首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have monitored the ligand binding of the bovine hippocampal 5-HT1A receptor following treatment with the sterol-binding antifungal antibiotic nystatin. Nystatin considerably inhibits the specific binding of the antagonist to 5-HT1A receptors in a concentration-dependent manner. However, the specific agonist binding does not show significant changes. Fluorescence polarization measurements of membrane probes incorporated at different locations in the membrane revealed a substantial decrease in the membrane order in the interior of the bilayer. Experiments with cholesterol-depleted membranes indicate that the action of nystatin is mediated through membrane cholesterol. These results represent the first report on the effect of a cholesterol-perturbing agent on the ligand-binding activity of this important neurotransmitter receptor.  相似文献   

2.
The serotonin(1A) (5-HT(1A)) receptor is an important member of the superfamily of seven transmembrane domain G-protein-coupled receptors. We have examined the modulatory role of cholesterol on the ligand binding of the bovine hippocampal 5-HT(1A) receptor by cholesterol complexation in native membranes using digitonin. Complexation of cholesterol from bovine hippocampal membranes using digitonin results in a concentration-dependent reduction in specific binding of the agonist 8-OH-DPAT and antagonist p-MPPF to 5-HT(1A) receptors. The corresponding changes in membrane order were monitored by analysis of fluorescence polarization data of the membrane depth-specific probes, DPH and TMA-DPH. Taken together, our results point out the important role of membrane cholesterol in maintaining the function of the 5-HT(1A) receptor. An important aspect of these results is that non-availability of free cholesterol in the membrane due to complexation with digitonin rather than physical depletion is sufficient to significantly reduce the 5-HT(1A) receptor function. These results provide a comprehensive understanding of the effects of the sterol-complexing agent digitonin in particular, and the role of membrane cholesterol in general, on the 5-HT(1A) receptor function.  相似文献   

3.
The serotonin(1A) (5-HT(1A)) receptor is an important member of the superfamily of seven transmembrane domain G-protein-coupled receptors. We report here that solubilization of the hippocampal 5-HT(1A) receptor by the zwitterionic detergent CHAPS is accompanied by loss of membrane cholesterol which results in a reduction in specific agonist binding activity and extent of G-protein coupling. Importantly, replenishment of cholesterol to solubilized membranes using MbetaCD-cholesterol complex restores the cholesterol content of the membrane and significantly enhances the specific agonist binding activity and G-protein coupling. These novel results provide useful information on the role of cholesterol in solubilization of G-protein-coupled receptors, an important step for molecular characterization of these receptors.  相似文献   

4.
The serotonin(1A) (5-HT(1A)) receptor is an important member of the superfamily of seven-transmembrane domain G-protein-coupled receptors. We have examined the modulatory role of cholesterol on the ligand binding activity and G-protein coupling of the bovine hippocampal 5-HT(1A) receptor by depleting cholesterol from native membranes using methyl-beta-cyclodextrin (MbetaCD). Removal of cholesterol from bovine hippocampal membranes using varying concentrations of MbetaCD results in a concentration-dependent reduction in specific binding of the agonist 8-OH-DPAT to 5-HT(1A) receptors. This is accompanied by alterations in binding affinity and sites obtained from analysis of binding data. Importantly, cholesterol depletion affected G-protein-coupling of the receptor as monitored by the GTP-gamma-S assay. The concomitant changes in membrane order were reported by changes in fluorescence polarization of membrane probes such as DPH and TMA-DPH, which are incorporated at different locations (depths) in the membrane. Replenishment of membranes with cholesterol led to recovery of ligand binding activity as well as membrane order to a considerable extent. Our results provide evidence, for the first time, that cholesterol is necessary for ligand binding and G-protein coupling of this important neurotransmitter receptor. These results could have significant implications in understanding the influence of the membrane lipid environment on the activity and signal transduction of other G-protein-coupled transmembrane receptors.  相似文献   

