首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
小鼠3T3-L1前脂肪细胞系的增强绿色荧光蛋白标记   总被引:1,自引:0,他引:1  
细胞模型是研究细胞分化原理以及进行高通量筛选的有效工具。为了建立特异性标记的脂肪细胞分化模型,构建了包括脂肪细胞分化特异性表达基因PPARγ2的启动子在内的载体(pPPARγ2-promoter-EGFP),用电穿孔方法转染小鼠3T3L1 前脂肪细胞,用显微荧光观察和RT-PCR确认PPARγ2基因的内源表达。结果显示,EGFP基因成功转入3T3-L1前脂肪细胞,观察到细胞分化过程中EGFP表达和脂肪积累,RTPCR分析表明EGFP代表了稳定而真实的PPARγ2基因的内源性表达。建立了由脂肪组织特异表达基因PPARγ2的表达控制的EGFP标记的小鼠3T3-L1前脂肪细胞系,目前国内外尚未见用同样方法对前脂肪细胞进行特异性标记。该细胞系将为脂肪细胞分化机理研究以及为抗肥胖症和抗糖尿病药物筛选提供有力工具。  相似文献   

2.
Endostatin has demonstrated potent antiangiogenic and antitumor activity in mouse models. We have investigated the ex vivo rat aortic ring assay and a human vein model to assess the biological activity of murine and human endostatin. Rat aortic rings were exposed to recombinant murine endostatin (Spodoptera frugipera; Calbiochem, San Diego, CA) or recombinant human endostatin (Pichia pastoris; EntreMed, Rockville, MD). After 5 days, murine endostatin (500 microgram/ml) demonstrated inhibition of microvessel outgrowth with dose-dependent effects (down to 16 microgram/ml). No significant inhibition was observed with human endostatin in the rat assay. Human endostatin at 250 and 500 microgram/ml inhibited outgrowths from human saphenous vein rings after a 14-day incubation. Electron microscopy assessed the formation of basal lamina, confirming that the microvessels were progenitors of patent vessels. Immunostaining for Factor VIII or CD34 demonstrated that the microvessel cells were endothelial. BrdU incorporation assays supported the presence of proliferating endothelial cells, correlating with neovascularization from the aortic wall. We conclude that the rat aortic ring assay confirms the antiangiogenic activity of murine but not human endostatin, suggesting that the model may have species specificity. However, the human form shows biological activity against human vascular tissue.  相似文献   

3.
Shin SM  Kim Ky  Kim JK  Yoon SR  Choi I  Yang Y 《FEBS letters》2003,543(1-3):25-30
Dexamethasone and transforming growth factor-beta (TGF-beta) show contrary effects on differentiation of adipocytes. Dexamethasone stimulates adipocyte differentiation whereas TGF-beta inhibits it. In the present study, we investigated whether dexamethasone could reverse the TGF-beta-mediated inhibition of preadipocyte differentiation. Primary rat preadipocytes, obtained from Sprague-Dawley rats, were pretreated with dexamethasone in the presence or absence of TGF-beta, prior to the induction of differentiation. Co-treatment of dexamethasone and TGF-beta before inducing differentiation reversed the TGF-beta-mediated inhibition of preadipocyte differentiation. In order to elucidate the mechanism by which dexamethasone reversed the effect of TGF-beta on the inhibition of preadipocyte differentiation, the expression of CCAAT/enhancer binding protein-alpha (C/EBPalpha) and peroxisome proliferator-activated receptor gamma (PPARgamma) was examined. Dexamethasone increased C/EBPalpha and PPARgamma expression in the absence of TGF-beta and also recovered the TGF-beta-mediated suppression of C/EBPalpha expression in preadipocytes. Its effect was sustained in differentiated adipocytes as well. However, those effects were not observed in 3T3-L1 preadipocytes or differentiated adipocytes. These results indicate that dexamethasone reverses the TGF-beta-mediated suppression of adipocyte differentiation by regulating the expression of C/EBPalpha and PPARgamma, which is dependent on the cellular context.  相似文献   

