首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Embryo hatching and outgrowth are the first critical steps on the way to a successful pregnancy. It is generally held that serine proteases are responsible for this process, although the exact mechanisms of action are not clearly understood. Recently, we described two novel implantation serine proteinase (ISP) genes that are expressed during the implantation period. The ISP1 gene encodes the embryo-derived enzyme strypsin, which is necessary for blastocyst hatching in vitro and the initiation of invasion. The ISP2 gene, which encodes a related tryptase, is expressed in endometrial glands and is regulated by progesterone during the peri-implantation period. Based on similarities between ISP2 gene expression and that of a progesterone-regulated lumenal serine proteinase activity associated with lysis of the zona pellucida, we have suggested that the strypsin related protein, ISP2, may encode a zona lysin proteinase. As tryptases naturally assemble to form tetrameric structures, we have hypothesized that ISP1 and ISP2 tetramerize to form strypsin and lysin, respectively. In this study, we demonstrate that like ISP2, the ISP1 gene is also expressed in endometrial glands and is positively regulated by progesterone during implantation. Using in situ hybridization of adjacent tissue sections, we show that the ISP1 and ISP2 genes are co-expressed within the endometrial gland. Following evidence that ISP1 and 2 can efficiently form homotetramers and heterotetramers in silico, we suggest that ISP heterotetramers may be also be secreted into the uterine lumen during the implantation period. That the embryonic hatching enzyme, may also be secreted into the uterine lumen from uterus, may provide insight into the mechanisms of hatching and implantation initiation.  相似文献   

2.
The S1 serine protease family is one of the largest gene families known. Within this family there are several subfamilies that have been grouped together as a result of sequence comparisons and substrate identification. The grouping of related genes allows for the speculation of function for newly found members by comparison and for novel subfamilies by contrast. Analysis of the evolutionary patterns of genes indicates whether or not orthologs are likely to be identified in other species as well as potentially indicating that hypothesized orthologs are in fact not. Looking at subtle differences between subfamily members can reveal intricacies about function and expression. Previously, we have described genes encoding two novel serine proteinases, ISP1 and ISP2, which are most closely related to tryptases. The ISP1 gene encodes the embryo-derived enzyme strypsin, which is necessary for blastocyst hatching and invasion in vitro. Additionally both ISP1 and ISP2 are co-expressed in the endometrial gland during the time of hatching, suggesting that they may also both participate in zona lysis from within the uterine lumen. Here, we demonstrate that the ISPs are tandemly linked within the tryptase cluster on 17A3.3. We suggest that remarkable similarities within the 5'-untranslated and first intron regions of ISP1 and ISP2 may explain their intimate co-regulation in uterus. We also suggest that ISP genes have evolved through gene duplication and that the ISP1 gene has also begun to adopt an additional new function in the murine preimplantation embryo.  相似文献   

3.
We have recently identified and characterized two implantation serine proteinase genes, ISP1 and ISP2, which give rise to a dimeric proteinase, ISP that facilitates embryo invasion during peri-implantation period. As many proteinases have cognate serpins that regulate their proteolytic activity, we have been investigating anti-tryptases, expressed during this window of implantation. Here, we report the differential expression of secretory leukocyte protease inhibitor (SLPI) in uterine endometrium around the implantation period. The co-localization of SLPI and ISP suggests the possibility that SLPI is an ISP serpin and that expression of SLPI may lead to a reduction in ISP activity. The expression of SLPI is down regulated during the window of embryo-uterine receptivity. Our results are consistent with a model suggesting that the drop in SLPI expression may help to refine the opening of the window of implantation, by allowing the proteolytic activity of embryo invasive serine proteinases such as the ISPs.  相似文献   

