首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
The activity of the ethylene-forming enzyme (EFE) in suspension-cultured tomato (Lycopersicon esculentum Mill.) cells was almost completely abolished within 10 min by 0.4 mM of the metal-chelating agent 1,10-phenanthroline. Subsequent addition of 0.4 mM FeSO4 immediately reversed this inhibition. A partial reversion was also obtained with 0.6 mM CuSO4 and ZnSO4, probably as a consequence of the release of iron ions from the 1,10-phenanthroline complex. The inhibition was not reversed by Mn2+ or Mg2+. Tomato cells starved of iron exhibited a very low EFE activity. Addition of Fe2+ to these cells caused a rapid recovery of EFE while Cu2+, Zn2+ and other bivalent cations were ineffective. The recovery of EFE activity in iron-starved cells was insensitive to cycloheximide and therefore does not appear to require synthesis of new protein. The EFE activity in tomato cells was induced by an elicitor derived from yeast extract. Throughout the course of induction, EFE activity was blocked within 10–20 min by 1,10-phenanthroline, and the induced level was equally rapidly restored after addition of iron. We conclude that iron is an essential cofactor for the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in vivo.  相似文献   

2.
From the culture broth of Clostridium novyi type A, phosphatidyl inositol-specific phospholipase C was separated from the major part of phospholipase C (γ-toxin) which hydrolyzes phosphatidyl choline, phosphatidyl ethanolamine, and sphingomyelin. Sodium deoxycholate stimulated the activity of phosphatidyl inositol phospholipase C. The concentration of sodium deoxycholate for maximal stimulation was 0.2% with 2 mm phosphatidyl inositol. Divalent cations (Mg2+, Ca2+, and Zn2+) were rather inhibitory above 10?3m. Phosphatidyl inositol phospholipase C was not inhibited by EDTA or o-phenanthroline. When phosphatidyl inositol phospholipase C was incubated with rat liver slices, not only alkaline phosphatase but also 5′-nucleotidase was liberated into the soluble fraction.  相似文献   

3.
The extracellular protease of Pseudomonas fluorescens NC 3 was optimally active at 40°C in a reaction mixture containing: 50 mM HEPES (N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid) buffer (pH 6.6), 0.5 mM CaCl2, and 25 mg hide powder azure in 5 ml total volume. Divalent cation chelators, i.e., EDTA, o-phenanthroline, citrate or phosphate, inhibited the enzyme. Protease production by P. fluorescens NC 3 was initiated during late-logarithmic-growth phase in a sodium caseinate medium and reached its maximum at the onset of the stationary phase.  相似文献   

4.
The degradation of fifteen sugars, sugar acids and related substrates were examined using cellfree extracts of Aspergillus ustus growing on D-glucose, D-mannose, D-galactose or D-gluconate as the only carbon source. D-gluconate was superior for the induction of the enzymes capable for the degradation of some of these substrates. The addition of 0.5% malt extract with D-gluconate to the growth medium or the presence of shaking conditions resulted to an increase in the degradation of those substrates, whileas the incorporation of 0.5% malt extract alone to the medium has no effect. Extracts of D-gluconate-grown mycelia of A. ustus degraded D-gluconate > D-galactonate > 1 : 5 gluconolactone and > L-arabonate nonphosphorolytically more effectively. Optimum pH and temperature for the degradation of D-gluconate were found to be 8.0 and 40°C, respectively. Thermal stability studies on the behaviour of D-gluconate dehydratase showed that this enzyme was stable at 50°C and 60°C for 30 and 5 minutes, respectively. Specific activity of this enzyme was increased three times when cell-free extracts were incubated at 60°C for 5 minutes. MgCl2 and CoSO4 were good activators, while CaCl2 p-mercurychlorobenzoate (PMCB), sodium arsenite, ZnSO4, CuSO4, iodoacetic acid, MnCl2 and FeSO4 were potent inhibitors for D-gluconate dehydratase activity. Km was calculated for D-gluconate and found to be 2.5 × 10?2 M.  相似文献   

