首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2,4,6-Trichlorophenol (TCP) is a biologically recalcitrant compound, but its biodegradation via reductive dechlorination can be accelerated by adding an exogenous electron donor. In this work, acetate and formate were evaluated for their ability to accelerate TCP reductive dechlorination, as well to accelerate mono-oxygenation of TCP’s reduction product, phenol. Acetate and formate accelerated TCP reductive dechlorination, and the impact was proportional to the number of electron equivalents released by oxidation of the donor: 8 e? equivalents per mol for acetate, compared to 2 e? eq per mol for formate. The acceleration phenomenon was similar for phenol mono-oxygenation, and this increased the rate of TCP mineralization. Compared to endogenous electron equivalents generated by phenol mineralization, the impact of exogenous electron donor was stronger on a per-equivalent basis.  相似文献   

2.
Tetrachloroethylene (perchloroethylene, PCE) is a suspected carcinogen and a common groundwater contaminant. Although PCE is highly resistant to aerobic biodegradation, it is subject to reductive dechlorination reactions in a variety of anaerobic habitats. The data presented here clearly establish that axenic cultures of Methanosarcina sp. strain DCM dechlorinate PCE to trichloroethylene and that this is a biological reaction. Growth on methanol, acetate, methylamine, and trimethylamine resulted in PCE dechlorination. The reductive dechlorination of PCE occurred only during methanogenesis, and no dechlorination was noted when CH4 production ceased. There was a clear dependence of the extent of PCE dechlorination on the amount of methanogenic substrate (methanol) consumed. The amount of trichloroethylene formed per millimole of CH4 formed remained essentially constant for a 20-fold range of methanol concentrations and for growth on acetate, methylamine, and trimethylamine. These results suggest that the reducing equivalents for PCE dechlorination are derived from CH4 biosynthesis and that the extent of chloroethylene dechlorination can be enhanced by stimulating methanogenesis. It is proposed that electrons transferred during methanogenesis are diverted to PCE by a reduced electron carrier involved in methane formation.  相似文献   

3.
A variety of food-grade organic substrates were evaluated to identify materials that could be used to support long-term anaerobic bioremediation processes in the subsurface. In this work, the rate and extent of biogas production was used as an indicator of the potential for substrate fermentation to H2 and acetate, the primary electron donors used in reductive dechlorination. The rate and extent of biogas (primarily CO2+ CH4) evolution varied widely between the different substrates. For many of the substrates, biogas generation declined to very low levels within 100 days of substrate addition. However, a few substrates including several vegetable oils and sucrose esters of fatty acid (SEFAs) did support biogas production for extended time periods. Column studies demonstrated that both soybean oil and a SEFA could support sulfate reduction, methanogenesis and reductive dechlorination of perchloroethene (PCE) to cis-dichloroethene (cis-DCE) for over 14 months. The slower degradation rate of the SEFAs could be used to control substrate degradation rate in the subsurface, increasing substrate lifetime and reducing the required reinjection frequency.  相似文献   

4.
A variety of food-grade organic substrates were evaluated to identify materials that could be used to support long-term anaerobic bioremediation processes in the subsurface. In this work, the rate and extent of biogas production was used as an indicator of the potential for substrate fermentation to H2 and acetate, the primary electron donors used in reductive dechlorination. The rate and extent of biogas (primarily CO2+ CH4) evolution varied widely between the different substrates. For many of the substrates, biogas generation declined to very low levels within 100 days of substrate addition. However, a few substrates including several vegetable oils and sucrose esters of fatty acid (SEFAs) did support biogas production for extended time periods. Column studies demonstrated that both soybean oil and a SEFA could support sulfate reduction, methanogenesis and reductive dechlorination of perchloroethene (PCE) to cis-dichloroethene (cis-DCE) for over 14 months. The slower degradation rate of the SEFAs could be used to control substrate degradation rate in the subsurface, increasing substrate lifetime and reducing the required reinjection frequency.  相似文献   