4.
Implantation S1 family serine proteinases (ISPs) are tryptases involved in embryo hatching and uterine implantation in the mouse. The two different ISP proteins (ISP1 and ISP2) have been detected in both pre- and post-implantation embryo tissue. To date, native ISP obtained from uterus and blastocyst tissues has been isolated only as an active hetero-dimer that exhibits trypsin-like substrate specificity. We hypothesised that in isolation, ISP1 might have a unique substrate specificity that could relate to its role when expressed alone in individual tissues. Thus, we isolated recombinant ISP1 expressed in Pichia pastoris and evaluated its substrate specificity. Using several chromogenic substrates and serine proteinase inhibitors, we demonstrate that ISP1 exhibits trypsin-like substrate specificity, having a preference for lysine over arginine at the P1 position. Phage display peptide mimetics revealed an expanded but mixed substrate specificity of ISP1, including chymotryptic and elastase activity. Based upon targets observed using phage display, we hypothesised that ISP1 might signal to cells by cleaving and activating proteinase-activated receptors (PARs) and therefore assessed PARs 1, 2 and 4 as potential ISP1 targets. We observed that ISP1 silenced enzyme-triggered PAR signaling by receptor-disarming. This PAR-disarming action of ISP1 may be important for embryo development and implantation.  相似文献   

5.
胚胎着床是一个连续的动态过程,其中胚泡从透明带中准时孵出是着床的关键.透明带脱落的机制主要是子宫或(和)胚泡分泌物部分或全部溶解透明带后,胚泡在细胞数量增加及细胞运动的机械压力作用下通过透明带的某一位点孵出.  相似文献   

6.
Galectin-1 is a member of β-galactoside-binding lectins expressed in a variety of mammalian tissues. We report here that galectin-1 mRNA is abundantly expressed in the mouse reproductive organs such as the uterus and ovary. Uterine expression of galectin-1 mRNA is specifically regulated in the embryonic implantation process. Its expression increased at a high level on the fifth day post coitum (dpc 5) when embryos hatched into the endometrial epithelial cells. In the absence of embryos, however, galectin-1 expression in the mouse uterus decreased on dpc 5. In the delayed implantation mice, galectin-1 mRNA level was augmented by the termination of the delay of implantation. Ovarian steroids progesterone and estrogen differentially regulated galectin-1 mRNA level in uterine tissues. Treatment with RU486, a progesterone receptor antagonist, blocked progesterone-induced galectin-1 mRNA level in uterine tissues of ovariectomized mouse. ICI182780, a pure estrogen receptor antagonist, clearly blocked the estrogen effect. Taken together, galectin-1 gene expression in the uterine tissues was regulated by ovarian steroids and this regulation correlated with the implantation process. Mol. Reprod. Dev. 48:261–266, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
The mammalian blastocyst must hatch from its extracellular coat, or zona pellucida, to implant in the uterus and continue development normally. Results of experiments described here strongly suggest that a proteinase (74K Mr), called "strypsin," is directly involved in hatching of isolated mouse blastocysts in vitro. Strypsin is a trypsin-like proteinase, based on its substrate specificity and sensitivity to inhibitors, that is present in mouse blastocysts and exhibits certain properties characteristic of membrane-associated enzymes. Histochemical and autoradiographic evidence suggests that, prior to hatching of blastocysts, strypsin is found with cells of mural trophectoderm; not with polar trophectoderm or inner cell mass. Following hatching, strypsin is also found associated with empty zonae pellucidae, specifically at the opening through which the embryo emerged. These and other observations suggest that hatching of mouse blastocysts in vitro is initiated by limited proteolysis of the region of zona pellucida overlying mural trophectoderm.  相似文献   

8.
Endometriosis is a disorder that affects 5% of the normal population but is present in up to 40% of women with pelvic pain and/or infertility. Recent evidence suggests that the endometrium of women with endometriosis exhibits progesterone insensitivity. One endometrial protein that fluctuates in response to progesterone is the estrogen receptor-alpha (ER alpha), being down-regulated at the time of peak progesterone secretion during the window of implantation. Here we demonstrate that the biomarker of uterine receptivity, beta 3 integrin subunit, is reduced or absent in some women with endometriosis and that such defects are accompanied by inappropriate over-expression of ER alpha during the mid-secretory phase. Using a well-differentiated endometrial cell line we showed that the beta 3 integrin protein is negatively regulated by estrogen and positively regulated by epidermal growth factor (EGF). By competing against estrogen with various selective estrogen receptor modulators (SERMs) and estrogen receptor agonists and antagonists, inhibition of expression of the beta 3 integrin by estrogen can be mitigated. In conclusion, we hypothesize that certain types of uterine receptivity defects may be caused by the loss of appropriate ER alpha down-regulation in the mid-secretory phase, leading to defects in uterine receptivity. Such changes might be effectively treated by timely administration of the appropriate anti-estrogens to artificially block ER alpha and restore normal patterns of gene expression. Such treatments will require further clinical studies.  相似文献   