5.
1. We have examined the interaction of tertiary amine local anesthetics with the bovine hippocampal serotonin1A (5-HT1A) receptor, an important member of the G-protein-coupled receptor superfamily. 2. The local anesthetics inhibit specific agonist and antagonist binding to the 5-HT1A receptor at a clinically relevant concentration range of the anesthetics. This is accompanied by a concomitant reduction in the binding affinity of the 5-HT1A receptor to the agonist. Interestingly, the extent of G-protein coupling of the receptor is reduced in the presence of the local anesthetics. 3. Fluorescence polarization measurements using depth-dependent fluorescent probes show that procaine and lidocaine do not show any significant change in membrane fluidity. On the other hand, tetracaine and dibucaine were found to alter fluidity of the membrane as indicated by a fluorescent probe which monitors the headgroup region of the membrane. 4. The local anesthetics showed inhibition of agonist binding to the 5-HT1A receptor in membranes depleted of cholesterol more or less to the same extent as that of control membranes in all cases. This suggests that the inhibition in ligand binding to the 5-HT1A receptor brought about by local anesthetics is independent of the membrane cholesterol content. 5. Our results on the effects of the local anesthetics on the ligand binding and G-protein coupling of the 5-HT1A receptor support the possibility that G-protein-coupled receptors could be involved in the action of local anesthetics.  相似文献   

6.
The serotonin1A (5-HT1A) receptor is an important member of the superfamily of seven transmembrane domain G-protein-coupled receptors. We have examined the modulatory role of cholesterol on the ligand binding of the bovine hippocampal 5-HT1A receptor by cholesterol complexation in native membranes using digitonin. Complexation of cholesterol from bovine hippocampal membranes using digitonin results in a concentration-dependent reduction in specific binding of the agonist 8-OH-DPAT and antagonist p-MPPF to 5-HT1A receptors. The corresponding changes in membrane order were monitored by analysis of fluorescence polarization data of the membrane depth-specific probes, DPH and TMA-DPH. Taken together, our results point out the important role of membrane cholesterol in maintaining the function of the 5-HT1A receptor. An important aspect of these results is that non-availability of free cholesterol in the membrane due to complexation with digitonin rather than physical depletion is sufficient to significantly reduce the 5-HT1A receptor function. These results provide a comprehensive understanding of the effects of the sterol-complexing agent digitonin in particular, and the role of membrane cholesterol in general, on the 5-HT1A receptor function.  相似文献   

7.
The serotonin1A receptor is an important member of the G-protein coupled receptor family, and is involved in the generation and modulation of a variety of cognitive, behavioral, and developmental functions. We have monitored the ligand binding of the human serotonin1A receptor stably expressed in CHO cells (termed CHO-5-HT1AR) following treatment with sphingomyelinase (SMase), an enzyme that specifically catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine. Our results show, for the first time, that the specific ligand binding activity of the serotonin1A receptor in membranes isolated from CHO-5-HT1AR cells is increased upon sphingomyelinase treatment. Saturation binding analysis reveals increase in binding affinity of the receptor under these conditions. This is accompanied by a reduction in membrane order, as monitored by fluorescence anisotropy of the membrane probe 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH) in intact cells. These results represent the first report on the effect of sphingomyelinase treatment on the ligand binding activity of this important neurotransmitter receptor.  相似文献   

8.
Insolubility in non-ionic detergents such as Triton X-100 at low temperature is a widely used biochemical criterion for characterization of membrane domains. In view of the emerging role of membrane organization in the function of G-protein coupled receptors, we have examined detergent insolubility of the 5-HT(1A) receptor in CHO cells using a novel GFP fluorescence approach developed by us. Using this approach, we have explored the membrane organization of the serotonin(1A) receptor tagged to enhanced yellow fluorescent protein (5-HT(1A)R-EYFP) stably expressed in CHO-K1 cells under conditions of varying detergent concentration, reduced membrane cholesterol and agonist stimulation. Our results show that a small yet significant fraction of the 5-HT(1A) receptor exhibits detergent insolubility, which increases upon depletion of membrane cholesterol. Stimulation of 5-HT(1A)R-EYFP by its endogenous ligand, serotonin, did not cause a significant change in the detergent insolubility of the receptor. Taken together, our results on detergent insolubility of 5-HT(1A)R-EYFP provide new insights into the membrane organization of the 5-HT(1A) receptor and could be relevant in the analysis of membrane organization of other G-protein coupled receptors.  相似文献   