5.
Strain SF3, a gram-negative, anaerobic, motile, short curved rod that grows by coupling the reductive dechlorination of 2-chlorophenol (2-CP) to the oxidation of acetate, was isolated from San Francisco Bay sediment. Strain SF3 grew at concentrations of NaCl ranging from 0.16 to 2.5%, but concentrations of KCl above 0. 32% inhibited growth. The isolate used acetate, fumarate, lactate, propionate, pyruvate, alanine, and ethanol as electron donors for growth coupled to reductive dechlorination. Among the halogenated aromatic compounds tested, only the ortho position of chlorophenols was reductively dechlorinated, and additional chlorines at other positions blocked ortho dechlorination. Sulfate, sulfite, thiosulfate, and nitrate were also used as electron acceptors for growth. The optimal temperature for growth was 30 degrees C, and no growth or dechlorination activity was observed at 37 degrees C. Growth by reductive dechlorination was revealed by a growth yield of about 1 g of protein per mol of 2-CP dechlorinated, and about 2.7 g of protein per mole of 2,6-dichlorophenol dechlorinated. The physiological features and 16S ribosomal DNA sequence suggest that the organism is a novel species of the genus Desulfovibrio and which we have designated Desulfovibrio dechloracetivorans. The unusual physiological feature of this strain is that it uses acetate as an electron donor and carbon source for growth with 2-CP but not with sulfate.  相似文献   

6.
Strain SF3, a gram-negative, anaerobic, motile, short curved rod that grows by coupling the reductive dechlorination of 2-chlorophenol (2-CP) to the oxidation of acetate, was isolated from San Francisco Bay sediment. Strain SF3 grew at concentrations of NaCl ranging from 0.16 to 2.5%, but concentrations of KCl above 0.32% inhibited growth. The isolate used acetate, fumarate, lactate, propionate, pyruvate, alanine, and ethanol as electron donors for growth coupled to reductive dechlorination. Among the halogenated aromatic compounds tested, only the ortho position of chlorophenols was reductively dechlorinated, and additional chlorines at other positions blocked ortho dechlorination. Sulfate, sulfite, thiosulfate, and nitrate were also used as electron acceptors for growth. The optimal temperature for growth was 30°C, and no growth or dechlorination activity was observed at 37°C. Growth by reductive dechlorination was revealed by a growth yield of about 1 g of protein per mol of 2-CP dechlorinated, and about 2.7 g of protein per mole of 2,6-dichlorophenol dechlorinated. The physiological features and 16S ribosomal DNA sequence suggest that the organism is a novel species of the genus Desulfovibrio and which we have designated Desulfovibrio dechloracetivorans. The unusual physiological feature of this strain is that it uses acetate as an electron donor and carbon source for growth with 2-CP but not with sulfate.  相似文献   

7.
不同电子供体对2,4-二氯酚还原脱氯的影响   总被引:3,自引:0,他引:3  
以葡萄糖、乙酸钠、Fe0、Fe0 葡萄糖、Fe0 乙酸钠作为电子供体,接种未驯化厌氧混合菌,考察2,4-二氯酚(2,4-DCP)的还原脱氯特性及Fe0作为电子供体的最佳作用条件与持续性特征.结果表明:与葡萄糖的作用相比,Fe0 葡萄糖可有效提高目标物脱氯效果;乙酸钠、Fe0及Fe0 乙酸钠均为有效电子供体,其中Fe0作为电子供体时目标物脱氯效果最佳,最佳作用条件为初始pH8.0,Fe0投加量2.0 g/L,4-CP为其主要脱氯中间产物;Fe0可持续供给2,4-DCP还原脱氯所需电子,而乙酸钠不断消耗后其脱氯效果与Fe0作为电子供体有明显差距.  相似文献   