5.
This study aims to explore novel lactic acid bacteria (LAB) from breast-fed infants' faeces towards characterizing their antimicrobial compound, bacteriocin. The LAB, Lacticaseibacillus paracasei F9-02 showed strong antimicrobial activity against clinical pathogens. Their proteinaceous nature was confirmed as the activity was completely abolished when treated with proteinaceous enzymes and retained during neutral pH and catalase treatment. The purified bacteriocin showed antimicrobial activity at the minimum inhibitory concentration (MIC) value of 7.56 μg/ml against vancomycin-resistant Enterococcus sp. [vancomycin-resistant enterococcal (VRE)], and methicillin-resistant Staphylococcus aureus (MRSA), 15.13 μg/ml against Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica serotype typhi and 30.25 μg/ml against Shigella flexneri. Present study also proved the bactericidal, non-cytotoxic and non-hemolytic nature of bacteriocin. Additionally, bacteriocin retained their stability under various physico-chemical conditions, broad range of pH (2–10), temperature (40–121°C), enzymes (amylase, lipase and lysozyme), surfactants [Tween-20, 80, 100 and sodium dodecyl sulfate (SDS)], metal ions (CaCl2, FeSO4, ZnSO4, MgSO4, MnSO4, CuCl2) and NaCl (2%–8%). The molecular weight of bacteriocin (~28 kDa) was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), functional and active groups were assessed by Fourier Transform-Infrared (FT-IR). To our knowledge, this is the first study reporting L. paracasei from breast-fed infants' faeces and assessing their antimicrobial compound, bacteriocin. The study results furnish the essential features to confirm the therapeutic potential of L. paracasei F9-02 bacteriocin.  相似文献   

6.
The production and partial characterization of Duddingtonia flagrans (AC001) crude extract and its in vitro larvicidal action against trichostrongylid infective larvae from sheep were studied. D. flagrans was grown in liquid medium with glucose, casein, bibasic potassium phosphate (K2HPO4), magnesium sulfate (MgSO4), zinc sulfate (ZnSO4), ferrous sulfate (FeSO4), and copper sulfate (CuSO4). The proteolytic activity was measured within varied pHs and temperatures. To determine the thermostability, the crude extract was incubated at 28°C for 72 h. To study the effect of different chemical compounds on the activity of the crude extract, the samples were incubated in solutions containing (10 mM): calcium chloride (CaCl2), copper II sulfate (CuSO4), zinc sulfate (ZnSO4), magnesium sulfate (MgSO4), inhibitor phenylmethylsulfonyl fluoride (PMSF), and 0.5% SDS. Results showed that the highest activity obtained (79.23 U/mL) was at pH 9.0, while the optimum temperature was 60°C (119.6 U/mL). The thermostability analysis demonstrated that after 72 h the activity was maintained or increased. It was found that the CuSO4, ZnSO4, and PMSF strongly inhibited the proteolytic activity. Moreover, the MgSO4 and SDS, caused a weak inhibition of the proteolytic activity. There was a significant (P<0.01) reduction in number of treated L3 when compared to control (94.2%). The results suggest that the crude extract produced by D. flagrans (AC001) in liquid medium exerted larvicidal activity on trichostrongilid L3 and therefore may contribute to a large-scale industrial production.  相似文献   

7.
Though metal ions are essential components of many cellular functions, their overexposure to organisms lead to oxidative stress through the formation of reactive oxygen species (ROS). Lipid peroxidation (LPX) is the oxidative deterioration of membrane lipids and considered as an index of oxidative stress. In the present study in vitro effect of various metals (FeCl3, FeSO4, CuSO4, CdCl2, and ZnSO4) on the lipid peroxidation of gills and hepatopancreas of Giant Freshwater prawn, Macrobrachium rosenbergii, was compared with respect to dose and duration. The results clearly indicate that among all the metals investigated, FeCl3 and CdCl2 are more potent in inducing LPX, and FeCl3 is more toxic than FeSO4 in inducing LPX in the hepatopancreas. ZnSO4 exhibits a moderate toxicity while CuSO4 is least toxic and also inhibits LPX at higher concentration. Thus results of the present investigation suggest that all the metal ions investigated in the present study are capable of inducing oxidative stress in gills and hepatopancreas of M. rosenbergii  相似文献   