9.
Successful embryo implantation depends on intricate epithelial-stromal cross-talk. However, molecular modulators involved in this cellular communication remain poorly elucidated. Using multiple approaches, we have investigated the spatiotemporal expression and regulation of serine protease inhibitor Kazal type 3 (SPINK3) in mouse uterus during the estrous cycle and early pregnancy. In cycling mice, both SPINK3 mRNA and protein are only expressed during proestrus. In the pregnant mouse, the expression levels of both SPINK3 mRNA and protein increase on days 5-8 and then decline. Spink3 mRNA is expressed exclusively in the uterine glandular epithelium, whereas SPINK3 protein is localized on the surface of both luminal and glandular epithelium and in the decidua. Moreover, SPINK3 in the decidua has been observed in the primary decidual zone on day 6 and the secondary decidual zone on days 7-8; this is tightly associated with the progression of decidualization. SPINK3 has also been found in decidual cells of the artificially decidualized uterine horn but not control horn, whereas Spink3 mRNA localizes in the glands of both horns. The expression of endometrial Spink3 is not regulated by the blastocyst according to its expression pattern during pseudopregnancy and delayed implantation but is induced by progesterone and further augmented by a combination of progesterone and estrogen in ovariectomized mice. Thus, uterine-gland-derived SPINK3, as a new paracrine modulator, might play an important role in embryo implantation through its influence on stromal decidualization in mice.  相似文献   

10.
11.
It is known that psychological stress affects reproduction in women, but it is unknown whether the effect is by impairing implantation. Although studies suggest that long periods of auditory or restraint stress may inhibit implantation in rats and mice, the exact stage of pregnancy at which stress impairs implantation is unclear. Furthermore, whether stress impairs implantation by decreasing the heparin-binding epidermal growth factor-like growth factor (HB-EGF), estrogen and/or progesterone and whether by acting on embryos or on the uterus need further investigations. In this study, a 24-h restraint stress was initiated at 15:30 of day 3 (regimen 1) or at 07:30 (regimen 2) or 15:30 of day 4 (regimen 3) of pregnancy (vaginal plug  =  day 1) to observe effects of restraint stress applied at different peri-implantation stages on implantation. Among the three regimens, whereas regimens 1 and 3 affected neither term pregnancy nor litter size, regimen 2 reduced both. Further observations indicated that regimen 2 of restraint stress also delayed blastocyst hatching and the attachment reaction, decreased serum concentrations of progesterone and estradiol, and down regulated the expression of HB-EGF in both the endometrium and blastocysts. Taken together, the results suggested that restraint stress inhibited mouse implantation in a temporal window-dependent manner and by impairing blastocyst activation and hatching and uterine receptivity via down-regulating HB-EGF, estrogen and progesterone. Thus, the stress applied within the implantation window impaired implantation by acting on both embryos and the uterus.  相似文献   

12.
Galectin-3 (Gal-3), a ubiquitously expressed gene involved in many cellular processes, has been recently recognized as a factor related to endometrial receptivity. However, the precise biological function of Gal-3 in the endometrium and its regulation is still unclear. In this study, we detected the antiapoptotic role of Gal-3 in endometrial cells and the expression of Gal-3 regulated by estrogen and progesterone. We found that expression of Gal-3 increased when exposed to the apoptosis inducer staurosporine. Gal-3-silenced endometrial cells were more sensitive to the apoptosis inducer. Estradiol (E2) and progesterone (P4) up-regulated Gal-3 expression, which in turn decreased the apoptotic rate of endometrial cells. Our results strongly suggested that hormonal activation of Gal-3 by E2 and P4 is involved in inhibiting endometrial cell apoptosis, playing key roles in embryo implantation.  相似文献   