8.
A H(2)-based, denitrifying and sulfate-reducing membrane biofilm reactor (MBfR) was effective for removing 1,1,1-trichloroethane (TCA) and chloroform (CF) by reductive dechlorination. When either TCA or CF was first added to the MBfR, reductive dechlorination took place immediately and then increased over 3 weeks, suggesting enrichment for TCA- or CF-dechlorinating bacteria. Increasing the H(2) pressure increased the dechlorination rates of TCA or CF, and it also increased the rate of sulfate reduction. Increased sulfate loading allowed more sulfate reduction, and this competed with reductive dechlorination, particularly the second steps. The acceptor flux normalized by effluent concentration can be an efficient indicator to gauge the intrinsic kinetics of the MBfR biofilms for the different reduction reactions. The analysis of normalized rates showed that the kinetics for reductive-dechlorination reactions were slowed by reduced H(2) bio-availability caused by a low H(2) pressure or competition from sulfate reduction.  相似文献   

9.
2-Bromoethanesulfonic acid (BESA) and 2-chloroethanesulfonic acid (CESA) have been reported to be potent inhibitors of methane formation during methanogenic decomposition in batch cultures. However, in a laboratory-scale continuous-flow methanogenic fixed-film column containing a predominance of acetate-decarboxylating methanogens, BESA at 6 × 10−4 M produced only a 41% inhibition of acetate utilization, and CESA at 5.4 × 10−4 M produced a 37% inhibition of acetate utilization. BESA and CESA concentrations were not monitored in the effluent, so their fate is unknown. The organisms in the column were capable of degrading trace halogenated aliphatic compounds (~30 μg/liter) with acetate (100 mg/liter) as the primary substrate. Previous exposure of the cells to halogenated organic compounds may have conferred resistance to BESA and CESA. Degradation of the inhibitor compounds is another possible explanation for the observed effects.  相似文献   

10.
The anaerobic degradation of 2,4,6-trichlorophenol (246TCP) has been studied in batch experiments. Granular sludges previously acclimated to 2,4-dichlorophenol (24DCP) and then adapted to at a load of 330 μM 246TCPd(-1) in two expanded granular sludge bed (EGSB) reactors were used. One of the reactors had been bioaugmented with Desulfitobacterium strains whereas the other served as control. 246TCP was tested at concentrations between 250 and 760 μM. The study focused on the fate of both fermentation products and chlorophenols derived from dechlorination of 246TCP. This compound mainly affected the biodegradation of acetate and propionate, which were inhibited at 246TCP concentrations above 380 μM. Lactate and ethanol were also accumulated at 760 μM 246TCP. Methanogenesis was strongly inhibited at 246TCP concentrations higher than 380 μM. A diauxic production of methane was observed, which can be described by a kinetic model in which acetoclastic methanogenesis was inhibited, whereas hydrogenotrophic methanogenesis was hardly affected by 246TCP. The similarity of the kinetic parameters obtained for the control and the bioaugmented sludges (K(i)=175-200 μM 246TCP and n=7) suggests that methanogenesis is not affected by the bioaugmentation. Moreover, the 246TCP dechlorination occurred mainly at ortho position, successively generating 24DCP and 4-chlorophenol (4CP), which was identified as final product. The bioaugmentation does not significantly improve the anaerobic biodegradation of 246TCP. It has been shown that the active biomass is capable of bioaccumulating 246TCP and products from dechlorination, which are subsequently excreted to the bulk medium when the biomass becomes active again. A kinetic model is proposed which simultaneously explains 246TCP and 24DCP reductive dechlorinations and includes the 246TCP bioaccumulation. The values of the kinetic parameters for 246TCP dechlorination were not affected by bioaugmentation (V(max)=5.3 and 5.1 μM h(-1) and K(s)=5.8 and 13.1 μM for control and bioaugmented sludges, respectively).  相似文献   

