首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gene replacement in Dictyostelium: generation of myosin null mutants.   总被引:30,自引:3,他引:27       下载免费PDF全文
The eukaryotic slime mold Dictyostelium discoideum has a single conventional myosin heavy chain gene (mhcA). The elimination of the mhcA gene was achieved by homologous recombination. Two gene replacement plasmids were constructed, each carrying the G418 resistance gene as a selective marker and flanked by either 0.7 kb of 5' coding sequence and 0.9 kb of 3' coding sequence or 1.5 kb of 5' flanking sequence and 1.1 kb of 3' flanking sequence. Myosin null mutants (mhcA- cells) were obtained after transformation with either of these plasmids. The mhcA- cells are genetically stable and are capable of a variety of motile processes. Our results provide genetic proof that in Dictyostelium the conventional myosin gene is required for growth in suspension, normal cell division and sporogenesis, and illustrate how gene targeting can be used as a tool in Dictyostelium.  相似文献   

2.
Two different Dictyostelium discoideum cell lines that lack myosin heavy chain protein (MHC A) have been previously described. One cell line (mhcA) was created by antisense RNA inactivation of the endogenous mRNA and the other (HMM) by insertional mutagenesis of the endogenous myosin gene. The two cell lines show similar developmental defects; they are delayed in aggregation and become arrested at the mound stage. However, when cells that lack myosin heavy chain are mixed with wild-type cells, some of the mutant cells are capable of completing development to form mature spores. The pattern of expression of a number of developmentally regulated genes has been examined in both mutant cell lines. Although morphogenesis becomes aberrant before aggregation is completed, all of the markers that we have examined are expressed normally. These include genes expressed prior to aggregation as well as prespore genes expressed later in development. It appears that the signals necessary for cell-type differentiation are generated in the aborted structures formed by cells lacking MHC A. The mhcA cells have negligible amounts of MHC A protein while the HMM cells express normal amounts of a fragment of the myosin heavy chain protein similar to heavy meromyosin (HMM). The expression of myosin light chain was examined in these two cell lines. HMM cells accumulate normal amounts of the 18,000-D light chain, while the amount of light chain in mhcA cells is dramatically reduced. It is likely that the light chains assemble normally with the HMM fragment in HMM cells, while in cells lacking myosin heavy chain (mhcA) the light chains are unstable.  相似文献   

3.
Caenorhabditis elegans body wall muscle has two distinct myosin heavy chain isoforms, mhcA and mhcB. Mutations eliminating the major isoform, mhcB, have previously been shown to yield paralyzed, viable animals. In this paper we show that the minor isoform, mhcA, is essential for viability. We have utilized the known physical map position of the gene encoding mhcA to obtain two recessive lethal mutations that virtually eliminate accumulation of mhcA. The mutations are allelic, and the interactions of these alleles with mutations affecting other thick filament components are consistent with the hypothesis that the new mutations lie in the structural gene for mhcA. The homozygous mutant animals move very little and morphological analysis shows that thick filament assembly is severely impaired. Together with the location of mhcA in the center of the thick filament (Miller et al., 1983), the results suggest that mhcA has a unique role in initiating filament assembly. The homozygous mutations have an unexpected effect on morphogenesis that indicates an interaction between the muscle cells and the hypodermis during development. The resultant phenotype may be useful in the search for additional essential muscle genes.  相似文献   

4.
Animal cell division is believed to be mediated primarily by the 'purse-string' mechanism, which entails furrowing of the equatorial region, driven by the interaction of actin and myosin II filaments within contractile rings. However, myosin II-null Dictyostelium cells on substrates divide efficiently in a cell cycle-coupled manner. This process, termed cytokinesis B, appears to be driven by polar traction forces. Data in the literature can be interpreted as suggesting that adherent higher animal cells also use a cytokinesis B-like mechanism for cytokinesis. An additional chemotaxis-based cytokinesis that involves a 'midwife' cell has also been reported. Collectively, these findings demonstrate an unexpected diversity of mechanisms by which animal cells carry out cytokinesis.  相似文献   