9.
Bacterial cholesterol oxidase is commonly used as an experimental tool to reduce cellular cholesterol content. That the treatment also generates the poorly degradable metabolite 4-cholesten-3-one (cholestenone) has received less attention. Here, we investigated the membrane partitioning of cholestenone using simulations and cell biological experiments and assessed the functional effects of cholestenone in human cells. Atomistic simulations predicted that cholestenone reduces membrane order, undergoes faster flip-flop and desorbs more readily from membranes than cholesterol. In primary human fibroblasts, cholestenone was released from membranes to physiological extracellular acceptors more avidly than cholesterol, but without acceptors it remained in cells over a day. To address the functional effects of cholestenone, we studied fibroblast migration during wound healing. When cells were either cholesterol oxidase treated or part of cellular cholesterol was exchanged for cholestenone with cyclodextrin, cell migration during 22 h was markedly inhibited. Instead, when a similar fraction of cholesterol was removed using cyclodextrin, cells replenished their cholesterol content in 3 h and migrated similarly to control cells. Thus, cholesterol oxidation produces long-term functional effects in cells and these are in part due to the generated membrane active cholestenone.  相似文献   

10.
Although dimerization appears to be a common property of G-protein-coupled receptors (GPCRs), it remains unclear whether a GPCR dimer binds one or two molecules of ligand and whether ligand binding results in activation of one or two G-proteins when measured using functional assays in intact living cells. Previously, we demonstrated that serotonin 5-hydroxytryptamine2C (5-HT2C) receptors form homodimers (Herrick-Davis, K., Grinde, E., and Mazurkiewicz, J. (2004) Biochemistry 43, 13963-13971). In the present study, an inactive 5-HT(2C) receptor was created and coexpressed with wild-type 5-HT2C receptors to determine whether dimerization regulates receptor function and to determine the ligand/dimer/G-protein stoichiometry in living cells. Mutagenesis of Ser138 to Arg (S138R) produced a 5-HT2C receptor incapable of binding ligand or stimulating inositol phosphate (IP) signaling. Confocal fluorescence imaging revealed plasma membrane expression of yellow fluorescent protein-tagged S138R receptors. Expression of wild-type 5-HT2C receptors in an S138R-expressing stable cell line had no effect on ligand binding to wild-type 5-HT2C receptors, but inhibited basal and 5-HT-stimulated IP signaling as well as constitutive and 5-HT-stimulated endocytosis of wild-type 5-HT2C receptors. M1 muscarinic receptor activation of IP production was normal in the S138R-expressing cells. Heterodimerization of S138R with wild-type 5-HT2C receptors was visualized in living cells using confocal fluorescence resonance energy transfer (FRET). FRET was dependent on the donor/acceptor ratio and independent of the receptor expression level. Therefore, inactive 5-HT2C receptors inhibit wild-type 5-HT2C receptor function by forming nonfunctional heterodimers expressed on the plasma membrane. These results are consistent with a model in which one GPCR dimer binds two molecules of ligand and one G-protein and indicate that dimerization is essential for 5-HT receptor function.  相似文献   

11.
The requirement of membrane cholesterol in maintaining ligand binding activity of the hippocampal serotonin(1A) receptor has previously been demonstrated. In order to test the stringency of the requirement of cholesterol, we depleted cholesterol from native hippocampal membranes followed by replenishment with 7-dehydrocholesterol. The latter sterol is an immediate biosynthetic precursor of cholesterol differing only in a double bond at the 7th position in the sterol ring. Our results show, for the first time, that replenishment with 7-dehydrocholesterol does not restore ligand binding activity of the serotonin(1A) receptor, in spite of recovery of the overall membrane order. The requirement for restoration of ligand binding activity therefore is more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane lipids with this important neuronal receptor under pathogenic conditions such as the Smith-Lemli-Opitz syndrome.  相似文献   