4.
Peroxisome proliferator-activated receptor (PPAR) gamma was shown to be required for adipocyte formation both in vivo and in vitro. However, the role of PPARgamma in the initial steps of adipose cell development was not distinguished from its role in the terminal steps. We now show that PPARgamma is expressed early in embryoid bodies (EBs) derived from embryonic stem cells and in E.8.5 mouse embryos. Addition of a specific ligand for PPARgamma in developing EBs over-expressing PPARgamma did not commit stem cells towards the adipose lineage. In differentiated PPARgamma(-/-) EBs, only markers characteristic of preadipocytes were found to be expressed. PPARdelta is present in EBs but did not compensate for the lack of PPARgamma in terminal differentiation. Taken together, these results favor a critical PPARgamma-independent phase culminating in preadipocyte formation that precedes a PPARgamma-dependent phase in the development of adipose cells from pluripotent stem cells.  相似文献   

5.
Sarmesin, [Sar1, Tyr(Me)4]angiotensinII], has been reported to be a competitive angiotensin II (AII) receptor antagonist in rat smooth muscle preparations (Scanlon et al., (1984), Life Science 34, 317-321). In the present study, sarmesin displaced AII from its binding sites in rat aortic smooth muscle cells and in a rabbit aorta membrane preparation (IC50 5 and 6 nM resp.; Ki 4.1 and 5.3 resp.) In rabbit aortic rings, sarmesin (0.003-3 microM) produced concentration-dependent contractions (ED50 89 nM) and this effect was inhibited by saralasin. No contraction was observed in the rat aorta up to 100 microM. In rabbit aortic rings, sarmesin, at the same concentrations that produced contraction, inhibited contractions induced by AII in a competitive manner (pA2 7, 26). These results indicate that, in rabbit aortic rings sarmesin is a partial agonist of AII receptors.  相似文献   

6.
Objective: Elevated levels of tumor necrosis factor‐α (TNF‐α) protein and mRNA have been reported in adipose tissue from obese humans and rodents. However, TNF‐α has catabolic and antiadipogenic effects on adipocytes. Addressing this paradox, we tested the hypothesis that paracrine levels of TNF‐α, alone or together with insulin‐like growth factor‐I (IGF‐I), support preadipocyte development. Research Methods and Procedures: Cultured stromal‐vascular cells from rat inguinal fat depots were exposed to serum‐free media containing insulin and 0.2 nM TNF‐α, 2.0 nM TNF‐α, or 0.2 nM TNF‐α + 1.0 nM IGF‐I at different times during 7 days of culture. Results: TNF‐α inhibited adipocyte differentiation as indicated by a reduction in both immunocytochemical reactivity for the preadipocyte‐specific antigen (AD3; early differentiation marker) and glycerol‐3‐phosphate dehydrogenase activity (late differentiation marker). Early exposure (Days 1 through 3 of culture) to 0.2 nM TNF‐α did not have a long term effect on inhibiting differentiation. Continuous exposure to 0.2 nM TNF‐α from Days 1 through 7 of culture resulted in a 75% increase in cell number from control. There was a synergistic effect of 0.2 nM TNF‐α + 1 nM IGF‐I on increasing cell number by Day 7 of culture to levels greater than those observed with either treatment applied alone. Discussion: These data suggest that paracrine levels (0.2 nM) of TNF‐α alone or in combination with IGF‐I may support adipose tissue development by increasing the total number of stromal‐vascular and/or uncommitted cells within the tissue. These cells may then be recruited to become preadipocytes or may alternatively serve as infrastructure to support adipose tissue growth.  相似文献   

7.
This report examines the balance of positive and negative adipogenic factors in a line of immortalized 243 embryonic fibroblasts that undergo spontaneous preadipocyte differentiation. Control of adipogenesis reflects the interplay of factors that promote or inhibit expression of C/EBPalpha and PPARgamma. The 243 cells express C/EBPalpha early and at elevated levels compared to 3T3-F442A preadipocytes or adipocytes. Cell clones were derived from the heterogeneous 243 population for ability or inability to differentiate into adipocytes. Wnt10b, a secreted protein that inhibits adipogenesis, is expressed at high levels in cells with low adipogenic potential and is undetectable in preadipocytes that spontaneously differentiate. In contrast, C/EBPalpha is expressed at reduced levels in cells with low adipogenic potential, and is expressed at high levels in preadipocytes that spontaneously differentiate. These data are consistent with a model in which decreased Wnt10b, coupled with increased C/EBPalpha, results in induction of PPARgamma and spontaneous adipogenesis of 243 cells.  相似文献   