8.
We examined the effects of o-phenanthroline and LiClO4 on oxygen evolution and electron transport in the Photosystem 2 complex of the pea. Treatment of Photosystem 2 particles with a combination of 3.0 mM o-phenanthroline and 1.0 M LiClO4 for 30–40 min at 0°C decreased the oxygen-evolving activity with the electron acceptor (either phenyl-p-benzoquinone or 2,6-dichlorophenol indophenol) to less than 5% of the original level. However with the same treatment, the electron-transport activity from an artificial electron donor, 1,5-diphenylcarbohydrazide, to 2,6-dichlorophenol indophenol remained at 60% of the original activity. The amount of manganese in the Photosystem 2 complex decreased in parallel with the loss of oxygen evolution following treatment. These observations suggest that the treatment of the Photosystem 2 complex with o-phenanthroline and LiClO4 inhibits electron transport on the oxygen-evolving side much more significantly than on the electron-acceptor side.Abbreviations Chl chlorophyll - DCPIP 2,6-dichlorophenol indophenol - DPC 1,5-diphenylcarbo hydrazide - EDTA ethylenediaminetetraacetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - Mes 4-morpholineethanesulfonic acid - PBQ phenyl-p-benzoquinone - PS 2 Photosystem 2  相似文献   

9.
Uptake of protoporphyrin IX by isolated rat liver mitochondria.   总被引:1,自引:1,他引:0       下载免费PDF全文
The ability of rat liver zinc-thionein to donate its metal to the apo-enzymes of the zinc enzymes horse liver alcohol dehydrogenase, yeast aldolase, thermolysin, Escherichia coli alkaline phosphatase and bovine erythrocyte carbonic anhydrase was investigated. Zinc-thionein was as good as, or better than, ZnSO4, Zn(CH3CO2)2 or Zn(NO3)2 in donating its zinc to these apo-enzymes. Apo-(alcohol dehydrogenase) could not be reactivated by zinc salts or by zinc-thionein. Incubation of the other apo-enzymes with near-saturating amounts of zinc as ZnSO4, Zn(CH3CO2)2, Zn(NO3)2, or zinc-thionein resulted in reactivation of the apo-enzymes. With apo-aldolase zinc-thionein gave 100% reactivation within 30min. Reactivation by ZnSO4 and Zn(CH3CO2)2 was complete and instantaneous. Zinc-thionein was somewhat better than Zn(NO3)2 in completely reactivating apo-thermolysin. With apo-(alkaline phosphatase) 43% reactivation was obtained with Zn(CH3CO2)2 and 18% with zinc-thionein. With apo-(carbonic anhydrase) zinc-thionein was better than ZnSO4, Zn(CH3CO2)2 or Zn(NO3)2, with a maximal reactivation of 54%. That zinc was really being transferred from zinc-thionein to apo-(carbonic anhydrase) was shown by the fact that 2,6-pyridine dicarboxylic acid and 1,10-phenanthroline had minimal effects on the reactivation of apo-(carbonic anhydrase) when added after the incubation {[apo-(carbonic anhydrase)+zinc thionein]+chelator}, but inhibited reactivation when added before the incubation {apo-(carbonic anhydrase)+[zinc-thionein+chelator]}. These observations support the idea that zinc-thionein can function in zinc homeostasis as a reservoir of zinc, releasing the metal to zinc-requiring metalloenzymes according to need.  相似文献   

10.
Kannan S  Joseph B 《Plant physiology》1975,55(6):1006-1008
The absorption of Fe from FeSO4, FeEDTA, and FeEDDHA (ferric ethylenediaminedi (o-hydroxyphenylacetate)), and Mn from MnSO4, MnEDTA, and MnEDDHA, by germinating sorghum (Sorghum vulgarie Pers. var. M 35-1) was studied. The seeds were found to absorb Fe and Mn from all the sources, and these ions moved to the scutellum, shoot, and root. EDDHA facilitated greater translocation of Fe and Mn from the seed to the shoot and root. The translocation of Fe was more towards the root than to the shoot, whereas it was the reverse in the case of Mn.  相似文献   