12.
The serotonin1A receptor is an important member of the G-protein coupled receptor family, and is involved in the generation and modulation of a variety of cognitive, behavioral, and developmental functions. Solubilization of the hippocampal serotonin1A receptor by 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) is accompanied by loss of membrane cholesterol which results in a reduction in specific agonist binding activity. Replenishment of cholesterol to solubilized membranes restores the cholesterol content of the membrane and significantly enhances specific agonist binding activity. In order to test the stringency of the requirement of cholesterol in this process, we solubilized native hippocampal membranes followed by replenishment with 7-dehydrocholesterol (7-DHC). 7-DHC is an immediate biosynthetic precursor of cholesterol differing only in a double bond at the 7th position in its sterol ring. Our results show, for the first time, that replenishment of solubilized hippocampal membranes with 7-DHC does not restore ligand binding activity of the serotonin1A receptor, in spite of recovery of the overall membrane order. This observation shows that the requirement for restoration of ligand binding activity is more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane sterols with this important neuronal receptor under pathogenic conditions such as the Smith-Lemli-Opitz syndrome.  相似文献   

13.
(1) The serotonin1A receptor is a G-protein coupled receptor involved in several cognitive, behavioral, and developmental functions. It binds the neurotransmitter serotonin and signals across the membrane through its interactions with heterotrimeric G-proteins. (2) Lipid–protein interactions in membranes play an important role in the assembly, stability, and function of membrane proteins. The role of membrane environment in serotonin1A receptor function is beginning to be addressed by exploring the consequences of lipid manipulations on the ligand binding and G-protein coupling of serotonin1A receptors, the ability to functionally solubilize the serotonin1A receptor, and the factors influencing the membrane organization of the serotonin1A receptor. (3) Recent developments involving the application of detergent-based and detergent-free approaches to understand the membrane organization of the serotonin1A receptor under conditions of ligand activation and modulation of membrane lipid content, with an emphasis on membrane cholesterol, are described.  相似文献   

14.
The serotonin1A (5-HT1A) receptor is an important member of the superfamily of seven transmembrane domain G-protein coupled receptors (GPCRs). We report here that guanine nucleotide sensitivity of agonist binding to hippocampal 5-HT1A receptors is dependent on the concentration of Mg2+. Our results show that agonist binding to 5-HT1A receptors is relatively insensitive to guanine nucleotides in the absence of Mg2+. In contrast to this, the specific antagonist binding is insensitive to guanine nucleotides, even in the presence of Mg2+. These results point out the requirement of an optimal concentration of Mg2+ which could be used in assays toward determining guanine nucleotide sensitivity of ligand binding to GPCRs such as the 5-HT1A receptor. Our results provide novel insight into the requirement and concentration dependence of Mg2+ in relation to guanine nucleotide sensitivity for the 5-HT1A receptor in particular, and GPCRs in general.  相似文献   

15.
Aromatic amino acids are important components of the ligand binding site in the Cys loop family of ligand-gated ion channels. To examine the role of tryptophan residues in the ligand binding domain of the 5-hydroxytryptamine(3) (5-HT(3)) receptor, we used site-directed mutagenesis to change each of the eight N-terminal tryptophan residues in the 5-HT(3A) receptor subunit to tyrosine or serine. The mutants were expressed as homomeric 5-HT(3A) receptors in HEK293 cells and analyzed with radioligand binding, electrophysiology, and immunocytochemistry. Mutation of Trp(90), Trp(183), and Trp(195) to tyrosine resulted in functional receptors, although with increased EC(50) values (2-92-fold) to 5-HT(3) receptor agonists. Changing these residues to serine either ablated function (Trp(90) and Trp(183)) or resulted in a further increase in EC(50) (Trp(195)). Mutation of residue Trp(60) had no effect on ligand binding or receptor function, whereas mutation of Trp(95), Trp(102), Trp(121), and Trp(214) ablated ligand binding and receptor function, and all but one of the receptors containing these mutations were not expressed at the plasma membrane. We propose that Trp(90), Trp(183), and Trp(195) are intimately involved in ligand binding, whereas Trp(95), Trp(102), Trp(121), and Trp(214) have a critical role in receptor structure or assembly.  相似文献   