11.
Summary The effect of monensin and 2-bromoethanesulfonic acid (BESA) on methane production from cattle manure and on volatile fatty acids metabolism was tested. At 10 days retention time 0.81 biogas per liter cattle manure and day were produced. Methanogenesis was inhibited 20% by 3 mM BESA per liter and 45% by 2–5 mg monensin per liter. When the digestion was inhibited with either of the both drugs, the acetate pool increased drastically. Like in untreated fermentations the propionate pool increased in BESA-inhibited fermentations for several hours after substrate addition. After 24 h however it did not decrease to the low level reached in non-inhibited fermentations. When monensin was the inhibitor, the propionate pool did not change for 15 h, but then decreased with the same rate as in the control experiment. Adaptation processes or detoxification may be responsible for the delayed degradation.The degradation of low concentrations of buty-rate to acetate and the turn over rates of the butyrate pool are almost identical in cattle manure containing BESA, monensin, or no inhibitor. The turn over of 14C-acetate from butyrate degradation is delayed in BESA and monensin inhibited fermentations.From the data presented it can be concluded, that BESA mainly inhibits the methanogens, while monensin seems to inhibit both, methanogenic and nonmethanogenic organisms. However, a fast adaptation to or detoxification of the antibiotic seems to occur.  相似文献   

12.
The reductive dechlorination of pentachloroaniline (PCA) was investigated in the absence and presence of sulfate in batch assays using a PCA-dechlorinating mixed anaerobic culture with methanol as the external electron donor at neutral pH and 22°C. PCA at an initial concentration of 7.8 μM was sequentially dechlorinated to dichlorinated anilines in the sulfate-free culture and the culture amended with 300 mg sulfate-S/L. At an initial concentration of 890 mg sulfate-S/L, a higher sulfate reduction rate was achieved, but PCA dechlorination was not observed until the sulfate concentration dropped to about 100 mg S/L. The transient inhibition of PCA is attributed to competition between sulfate reducing and dechlorinating species for electron donor, more likely for H2 resulting from methanol fermentation. A long-term (118 days) PCA dechlorination assay with the sulfate-amended culture, which included five feeding cycles, resulted in accumulation of both sulfide (886 mg S/L) and acetate (1,900 mg COD/L). Under these conditions, the sulfate reducers were inhibited, while the rate and pathway of PCA dechlorination were not affected. The results of this study show that the rate of sulfate reduction rather than the sulfate concentration alone dictates the outcome of the competition between sulfate reducers and either dechlorinators or methanogens. The findings of the present study have significant implications relative to the fate and transport of PCA and its dechlorination products in sulfate-laden subsurface systems.  相似文献   

13.
In order to determine the effects of sulfate concentration on the anaerobic dechlorination of polychlorinated biphenyls, sediments spiked with Aroclor 1242 were made into slurries using media which had various sulfate concentrations ranging from 3 to 23 mM. The time course of dechlorination clearly demonstrated that dechlorination was inhibited at high concentration of sulfate due to less dechlorination of meta-substituted congeners. When the dechlorination patterns were analyzed by the calculation of Euclidean distance, the dechlorination pathway in the 3 mM sulfate samples was found to be different from that observed in the 13 mM samples, although the extent of dechlorination in these two samples was similar. It is possible that the dechlorination in the high sulfate concentration samples is inhibited by the suppression of growth of methanogen, which have been shown to be meta-dechlorinating microorganisms.  相似文献   