5.
Similar to higher animal cells, ameba cells of the cellular slime mold Dictyostelium discoideum form contractile rings containing filaments of myosin II during mitosis, and it is generally believed that contraction of these rings bisects the cells both on substrates and in suspension. In suspension, mutant cells lacking the single myosin II heavy chain gene cannot carry out cytokinesis, become large and multinucleate, and eventually lyze, supporting the idea that myosin II plays critical roles in cytokinesis. These mutant cells are however viable on substrates. Detailed analyses of these mutant cells on substrates revealed that, in addition to "classic" cytokinesis which depends on myosin II ("cytokinesis A"), Dictyostelium has two distinct, novel methods of cytokinesis, 1) attachment-assisted mitotic cleavage employed by myosin II null cells on substrates ("cytokinesis B"), and 2) cytofission, a cell cycle-independent division of adherent cells ("cytokinesis C"). Cytokinesis A, B, and C lose their function and demand fewer protein factors in this order. Cytokinesis B is of particular importance for future studies. Similar to cytokinesis A, cytokinesis B involves formation of a cleavage furrow in the equatorial region, and it may be a primitive but basic mechanism of efficiently bisecting a cell in a cell cycle-coupled manner. Analysis of large, multinucleate myosin II null cells suggested that interactions between astral microtubules and cortices positively induce polar protrusive activities in telophase. A model is proposed to explain how such polar activities drive cytokinesis B, and how cytokinesis B is coordinated with cytokinesis A in wild type cells.  相似文献   

6.
Dictyostelium amebae have been engineered by homologous recombination of a truncated copy of the myosin heavy chain gene (heavy meromyosin (HMM) cells) and by transformation with a vector encoding an antisense RNA to myosin heavy chain mRNA (mhcA cells) so that they lack native myosin heavy chain protein. In the former case, cells synthesize only the heavy meromyosin portion of the protein and in the latter case they synthesize negligible amounts of the protein. Surprisingly, it was demonstrated that both cell lines are viable and motile. In order to compare the motility of these cells with normal cells, the newly developed computer-assisted Dynamic Morphology System (DMS) was employed. The results demonstrate that the average HMM or mhcA ameba moves at a rate of translocation less than half that of normal cells. It is rounder and less polar than a normal cell, and exhibits a rate of cytoplasmic expansion and contraction roughly half that of normal cells. In a spatial gradient of cAMP, the average ameba of HMM or mhcA exhibits a chemotactic index of +0.10 or less, compared to the chemotactic index of +0.50 exhibited by normal cells. Finally, the initial area, rate of expansion, and final area of pseudopods are roughly half that of normal cells. The five fastest HMM amebae (out of 35 analyzed in detail) moved at an average rate of translocation equal to that of normal amebae, and exhibited an average chemotactic index of +0.34. In addition, the average rate of cytoplasmic flow in fast HMM cells was equal to that of the average normal ameba. However, fast HMM amebae still exhibited the same defects in pseudopod formation that were exhibited by the entire HMM cell population. These results suggest that myosin heavy chain is involved in the "fine tuning" and efficiency of pseudopod formation, but is not essential for the basic behavior of pseudopod expansion.  相似文献   

7.
Dictyostelium discoideum is a unique experimental organism which allows genetic analysis of the mechanism of cytokinesis of the animal type, and a number of mutations which affect cytokinesis in one way or other have been identified. Myosin II filaments accumulate in the equatorial region, and myosin II-null cells cannot divide in suspension, indicating that active, myosin II-dependent constriction of the cleavage furrow contributes to bisection of the cell. We refer to this method of cytokinesis as cytokinesis A. On substrates, however, myosin II-null cells divide efficiently in a cell cycle-coupled manner. This adhesion-dependent but myosin II-independent division method, which we termed cytokinesis B, is carried out by a pathway that is genetically distinct from that of cytokinesis A. Morphological analyses suggested that cytokinesis B is driven by radial traction forces generated along polar peripheries, which indirectly cause furrow ingression. Identification of two redundant pathways have allowed us to search genes involved in either pathway by mutagenizing cells which are already defective in one of the pathways. This approach enabled us to identify a number of novel cytokinesis-related genes, as well as to reclassify known genes as cytokinesis-related.  相似文献   

8.
We have cloned a full-length cDNA encoding a novel myosin II heavy chain kinase (mhckC) from Dictyostelium. Like other members of the myosin heavy chain kinase family, the mhckC gene product, MHCK C, has a kinase domain in its N-terminal half and six WD repeats in the C-terminal half. GFP-MHCK C fusion protein localized to the cortex of interphase cells, to the cleavage furrow of mitotic cells, and to the posterior of migrating cells. These distributions of GFP-MHCK C always corresponded with that of myosin II filaments and were not observed in myosin II-null cells, where GFP-MHCK C was diffusely distributed in the cytoplasm. Thus, localization of MHCK C seems to be myosin II-dependent. Cells lacking the mhckC gene exhibited excessive aggregation of myosin II filaments in the cleavage furrows and in the posteriors of the daughter cells once cleavage was complete. The cleavage process of these cells took longer than that of wild-type cells. Taken together, these findings suggest MHCK C drives the disassembly of myosin II filaments for efficient cytokinesis and recycling of myosin II that occurs during cytokinesis.  相似文献   