16.
The ligand binding pocket of Cys-loop receptors consists of a number of binding loops termed A-F. Here we examine the 5-HT3 receptor loop A residues Asn-128, Glu-129 and Phe-130 using modelling, mutagenesis, radioligand binding and functional studies on HEK 293 cells. Replacement of Asn-128 results in receptors that have wild type [3H]granisetron binding characteristics but large changes (ranging from a five-fold decrease to a 1500-fold increase) in the 5-HT EC50 when compared to wild type receptors. Phe-130 mutant receptors show both increases and decreases in Kd and EC50 values, depending on the amino acid substituted. The most critical of these residues appears to be Glu-129; its replacement with a range of other amino acids results in non-binding and non-functional receptors. Lack of binding and function in some, but not all, of these receptors is due to poor membrane expression. These data suggest that Glu-129 is important primarily for receptor expression, although it may also play a role in ligand binding; Phe-130 is important for both ligand binding and receptor function, and Asn-128 plays a larger role in receptor function than ligand binding. In light of these results, we have created two new homology models of the 5-HT3 receptor, with alternative positions of loop A. In our preferred model Glu-129 and Phe-130 contribute to the binding site, while the location of Asn-128 immediately behind the binding pocket could contribute to the conformation changes that result in receptor gating. This study provides a new model of the 5-HT3 receptor binding pocket, and also highlights the importance of experimental data to support modelling studies.  相似文献   

17.
Mean molecular area vs. lateral surface pressure isotherms were determined for monolayers containing cholesterol, 4-cholesten-3-one (cholestenone), or binary mixtures of the two. At all lateral surface pressures examined, cholestenone had a larger mean molecular area requirement than cholesterol. Results with the binary mixtures of cholesterol and cholestenone suggested that the sterols did not mix ideally (non additive mean molecular area) with each other in the monolayer; the observed mean molecular area for mixtures was less than would be expected based on ideal mixing. The mixed sterol monolayers also displayed a reduction in the lateral collapse pressure which appeared to be a linear function of the mole fraction of cholestenone in the monolayer, suggesting that cholesterol and cholestenone were completely miscible in the mixed monolayer. The pure cholesterol monolayer was next used to examine the cholesterol oxidase-catalyzed (Brevibacterium sp.) oxidation of cholesterol to cholestenone at different lateral surface pressures at 22 degrees C. The difference in mean molecular area requirements of cholesterol and cholestenone was directly used to convert monolayer area changes (at constant lateral surface pressure) into average reaction rates. It was observed that the average catalytic activity of cholesterol oxidase increased linearly with increased lateral surface pressure in the range of 1 to 20 mN/m. In addition, the enzyme was capable to oxidize cholesterol in monolayers with a lateral surface pressure close to the collapse pressure of cholesterol monolayers (collapse pressure 45 mN/m; oxidation was observed at 40 mN/m). The adsorption of cholesterol oxidase to an inert sterol monolayer film at low surface pressures (around 9 mN/m) was marginal, although clearly detectable at very low (0.5-4 mN/m) lateral surface pressures, suggesting that the enzyme did not penetrate deeply into the monolayer in order to reach the 3 beta-hydroxy group of cholesterol. This interpretation is further supported by the finding that a maximally compressed cholesterol monolayer (40 mN/m) was readily susceptible to enzyme-catalyzed oxidation. It is concluded that cholesterol oxidase is capable of oxidizing cholesterol in laterally expanded monolayers as well as in tightly packed monolayers, where the lateral surface pressure is close to the collapse pressure. The kinetic results suggested that the rate-limiting step in the overall process was the substrate availability per surface area (or surface concentration) at the water/lipid interface.  相似文献   

