at as little as 30 nm. We conclude that AA induces PKC translocations to specific membrane targets at concentrations 2-4 orders of magnitude below those activating the enzymes. These responses, at least as they occur in PMN, do not require changes in cell Ca(2+) or oxygenation of the fatty acid. AA seems more suited for signaling the movement than activation of PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号