9.
Myosin null mutants of Dictyostelium are defective for cytokinesis, multicellular development, and capping of surface proteins. We have used these cells as transformation recipients for an altered myosin heavy chain gene that encodes a protein bearing a carboxy-terminal 34-kD truncation. This truncation eliminates threonine phosphorylation sites previously shown to control filament assembly in vitro. Despite restoration of growth in suspension, development, and ability to cap cell surface proteins, these delta C34-truncated myosin transformants display severe cytoskeletal abnormalities, including excessive localization of the truncated myosin to the cortical cytoskeleton, impaired cell shaped dynamics, and a temporal defect in myosin dissociation from beneath capped surface proteins. These data demonstrate that the carboxy-terminal domain of myosin plays a critical role in regulating the disassembly of the protein from contractile structures in vivo.  相似文献   

10.
Dictyostelium is one of the model systems of choice for studying the cytokinesis of animal-type cells. Two types of cytokinesis mutants have been used to identify proteins involved in the cytokinesis of Dictyostelium: (1) type I, the mutant cells grow on substrates to produce giant multinucleate cells; (2) type II, the mutant cells divide nearly normally on substrates, but are unable to divide at all and get highly multinucleate in suspension culture. These two mutant types might correspond to the myosin II-independent and myosin II-including cytokinesis mechanisms, respectively.  相似文献   

11.
Myosin II-dependent contraction of the contractile ring drives equatorial furrowing during cytokinesis in animal cells. Nonetheless, myosin II-null cells of the cellular slime mold Dictyostelium divide efficiently when adhering to substrates by making use of polar traction forces. Here, we show that in the presence of 30 microM blebbistatin, a potent myosin II inhibitor, normal rat kidney (NRK) cells adhering to fibronectin-coated surfaces formed equatorial furrows and divided in a manner strikingly similar to myosin II-null Dictyostelium cells. Such blebbistatin-resistant cytokinesis was absent in partially detached NRK cells and was disrupted in adherent cells if the advance of their polar lamellipodia was disturbed by neighboring cells. Y-27632 (40 microM), which inhibits Rho-kinase, was similar to 30 microM blebbistatin in that it inhibited cytokinesis of partially detached NRK cells but only prolonged furrow ingression in attached cells. In the presence of 100 microM blebbistatin, most NRK cells that initiated anaphase formed tight furrows, although scission never occurred. Adherent HT1080 fibrosarcoma cells also formed equatorial furrows efficiently in the presence of 100 microM blebbistatin. These results provide direct evidence for adhesion-dependent, contractile ring-independent equatorial furrowing in mammalian cells and demonstrate the importance of substrate adhesion for cytokinesis.  相似文献   

12.
Rai V  Egelhoff TT 《Eukaryotic cell》2011,10(4):604-610
In Dictyostelium discoideum, myosin II resides predominantly in a soluble pool as the result of phosphorylation of the myosin heavy chain (MHC), and dephosphorylation of the MHC is required for myosin II filament assembly, recruitment to the cytoskeleton, and force production. Protein phosphatase type 2A (PP2A) was identified in earlier studies in Dictyostelium as a key biochemical activity that can drive MHC dephosphorylation. We report here gene targeting and cell biological studies addressing the roles of candidate PP2A B regulatory subunits (phr2aBα and phr2aBβ) in myosin II assembly control in vivo. Dictyostelium phr2aBα- and phr2aBβ-null cells show delayed development, reduction in the assembly of myosin II in cytoskeletal ghost assays, and defects in cytokinesis when grown in suspension compared to parental cell lines. These results demonstrate that the PP2A B subunits phr2aBα and phr2aBβ contribute to myosin II assembly control in vivo, with phr2aBα having the predominant role facilitating MHC dephosphorylation to facilitate filament assembly.  相似文献   