18.
Cholesterol is a unique molecule in terms of high level of in-built stringency, fine tuned by natural evolution for its ability to optimize physical properties of higher eukaryotic cell membranes in relation to biological functions. We previously demonstrated the requirement of membrane cholesterol in maintaining the ligand binding activity of the hippocampal serotonin1A receptor. In order to test the molecular stringency of the requirement of cholesterol, we depleted cholesterol from native hippocampal membranes followed by replenishment with desmosterol. Desmosterol is an immediate biosynthetic precursor of cholesterol in the Bloch pathway differing only in a double bond at the 24th position in the alkyl side chain. Our results show that replenishment with desmosterol does not restore ligand binding activity of the serotonin1A receptor although replenishment with cholesterol led to significant recovery of ligand binding. This is in spite of similar membrane organization (order) in these membranes, as monitored by fluorescence anisotropy measurements. The requirement for restoration of ligand binding activity therefore appears to be more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane lipids with this important neuronal receptor in diseases such as desmosterolosis.  相似文献   

19.
The Smith-Lemli-Opitz Syndrome (SLOS) is a congenital and developmental malformation syndrome associated with defective cholesterol biosynthesis. SLOS is clinically diagnosed by reduced plasma levels of cholesterol along with elevated levels of 7-dehydrocholesterol (and its positional isomer 8-dehydrocholesterol) and the ratio of their concentrations to that of cholesterol. Since SLOS is associated with neurological deformities and malfunction, exploring the function of neuronal receptors and their interaction with membrane cholesterol under these conditions assumes significance. We have earlier shown the requirement of membrane cholesterol for the ligand binding function of an important neurotransmitter G-protein coupled receptor, the serotonin(1A) receptor. In the present work, we have generated a cellular model of SLOS using CHO cells stably expressing the human serotonin(1A) receptor. This was achieved by metabolically inhibiting the biosynthesis of cholesterol, utilizing a specific inhibitor (AY 9944) of the enzyme required in the final step of cholesterol biosynthesis. We utilized this cellular model to monitor the function of the human serotonin(1A) receptor under SLOS-like condition. Our results show that ligand binding activity, G-protein coupling and downstream signaling of serotonin(1A) receptors are impaired in SLOS-like condition, although the membrane receptor level does not exhibit any reduction. Importantly, metabolic replenishment of cholesterol using serum partially restored the ligand binding activity of the serotonin(1A) receptor. These results are potentially useful in developing strategies for the future treatment of the disease since intake of dietary cholesterol is the only feasible treatment for SLOS patients.  相似文献   

20.
The Smith-Lemli-Opitz Syndrome (SLOS) is a congenital and developmental malformation syndrome associated with defective cholesterol biosynthesis. SLOS is clinically diagnosed by reduced plasma levels of cholesterol along with elevated levels of 7-dehydrocholesterol (and its positional isomer 8-dehydrocholesterol) and the ratio of their concentrations to that of cholesterol. Since SLOS is associated with neurological deformities and malfunction, exploring the function of neuronal receptors and their interaction with membrane cholesterol under these conditions assumes significance. We have earlier shown the requirement of membrane cholesterol for the ligand binding function of an important neurotransmitter G-protein coupled receptor, the serotonin1A receptor. In the present work, we have generated a cellular model of SLOS using CHO cells stably expressing the human serotonin1A receptor. This was achieved by metabolically inhibiting the biosynthesis of cholesterol, utilizing a specific inhibitor (AY 9944) of the enzyme required in the final step of cholesterol biosynthesis. We utilized this cellular model to monitor the function of the human serotonin1A receptor under SLOS-like condition. Our results show that ligand binding activity, G-protein coupling and downstream signaling of serotonin1A receptors are impaired in SLOS-like condition, although the membrane receptor level does not exhibit any reduction. Importantly, metabolic replenishment of cholesterol using serum partially restored the ligand binding activity of the serotonin1A receptor. These results are potentially useful in developing strategies for the future treatment of the disease since intake of dietary cholesterol is the only feasible treatment for SLOS patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号