8.
To understand the relationship between intramuscular adipogenesis in the pig and the supply fatty acids, we established a clonal porcine intramuscular preadipocyte (PIP) line from the marbling muscle tissue of female Duroc pig. Confluent PIP cells exhibited a fibroblastic appearance. Their adipogenic ability was investigated using confluent PIP cells after exchanging growth medium for adipogenic medium containing 50 ng/mL insulin, 0.25 microM dexamethasone, 2 mM octanoate, and 200 microM oleate. Appropriate concentrations of octanoate and oleate for the induction of adipogenesis were determined from the ability of cells to accumulate lipid and the toxicity of fatty acids. When cells were cultured in differentiation medium for 8 days, large numbers of lipid droplets were observed in differentiated PIP cells, and their cytosolic TG content increased in a time-dependent manner. While oleate only induced the expression of PPARgamma mRNA, but not that of C/EBPalpha, octanoate significantly induced the expression of both PPARgamma and C/EBPalpha mRNA. Octanoate and oleate accelerated the inducing effect of insulin and dexamethasone on the expression of aP2 mRNA. These results indicate that a combination of octanoate and oleate synergistically induced PIP adipogenesis, and that the stimulation of octanoate was essential to the trigger for the adipogenesis in PIP cells.  相似文献   

9.
KRAS, KRYSTYNA M., DOROTHY B. HAUSMAN, GARY J. HAUSMAN, AND ROY J. MARTIN. Adipocyte development is dependent upon stem cell recruitment and proliferation of preadipocytes. Obes Res. Objectives: The ability to acquire fat cells persists over the life spans of animals. It is unknown whether adipocyte acquisition is the result of preadipocyte proliferation or stem cell recruitment to become adipocytes. The purposes of these studies were 1) to characterize early differentiation of stromal vascular (S-V) cells to preadipocytes as it is influenced by insulin, dexamethasone (DEX), and insulin-like growth factor-I (IGF-I); and 2) to determine whether new fat cells arise from stem cell recruitment or preadipocyte proliferation. Research Methods and Procedures: Freshly isolated S-V cells from rat inguinal adipose tissues were plated for 24 hours then exposed to serum-free medium. Results: Approximately 15% of freshly plated S-V cells were preadipocytes as determined by a preadipocyte specific marker, AD3. Total cell number and proportion of preadipocytes were significantly greater with 100 nM insulin treatment than with 0, 0. 1, or 1. 0 nM, but IGF-I treatment at 10 nM resulted in preadipocyte development similar to that with 100 nM insulin treatment. The addition of 5 nM DEX to the 100 nM insulin treatment resulted in a 20% increase in preadipocyte number by day 2 when compared to either treatment alone. 5-Bromo-2′-deoxyuridine treatment suppressed the increased proportion of preadipocytes from days 0–2 in non-insulin treated cells and prevented the increase typically observed with insulin. A mitosis inhibitor also significantly reduced the proportion of preadipocytes. Discussion: These results show for the first time that S-V cells are recruited as preadipocytes and that proliferation of these preadipocytes and early differentiation occur simultaneously.  相似文献   

10.
Wang ZX  Jiang CS  Liu L  Wang XH  Jin HJ  Wu Q  Chen Q 《Cell research》2005,15(5):379-386
The present study investigates the molecular details of how arsenic trioxide inhibits preadipocyte differentiation and examines the role of Akt/PKB in regulation of differentiation and apoptosis. Continual exposure of arsenic trioxide, at the clinic achievable dosage that does not induce apoptosis, suppressed 3T3-L1 cell differentiation into fat cells by inhibiting the expression of PPARy and C/EBPα and disrupting the interaction between PPARγ and RXRα, which determines the programming of the adipogenic genes. Interestingly, if we treated the cells for 12 or 24 h and then withdrew arsenic trioxide, the cells were able to differentiate to the comparable levels of untreated cells as assayed by the activity of GAPDH, the biochemical marker of preadipocyte differentiation. Long term treatment blocked the differentiation and the activity of GAPDH could not recover to the comparable levels of untreated cells. Continual exposure of arsenic trioxide caused accumulation in G2/M phase and the accumulation of p21. We found that arsenic trioxide induced the expression and the phosphorylation of Akt/PKB and it inhibited the interaction between Akt/PKB and PPARγ. Akt/PKB inhibitor appears to block the arsenic trioxide suppression of differentiation. Our results suggested that Akt/PKB may play a role in suppression of apoptosis and negatively regulate preadipocyte differentiation.  相似文献   