11.
Zinc is an essential nutrient that plays an important role in several biological processes of living organisms. When bound to an organic substrate, Zn is more efficiently absorbed by organisms, has a high biological activity and a low toxicity. Due to its ability to incorporate metals, yeast biomass has been used frequently as a delivery vehicle for many mineral supplements. This study describes the screening of strains of yeast for production of biomass enriched with Zn by submerged fermentation. Five strains of yeasts, belonging to the genera Saccharomyces, Kluyveromyces and Pichia, were evaluated. The highest Zn concentration was 6820 mg/kg of dry weight biomass, using Pichia guilliermondii Wickerham LPB 063 after 120 h of cultivation in a medium with 0.5 g/L ZnSO4. Process conditions were optimized using statistical experimental design methodology. Four parameters were identified in the 28−4 fractional factorial design as having a significant effect on Zn accumulation: ZnSO4 and Fe2(SO4)3 concentrations, time of addition of the ZnSO4 solution and concentration of soybean molasses. In the 32 experimental design, the influence of ZnSO4 and Fe2(SO4)3 concentrations were studied more closely. The highest Zn concentration (75,090 mg/kg dry weight) in the biomass was reached using the conditions: ZnSO4, 10.0 g/L; Fe2(SO4)3, 0.1 g/L in Erlenmeyer flasks. A batch liquid fermentation was carried out in a 2 L bioreactor for production of P. guilliermondii Wickerham LPB 063 containing organically bound Zn. The concentration of organically bound Zn after 144 h of fermentation was of 96,030 mg/kg, with a biomass production of 30 g/L. The maximum specific growth rate obtained (μmax) was 0.0077/h, while the maximum productivity of biomass was at 0.1511 g/L/h.  相似文献   

12.
《FEBS letters》1986,205(2):275-281
EPR signals in the high-spin region were studied at 10 K in photosystem II (PS II) particles and in a purified oxygen-evolving PS II reaction center complex under oxidizing conditions. PS II particles showed EPR peaks at g = 8.0 and 5.6, confirming the recent report by Petrouleas and Diner [(1986) Biochim. Biophys. Acta 849, 264-275]. Addition of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) or o-phenanthroline shifted the peaks to be closer to g = 6.0 depending on the medium pH. On the other hand, the PS II reaction center complex showed peaks at g = 6.1 and 7.8, and at g = 6.1 and 6.4, in the absence and presence of o-phenanthroline, respectively. All these peaks were found to be decreased by the illumination at 10 K. These results suggest that the high-spin signals are due to Q400, Fe(III) atom interacting with the PS II primary electron acceptor quinone QA as reported and that the Fe atom also interacts with the secondary acceptor quinone QB. This interaction seems to induce the highly asymmetric ligand coordination of the Fe atom and to be affected by DCMU and o-phenanthroline in a somewhat different manner.  相似文献   

13.
Net sodium influx under K-free conditions was independent of the intracellular sodium ion concentration, [Na]i, and was increased by ouabain. Unidirectional sodium influx was the sum of a component independent of [Na]i and a component that increased linearly with increasing [Na]i. Net influx of sodium ions in K-free solutions varied with the external sodium ion concentration, [Na]o, and a steady-state balance of the sodium ion fluxes occurred at [Na]o = 40 mM. When solutions were K-free and contained 10-4 M ouabain, net sodium influx varied linearly with [Na]o and a steady state for the intracellular sodium was observed at [Na]o = 13 mM. The steady state observed in the presence of ouabain was the result of a pump-leak balance as the external sodium ion concentration with which the muscle sodium would be in equilibrium, under these conditions, was 0.11 mM. The rate constant for total potassium loss to K-free Ringer solution was independent of [Na]i but dependent on [Na]o. Replacing external NaCl with MgCl2 brought about reductions in net potassium efflux. Ouabain was without effect on net potassium efflux in K-free Ringer solution with [Na]o = 120 mM, but increased potassium efflux in a medium with NaCl replaced by MgCl2. When muscles were enriched with sodium ions, potassium efflux into K-free, Mg++-substituted Ringer solution fell to around 0.1 pmol/cm2·s and was increased 14-fold by addition of ouabain.  相似文献   