14.
The removal of carbon tetrachloride under sulfate reducing conditions was studied in an an aerobic packed-bed reactor. Carbon tetrachloride, up to a concentration of 30 μM, was completely converted. Chloroform and dichloromethane were the main transformation products, but part of the carbon tetrachloride was also completely dechlorinated to unknown products. Gram-positive sulfate-reducing bacteria were involved in the reductive dechlorination of carbon tetrachloride to chloroform and dichloromethane since both molybdate, an inhibitor of sulfate reduction, and vancomycin, an inhibitor of gram-positive bacteria completely inhibited carbon tetrachloride transformation. Carbon tetrachloride transformation by these bacteria was a cometabolic process and depended on the input of an electron donor and electron acceptor (sulfate). The rate of carbon tetrachloride transformation by sulfate reducing bacteria depended on the type of electron donor present. A transformation rate of 5.1 nmol·ml-1·h-1 was found with ethanol as electron donor. At carbon tetrachloride concentrations higher than18 μM, sulfate reduction and reductive dechlorination of carbon tetrachloride decreased and complete inhibition was observed at a carbon tetrachloride concentration of 56.6 μM. It is not clear what type of microorganisms were involved in the observed partial complete dechlorination of carbon tetrachloride. Sulfate reducing bacteria probably did not play a role since inhibition of these bacteria with molybdate had no effect on the complete dechlorination of carbon tetrachloride. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The ability of dehalogenating bacteria to compete with sulfate reducing bacteria for electron donor was studied in microcosms that simulated groundwater contaminated with both chlorinated ethylenes and fuel hydrocarbon compounds. Results demonstrate that reductive dehalogenation of perchloroethylene to ethylene can proceed in the presence of > 100 mg l(-1) sulfate. The hydrogen concentration, which was 2.5 nM in the presence of approximately 150 mg l(-1) sulfate and in the absence of chlorinated compounds, decreased to 0.7 nM during the dechlorination of trichloroethylene and increased to 1.6 nM during the dechlorination of cis-dichloroethylene and vinyl chloride. With only sediment associated donor ("historical" donor) present, dechlorination of trichloroethylene proceeded slowly to ethylene (on a time scale of several years). Addition of toluene, a model hydrocarbon compound, stimulated dechlorination indirectly. Toluene degradation was rapid and linked to sulfate utilization, and presumably formed fermentable substrates that served as hydrogen donors. Dehalogenation was inhibited in soil free microcosms containing 5 mM sulfide, but inhibition was not observed when either aquifer sediment or 5 mM ferrous chloride was added.  相似文献   

16.
The effect of low substrate concentrations on the metabolic pathway and sulfur isotope fractionation during sulfate reduction was investigated for Archaeoglobus fulgidus strain Z. This archaeon was grown in a chemostat with sulfate concentrations between 0.3 mM and 14 mM at 80 degrees C and with lactate as the limiting substrate. During sulfate reduction, lactate was oxidized to acetate, formate, and CO2. This is the first time that the production of formate has been reported for A. fulgidus. The stoichiometry of the catabolic reaction was strongly dependent on the sulfate concentration. At concentrations of more than 300 microM, 1 mol of sulfate was reduced during the consumption of 1 mol of lactate, whereas only 0.6 mol of sulfate was consumed per mol of lactate oxidized at a sulfate concentration of 300 microM. Furthermore, at low sulfate concentrations acetate was the main carbon product, in contrast to the CO2 produced at high concentrations. We suggest different pathways for lactate oxidation by A. fulgidus at high and low sulfate concentrations. At about 300 microM sulfate both the growth yield and the isotope fractionation were limited by sulfate, whereas the sulfate reduction rate was not limited by sulfate. We suggest that the cell channels more energy for sulfate uptake at sulfate concentrations below 300 to 400 microM than it does at higher concentrations. This could explain the shift in the metabolic pathway and the reduced growth yield and isotope fractionation at low sulfate levels.  相似文献   