13.
Summary A mutation (mhcA1 in strain HMM) created by insertional gene inactivation was used to map the Dictyostelium discoideum myosin heavy chain gene (mhcA) to linkage group IV. Three phenotypic traits associated with this mutation (slow colony growth, inability of the mutant to develop past aggregation, and the presence of five to ten integrated vector copies) cosegregated as expected for the consequences of a single insertional event. This linkage was confirmed using a restriction fragment length polymorphism. The mhcA1 mutation was recessive to wild type and was nonallelic with mutations at the following loci on linkage group IV: aggJ, aggL, couH, minA, phgB and tsgB. This work demonstrates the ability to apply standard techniques developed for D. discoideum parasexual genetic analyses to mutants generated by transformation, which is of particular relevance to analysis of genes for which no classical mutations or restriction fragment length polymorphisms are available.  相似文献   

14.
B. Patterson  J. A. Spudich 《Genetics》1995,140(2):505-515
We developed a positive selection for myosin heavy chain mutants in Dictyostelium. This selection is based on the fact that brief exposure to azide causes wild-type cells to release from the substrate, whereas myosin null cells remain adherent. This procedure assays myosin function on a time scale of minutes and has therefore allowed us to select rapid-onset cold-sensitive mutants after random chemical mutagenesis of Dictyostelium cells. We developed a rapid technique for determining which mutations lie in sequences of the myosin gene that encode the head (motor) domain and localized 27 of 34 mutants to this domain. We recovered the appropriate sequences from five of the mutants and demonstrated that they retain their cold-sensitive properties when expressed from extrachromosomal plasmids.  相似文献   

15.
Myosin II filament assembly in Dictyostelium discoideum is regulated via phosphorylation of residues located in the carboxyl-terminal portion of the myosin II heavy chain (MHC) tail. A series of novel protein kinases in this system are capable of phosphorylating these residues in vitro, driving filament disassembly. Previous studies have demonstrated that at least three of these kinases (MHCK A, MHCK B, and MHCK C) display differential localization patterns in living cells. We have created a collection of single, double, and triple gene knockout cell lines for this family of kinases. Analysis of these lines reveals that three MHC kinases appear to represent the majority of cellular activity capable of driving myosin II filament disassembly, and reveals that cytokinesis defects increase with the number of kinases disrupted. Using biochemical fractionation of cytoskeletons and in vivo measurements via fluorescence recovery after photobleaching (FRAP), we find that myosin II overassembly increases incrementally in the mutants, with the MHCK A(-)/B(-)/C(-) triple mutant showing severe myosin II overassembly. These studies suggest that the full complement of MHC kinases that significantly contribute to growth phase and cytokinesis myosin II disassembly in this organism has now been identified.  相似文献   

16.
The ability of Dictyostelium cells to divide without myosin II in a cell cycle-coupled manner has opened two questions about the mechanism of cleavage furrow ingression. First, are there other possible functions for myosin II in this process except for generating contraction of the furrow by a sliding filament mechanism? Second, what could be an alternative mechanical basis for the furrowing? Using aberrant changes of the cell shape and anomalous localization of the actin-binding protein cortexillin I during asymmetric cytokinesis in myosin II-deficient cells as clues, it is proposed that myosin II filaments act as a mechanical lens in cytokinesis. The mechanical lens serves to focus the forces that induce the furrowing to the center of the midzone, a cortical region where cortexillins are enriched in dividing cells. Additionally, continual disassembly of a filamentous actin meshwork at the midzone is a prerequisite for normal ingression of the cleavage furrow and a successful cytokinesis. If this process is interrupted, as it occurs in cells that lack cortexillins, an overassembly of filamentous actin at the midzone obstructs the normal cleavage. Disassembly of the crosslinked actin network can generate entropic contractile forces in the cortex, and may be considered as an alternative mechanism for driving ingression of the cleavage furrow. Instead of invoking different types of cytokinesis that operate under attached and unattached conditions in Dictyostelium, it is anticipated that these cells use a universal multifaceted mechanism to divide, which is only moderately sensitive to elimination of its constituent mechanical processes.  相似文献   