11.
We previously demonstrated that maternal protein restriction (MPR) during pregnancy and lactation led to fetal growth restriction and development of increased visceral adiposity in adult male rat offspring. Here we studied the rate of proliferation and differentiation of adipocyte precursors (preadipocytes) in vitro to investigate whether MPR may permanently program adipocyte growth and development in adult male offspring. Preadipocytes were isolated from visceral adipose tissue of control and MPR offspring at 130 days of age, and cultured under standard conditions. The rate of proliferation was studied by [(3)H]-thymidine incorporation, and the rate of differentiation assessed with the use of biochemical and morphological markers. Although it did not affect the rate of differentiation, MPR increased the rate of preadipocyte proliferation by almost twofold. To ascertain if the increased proliferation was due to persisting in vivo influences or aberrations inherent in the precursor cells, we studied the rate of preadipocyte proliferation in subcultures. We found that the increased rate of proliferation of MPR preadipocytes persisted throughout the first two subcultures, indicative of an inherent abnormality. In addition, we examined the rate of preadipocyte proliferation under reduced serum conditions. We showed that MPR reduced the rate of preadipocyte proliferation to 56 and 35% of the control in the presence of 5 and 2.5% serum, respectively. Taken together, these results demonstrate that MPR permanently programs adipocyte growth and development such that adipocyte precursors derived from MPR offspring replicate excessively under standard culture conditions but exhibit markedly attenuated growth rate under reduced serum conditions.  相似文献   

12.
13.
Development of established preadipocyte cell lines, such as 3T3‐L1 and 3T3‐F442A, greatly facilitated the study of molecular mechanisms of adipocyte differentiation under defined conditions. Most of these cell lines are derived from mouse embryos, and preadipocyte cell lines of other species have not yet been maintained in culture long enough to study differentiation under a variety of conditions. This is the first report on the establishment of porcine preadipocyte cell lines derived from mature adipocytes by a simple method, known as ceiling culture, for culturing mature adipocytes in vitro. This cell line can proliferate extensively until the cells become confluent and fully differentiated into mature adipocytes, depending on adipogenic induction. No changes in their differentiation pattern are observed during their propagation, and they have been successfully carried and differentiated for at least 37 passages. This cell line maintains a normal phenotype without transforming spontaneously, even after long‐term maintenance in culture. This achievement may lead to easy establishment of porcine preadipocyte cell lines and novel model systems for studying the mechanisms of adipocyte differentiation and metabolism as a substitute for human preadipocytes. J. Cell. Biochem. 109: 542–552, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
The events at the beginning of adipocyte differentiation are not well known. We previously cloned the genes expressed early in the differentiation of mouse 3T3-L1 preadipocyte cells. One of them, similar in sequence to human TC10, was identified as TC10-like/TC10betaLong (TCL/TC10betaL), a new Rho GTPase by the cloning of full-length cDNA. The expression of TCL/TC10betaL increased rapidly right after the addition of inducers for differentiation, whereas the levels of other Rho family genes were unchanged at this stage. The antisense TCL/TC10betaL-expressing experiment revealed that the differentiation of 3T3-L1 cells into adipocytes was inhibited. Moreover, the sense TCL/TC10betaL-expressing experiment using NIH-3T3 cells, which do not usually differentiate into adipocytes, clearly showed the accumulation of oil droplets as well as the elevated expression of various adipogenic marker genes in the presence of the ligand for peroxisome proliferator-activated receptor gamma (PPARgamma). These results strongly indicated that TCL/TC10betaL has a crucial role in the early stage of adipocyte differentiation, probably linked to the PPARgamma pathway. Using a subtraction protocol, the genes specifically regulated by TCL/TC10betaL were also isolated. The expression pattern of some of them was similar to TCL/TC10betaL expression in adipogenesis, suggesting that the expression of these genes would be regulated by TCL/TC10betaL.  相似文献   