17.
The biological anaerobic reductive dechlorination of beta-hexachlorocyclohexane under methanogenic conditions was tested in a number of contaminated soil samples from two locations in the Netherlands. Soils from a heavily polluted location showed rapid dechlorination of beta-hexachlorocyclohexane to benzene and chlorobenzene with lactate as electron donor. Soils from an adjacent slightly polluted location did not show substantial dechlorination of beta-hexachlorocyclohexane within 4 months. A heavily polluted sample was selected to optimise the dechlorination. All tested hexachlorocyclohexane isomers (alpha-, beta-, gamma-, and delta-), either added separately or simultaneously, were dechlorinated in this soil sample. The most rapid dechlorination was observed at a temperature of 30 degrees C. Dechlorination of beta-hexachlorocyclohexane was observed with acetate, propionate, lactate, methanol, H2, yeast extract and landfill leachate as electron donors. In a soil percolation column, packed with a selected heavily polluted soil sample, the presence of 10 mM sulphate in the influent led to simultaneous dechlorination of beta-hexachlorocyclohexane and sulphate reduction. When the column was fed with 10 mM nitrate instead of sulphate, dechlorination ceased immediately. After omitting nitrate from the influent, dechlorination activity recovered in about 1 month. Also in a separate column, the addition of nitrate from the start of the experiment did not result in dechlorination of beta-HCH. The significance of these experiments for in situ bioremediation of polluted soils is discussed.  相似文献   

18.
19.
The reductive amination of alpha-ketoglutarate, catalyzed by bovine liver glutamate dehydrogenase, is inhibited by various anions. Formate and acetate ions are competitive with alpha-ketoglutarate. The pH dependence of the pKi profiles for these anions reveals that they bind to the enzyme-NADPH complex only when an enzymatic residue of pK 8.0 +/- 0.1 in the binary complex is protonated. The ionization of this residue has a delta Hion of 15 +/- 4 kcal/mol. These pK and delta Hion values are not significantly different from those observed in the same complex for the enzyme group which binds the gamma-CO2- of alpha-ketoglutarate and oxalylglycine. It is concluded that formate and acetate also bind to the gamma-carboxylate site in enzyme-NADPH. The Ki values for formate and acetate in a buffer containing 0.1 M phosphate are 20 +/- 4 and 32 +/- 5 mM, respectively, when the pK 8.0 group is fully protonated. Phosphate and trifluoroacetate also show an inhibitory effect, while valerate and sulfate have little effect on the reductive amination rates. The results suggest that specific anions can bind to the gamma-carboxylate site by ionic interactions and alter the kinetic and thermodynamic parameters of the glutamate dehydrogenase-NADPH complex in significant ways.  相似文献   

20.
Resting-cell suspensions of Desulfomonile tiedjei consumed H2 with 3-chloro-, 3-bromo-, and 3-iodobenzoate as electron acceptors with rates of 0.50, 0.44, and 0.04 mumol h-1 mg-1, respectively. However, benzoate and 3-fluorobenzoate were not metabolized by this bacterium. In addition, H2 uptake was at least fourfold faster when sulfate, sulfite, or thiosulfate was available as the electron acceptor instead of a haloaromatic substrate. When sulfite and 3-chlorobenzoate were both available for this purpose, the rate of H2 uptake by D. tiedjei was intermediate between that obtained with either electron acceptor alone. Hydrogen concentrations were reduced to comparably low levels when either 3-chlorobenzoate, sulfate, or sulfite was available as an electron acceptor, but significantly less H2 depletion was evident with benzoate or nitrate. Rates of 3-chlorobenzoate dechlorination increased from an endogenous rate of 14.5 to 17.1, 74.0, 81.1, and 82.3 nmol h-1 mg-1 with acetate, pyruvate, H2, and formate, respectively, as the electron donors. Sulfite and thiosulfate inhibited dehalogenation, but sulfate and NaCl had no effect. Dehalogenation and H2 metabolism were also inhibited by acetylene, molybdate, selenate, and metronidazole. Sulfite reduction and dehalogenation were inhibited by the same respiratory inhibitors. These results suggest that the reduction of sulfite and dehalogenation may share part of the same electron transport chain. The kinetics of H2 consumption and the direct inhibition of dehalogenation by sulfite and thiosulfate in D. tiedjei cells clearly indicate that the reduction of sulfur oxyanions is favored over aryl dehalogenation for the removal of reducing equivalents under anaerobic conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号