17.
The assembly of myosins into filaments is a property common to all conventional myosins. The ability of myosins to form filaments is conferred by the tail of the large asymmetric molecule. We are studying cloned portions of the Dictyostelium myosin gene expressed in Escherichia coli to investigate functional properties of defined segments of the myosin tail. We have focused on five segments derived from the 68-kD carboxyl-terminus of the myosin tail. These have been expressed and purified to homogeneity from E. coli, and thus the boundaries of each segment within the myosin gene and protein sequence are known. We identified an internal 34-kD segment of the tail, N-LMM-34, which is required and sufficient for assembly. This 287-amino acid domain represents the smallest tail segment purified from any myosin that is capable of forming highly ordered paracrystals characteristic of myosin. Because the assembly of Dictyostelium myosin can be regulated by phosphorylation of the heavy chain, we have studied the in vitro phosphorylation of the expressed tail segments. We have determined which segments are phosphorylated to a high level by a Dictyostelium myosin heavy chain kinase purified from developed cells. While LMM-68, the 68-kD carboxyl terminus of Dictyostelium myosin, or LMM-58, which lacks the 10-kD carboxyl terminus of LMM-68, are phosphorylated to the same extent as purified myosin, subdomains of these segments do not serve as efficient substrates for the kinase. Thus LMM-58 is one minimal substrate for efficient phosphorylation by the myosin heavy chain kinase purified from developed cells. Taken together these results identify two functional domains in Dictyostelium myosin: a 34-kD assembly domain bounded by amino acids 1533-1819 within the myosin sequence and a larger 58-kD phosphorylation domain bounded by amino acids 1533-2034 within the myosin sequence.  相似文献   

18.
We used molecular genetic approaches to delete 521 amino acid residues from the proximal portion of the Dictyostelium myosin II tail. The deletion encompasses approximately 40% of the tail, including the S2-LMM junction, a region that in muscle myosin II has been proposed to be important for contraction. The functions of the mutant myosin II are indistinguishable from the wild-type myosin II in our in vitro assays. It binds to actin in a typical rigor configuration in the absence of ATP and it forms filaments in a normal salt-dependent manner. In an in vitro motility assay, both monomeric and filamentous forms of the mutant myosin II translocate actin filaments at 2.4 microns/s at 30 degrees C, similar to that of wild-type myosin II. The mutant myosin II is also functional in vivo. Cells expressing the mutant myosin II in place of the native myosin II perform myosin II-dependent activities such as cytokinesis and formation of fruiting bodies, albeit inefficiently. Growth of the mutant cells in suspension gives rise to many large multinucleated cells, demonstrating that cytokinesis often fails. The majority of the fruiting bodies are also morphologically abnormal. These results demonstrate that this region of the myosin II tail is not required for motile activities but its presence is necessary for optimum function in vivo.  相似文献   

19.
The amoeboid myosin I's are required for cellular cortical functions such as pseudopod formation and macropinocytosis, as demonstrated by the finding that Dictyostelium cells overexpressing or lacking one or more of these actin-based motors are defective in these processes. Defects in these processes are concomitant with changes in the actin-filled cortex of various Dictyostelium myosin I mutants. Given that the amoeboid myosin I's possess both actin- and membrane-binding domains, the mutant phenotypes could be due to alterations in the generation and/or regulation of cell cortical tension. This has been directly tested by analyzing mutant Dictyostelium that either lacks or overexpresses various myosin I's, using micropipette aspiration techniques. Dictyostelium cells lacking only one myosin I have normal levels of cortical tension. However, myosin I double mutants have significantly reduced (50%) cortical tension, and those that mildly overexpress an amoeboid myosin I exhibit increased cortical tension. Treatment of either type of mutant with the lectin concanavalin A (ConA) that cross-links surface receptors results in significant increases in cortical tension, suggesting that the contractile activity of these myosin I's is not controlled by this stimulus. These results demonstrate that myosin I's work cooperatively to contribute substantially to the generation of resting cortical tension that is required for efficient cell migration and macropinocytosis.  相似文献   

20.
The ability of myosin II to form filaments is essential for its function in vivo. This property of self association is localized in the light meromyosin (LMM) region of the myosin II molecules. To explore this property in more detail within the context of living cells, we expressed the LMM portion of the Dictyostelium myosin II heavy chain gene in wild-type Dictyostelium cells. We found that the LMM protein was expressed at high levels and that it folded properly into alpha- helical coiled-coiled molecules. The expressed LMM formed large cytoplasmic inclusions composed of entangled short filaments surrounded by networks of long tubular structures. Importantly, these abnormal structures sequestered the cell's native myosin II, completely removing it from its normal cytoplasmic distribution. As a result the cells expressing LMM displayed a myosin-null phenotype: they failed to undergo cytokinesis and became multinucleate, failed to form caps after treatment with Con A, and failed to complete their normal developmental cycle. Thus, expression of the LMM fragment in Dictyostelium completely abrogates myosin II function in vivo. The dominant-negative character of this phenotype holds promise as a general method to disrupt myosin II function in many cell types without the necessity of gene targeting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号