15.
The adenylyl cyclase system of preadipocytes derived from the stromal vascular fraction of perirenal rat fat pads was characterized. Unlike mature adipocytes, preadipocyte adenylyl cyclase was only weakly stimulated by catecholamines and adrenocorticotrophic hormone, but was stimulated by guanine nucleotides. Parathyroid hormone and 2-chloroadenosine also stimulated preadipocyte adenylyl cyclase. The adenylyl cyclase system of preadipocytes resembled that of undifferentiated 3T3-L1 cells. However, agents which induced the differentiation of the 3T3-L1 cell adenylyl cyclase system did not have a similar effect on preadipocytes. A medium (CDM6) which induced some differentiation of preadipocyte adenylyl cyclase was developed. The observations that the adenylyl cyclase system of preadipocytes and undifferentiated 3T3-L1 cells are similar, that preadipocyte adenylyl cyclase can be induced to develop along lines similar to early differentiation of 3T3-L1 cells, and that the adenylyl cyclase system of fully-differentiated 3T3-L1 cells has characteristics intermediate between preadipocytes and adipocytes, suggest that the differentiation of preadipocyte and 3T3-L1 adenyly cyclase in vitro mimics adipose adenylyl cyclase development in vivo. The increased catecholamine and ACTH stimulation, and reduced GTP and adenosine sensitivities of adipocytes compared to preadipocytes suggest that a number of genes affecting adenylyl cyclase-associated regulatory and receptor proteins are coordinately repressed and derepressed during development.  相似文献   

16.
17.
18.
19.
Chicken epithelial oviduct cells (COCs) are part of important supportive tissues in chicken reproductive organs responsible for secretion of the majority of chicken egg protein. In chickens, the biological process of adipocyte differentiation has been extensively studied in vitro using a number of cell types including a preadipocyte precursor cell line, a number of other undifferentiated cell lines, and chicken embryonic fibroblasts. On the contrary, adipogenic differentiation in epithelial cells has not yet been achieved. In our study, we induced COCs to differentiate into adipocytes using chicken serum at concentrations of 5% and 10%. After a 24-h culture period at 37°C in a humidified 5% CO2 atmosphere, oviduct cell morphology changed dramatically through formation of lipid droplets, observed by Oil Red O staining. Also, chicken serum strongly induced 3T3-L1 preadipocyte cell differentiation into adipocyte. In addition, mRNA expression levels of peroxisome proliferator-activated receptor gamma, adipocyte fatty acid-binding protein (aP2), and CCAAT-enhancer-binding protein alpha were significantly increased 48 h after induction. These results suggest that COCs can be induced to differentiate into adipocyte-like cells. Moreover, through this study, we confirmed that chicken serum is an effective adipocyte differentiation-inducing agent. Our findings may provide a unique model for studying and applying chicken transdifferentiation and adipocyte differentiation.  相似文献   

20.
Adipose tissue development is observed in some muscle pathologies, however, mechanisms that induce accumulation of this tissue as well as its cellular origin are unknown. The adipogenicity of cells from bupivacaine hydrochloride (BPVC)-treated and untreated muscle was compared in vitro. Culturing cells from both BPVC-treated and untreated muscles in adipogenic differentiation medium (ADM) for 10 days resulted in the appearance of mature adipocytes, but their number was 3.5-fold higher in cells from BPVC-treated muscle. Temporal expressions of PPARgamma and the presence of lipid droplets during adipogenic differentiation were examined. On day 2 of culture in ADM, only cells from BPVC-treated muscle were positive both for PPARgamma and lipid droplets. Pref-1 was expressed in cells from untreated muscle, whereas its expression was absent in cells from BPVC-treated muscle. In ADM, the presence of insulin, which negates an inhibitory effect of Pref-1 on adipogenic differentiation, was required for PPARgamma2 expression in cells from untreated muscle, but not for cells from BPVC-treated muscle. These results indicate that BPVC-induced degenerative/regenerative changes in muscle lead to increased adipogenicity of cells, and suggest that this increased adipogenicity not only involves an increase in the number of cells having adipogenic potential, but also contributes to the progression of these cells toward adipogenic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号