14.
The mechanism of light-induced O2 uptake by chromatophores and isolated P-870 reaction center complexes from Rhodospirillum rubrum has been investigated.The process is inhibited by o-phenanthroline and also by an extraction of loosely bound quinones from chromatophores. Vitamin K-3 restored the o-phenanthroline-sensitive light-induced O2 uptake by the extracted chromatophores and stimulated the O2 uptake by the reaction center complexes. It is believed that photooxidase activity of native chromatophores is due to an interaction of loosely bound photoreduced ubiquinone with O2. Another component distinguishable from the loosely bound ubiquinone is also oxidized by O2 upon the addition of detergents (lauryldimethylamine oxide or Triton X-100) to the illuminated reaction center complexes and to the extracted or native chromatophores treated by o-phenanthroline. Two types of photooxidase activity are distinguished by their dependence on pH.The oxidation of chromatophore redox chain components due to photooxidase activity as well as the over-reduction of these components in chromatophores, incubated with 2,3,5,6-tetramethyl-p-phenylenediamine (Me4Ph(NH2)2) or N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) (plus ascorbate) in the absence of exogenous electron acceptors, leads to an inhibition of the membrane potential generation, as measured by the light-induced uptake of penetrating phenyldicarbaundecaborane anions (PCB?) and tetraphenylborate anions. The inhibition of the penetrating anion responses observed under reducing conditions is removed by oxygen, 1,4-naphthoquinone, fumarate, vitamin K-3 and methylviologen, but not by NAD+ or benzylviologen. Since methylviologen does not act as an electron acceptor with the extracted chromatophores, it is believed that this compound, together with fumarate and O2, gains electrons at the level of the loosely bound ubiquinone. Data on the relationship between photooxidase activity and membrane potential generation by the chromatophores show that non-cyclic electron transfer from reduced Me4Ph(NH2)2 to the exogenous acceptors is an electrogenic process, whereas non-cyclic electron transfer from reduced TMPD is non-electrogenic.Being oxidized, Me4Ph(NH2)2 and TMPD are capable of the shunting of the cyclic redox chain of the chromatophores. Experiments with extracted chromatophores show that the mechanisms of the shunting by Me4Ph(NH2)2 and TMPD are different.  相似文献   

15.
The objective of this study was to improve the growth of in vitro shoot cultures of Brugmansia × candida ‘Creamsickle’. Several mineral nutrient experiments were conducted to determine the effect of NH4+, NO3, K+, FeSO4/EDTA, ZnSO4, MnSO4, and CuSO4 on quality, leaf width and length, size and weight of shoot mass, and shoot number. The experiment to determine the levels of NH4+, NO3, and K+, was conducted as a 2-component NH4+: K+ mixture crossed by [NO3] and resulted in an experimental design free of ion confounding and capable of separating the effects of proportion and concentration. The results of the NH4+-K+-NO3 experiment revealed a region in the design space where growth was significantly improved; the region generally had lower total nitrogen and lower NH4+:K+ ratios than MS medium. The experiments to determine the appropriate levels of Fe, Zn, Mn, and Cu were conducted at six log levels ranging from 0 to 1 mM. Of the four metal salts tested, MnSO4 had the least effect on in vitro shoot growth and its concentration was reduced from 0.1 mM (MS level) to 0.001 mM. CuSO4 had large effects on in vitro shoot growth and was increased from 0.0001 mM to 0.001 mM. A 2-level factorial of NH4+-K+-NO3, FeSO4/EDTA, and ZnSO4 was conducted and several formulations identified for their improvements of quality and growth. In addition to the changes to MnSO4 and CuSO4, these formulations were characterized by lower levels of NH4+, K+, NO3 and Zn, and higher levels of FeSO4/EDTA. Overall, several nutrient formulations were identified as superior to MS medium for growth of in vitro shoot cultures of B. ‘Creamsickle’.  相似文献   