13.
14.
The aim of this study was to determine whether glutathione reductase activity in uterine tissue is regulated by sex hormones. In spayed rats uterine glutathione reductase was significantly increased by exogenous estrogen (P< 0.01), progesterone (P< 0.01) or estrogen plus progesterone (P<0.01). When enzyme activity is expressed per mg protein, daily administration of estrogen or progesterone induces a progressive increase of this enzyme between 24 to 48 h or 24 to 72 h of treatment, respectively. Whereas the combination of both steroids causes an earlier and higher increase in glutathione reductase activity at 24 h of treatment. Estradiol singly or in combination with progesterone induced the highest protein concentration in the uterus. Whereas uterine DNA concentration is only significantly affected by estradiol. Our results suggest that uterine glutathione reductase is regulated by estradiol and progesterone and may be involved in maintaining levels of reduced glutathione in the uterus. This compound may be required for control of the redox state of thiol groups and in detoxification reactions involving H2O2 and electrophylic substances. The antioxidant action of estrogens is partially due to the stimulation of glutathione reductase.  相似文献   

15.
Leukemia inhibitory factor (LIF) has been shown to be essential for the implantation of mouse blastocysts. The present study was designed to determine how LIF protein was hormonally regulated in rabbit and mouse uterus using immunohistochemistry. In unmated rabbits, LIF protein was at a low level in the uterine epithelium and glands, and up-regulated by progesterone alone or estradiol-17β and progesterone combined. Estradiol-17β alone had no apparent effect. In ovariectomized mice, the level of LIF protein was very low in the uterine epithelium and glands, and was up-regulated by estradiol-17β alone or estradiol-17β and progesterone combined. Progesterone alone had no apparent effect. These results suggest that LIF protein is differentially regulated in rabbit and mouse uterus by progesterone and estrogen, respectively. This would explain the high level of LIF protein observed in uterine epithelium and glands prior to blastocyst implantation in the two species with different hormonal requirements for implantation. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Regulated expression of osteopontin in the peri-implantation rabbit uterus   总被引:5,自引:0,他引:5  
Blastocyst attachment to the lining of the mammalian uterus during early implantation involves the initial apposition of the trophoblast to the uterine epithelial surface. Osteopontin (OPN) is a glycoprotein component of the extracellular matrix that is secreted by the glandular epithelium of mammalian uteri at the time of implantation. This protein is recognized by several members of the integrin family and promotes cell-cell attachment and adhesion. In the present study, rabbit uteri were examined using Northern and in situ hybridization to evaluate the temporal and spatial distribution of OPN mRNA during early pregnancy. Northern blot analysis demonstrated a dramatic increase in OPN expression on Days 4-7 of pregnancy, corresponding to the rise in circulating progesterone and the time of initial embryo attachment in this species. In situ hybridization analysis revealed OPN mRNA expression on Day 6.75 of pregnancy, which was most prominent on endometrial epithelium. Using immunofluorescence, OPN protein was present on the glandular epithelium on Day 6.75 of pregnancy, but was absent on blastocysts. Further, no expression of OPN mRNA or protein was found in the nonpregnant endometrium. Induction of endometrial OPN expression was observed in unmated rabbits treated with progesterone alone and was prevented by cotreatment with the antiprogestin ZK137.316. Estradiol-17beta had no effect on OPN expression by itself, and estrogen priming was not necessary to demonstrate the stimulatory effect of progesterone. In The rabbit uterus, as in other mammalian species studied, OPN is expressed in a stage-specific manner by the endometrial glands during the peri-implantation period and is regulated by progesterone.  相似文献   

17.
18.
The multidrug resistance (mdr) gene family has been shown to encode a membrane glycoprotein, termed the P-glycoprotein, which functions as a drug efflux pump with broad substrate specificity. This multigene family is expressed in a tissue-specific fashion in a wide variety of normal and neoplastic tissues. The regulation of mdr gene expression in normal tissues is not understood. We have recently shown that mdr mRNA and the P-glycoprotein increases dramatically in the secretory luminal and glandular epithelium of the gravid murine uterus. This observation has suggested that mdr gene expression in the uterus is controlled by the physiologic changes associated with pregnancy. This report now demonstrates that mdr mRNA and P-glycoprotein are induced at high levels in the uterine secretory epithelium by the combination of estrogen and progesterone, the major steroid hormones of pregnancy. This regulation of mdr gene expression in the uterus does not require any other contribution from the fetus or placenta. The data indicate that this gene locus is hormonally responsive to estrogen and progesterone in the uterine secretory epithelium, suggesting an important and physiologically regulated role during pregnancy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号