16.
After removal of myrosinase activity by concanavalin A-Sepharose 4B chromatography, cell-free extracts of light-grown cress (Lepidium sativum L.) seedlings, catalyzed the sulfation of desulfobenzylglucosinolate (Km, 0.23 millimolar) to benzylglucosinolate using PAPS (Km, 1 millimolar) as sulfur donor. Sulfotransferase activity, which was optimal at pH 9.0, was stimulated by MgCl2, MnCl2, β-mercaptoethanol, and dithiothreitol and was inhibited by ZnSO4 and SH-reagents. The enzyme also sulfated desulfoallyglucosinolate to allylglucosinolate (sinigrin) but was inactive towards all phenylpropanoids and flavonoids tested.  相似文献   

17.
Cocoonase (CCN) which facilitates the degradation of a cocoon is recognized as a trypsin-like serine protease. In this study, CCN from the silkworm Bombyx mori was purified and comprehensively characterized. Its activity was maximal at about pH 9.8. It was stable above pH 3.4 at 4?°C and below 50?°C at pH 7.5. CuSO4, FeSO4, and ZnSO4 showed inhibitory effects on CCN, but other salts improved activity. Typical trypsin inhibitors inhibited CCN, but the relative inhibitory activities were much lower than those against bovine trypsin. An extract of cocoon shells inhibited trypsin, but it was only slightly inhibitory against CCN. There were significant differences in catalytic efficiencies and substrate specificities as between CCN and bovine trypsin.  相似文献   

18.
Extracellular chitinase production by the entomopathogenic fungus, Isaria fumosorosea IF28.2 was studied by using submerged fermentation. Maximum chitinase production (178.34±3.91 mU/mL) was obtained when fermentation was carried out at 25°C for 120 h using 72-h-old mycelium in a medium. The effect of inoculum size on chitinase activity was also observed and maximum chitinase activity (159.41±2.91 mU/mL) was obtained with an inoculum size of 3 discs while an incubation period of 96 h proved the most active inducer of chitinase production yielding a chitinase activity of 186.14±3.81 mU/mL. Colloidal chitin (1.5%, w/v) proved to be the best concentration. The optimum pH for chitinase production was 5.7 while 25°C proved to be the best temperature for chitinase production. Supplementation of additional carbon source like 1.5% N-acetylglucosamine (GlcNAc) showed further enhancement in chitinase production. The divalent metal salts, CaCl2, MgCl2 and ZnSO4, inhibited chitinase activity at 10 and 100 mM concentration, whereas inhibition of chitinase activity by KCl, FeSO4 and EDTA was observed only at higher concentrations. The results presented in this study increase the knowledge on chitinase production in I. fumosoroseus opening new avenues for the study of the role of this enzyme in virulence against different insect pests during the infection process.  相似文献   

19.
The production conditions of the Gomphidius rutilus exopolysaccharides (GREP) in submerged culture were optimised, and the antioxidant activities of GREP in vitro were evaluated. The optimal culture medium constituents were determined as follows: 30 g/L sucrose, 3.0 g/L soybean meal, 0.25 g/L MgSO4, 1.5 g/L K2HPO4, 0.5 g/L KH2PO4, 0.03 g/L ZnSO4, and 0.01 g/L FeSO4. The optimum parameters for the liquid fermentation were as follows: temperature, 25 °C; cultivation time, 6 d; initial pH, 8.0; volume of medium, 150 mL; and rotary speed, 180 rpm. GREP content and dry cell weight in optimised conditions were 540.1 ± 15.9 mg/L and 8.2 ± 0.3 g/L, respectively. GREP content under the optimised conditions was 2.5 times than that under the basic culture medium and initial conditions. GREP demonstrated positive antioxidant potential on superoxide anion radical, 1,1-diphenyl-2-picrylhydrazyl, and hydroxyl radical scavenging, and reducing power.  相似文献   

20.
《BBA》1987,890(2):127-133
A photosynthetic reaction center complex has been purified from an aerobic photosynthetic bacterium, Erythrobacter species OCh 114. The reaction center was solubilized with 0.45% lauryldimethylamine N-oxide and purified by DEAE-Sephacel column chromatography. Absorption spectra of both reduced and oxidized forms of the reaction center were very similar to those of the reaction center from Rhodopseudomonas sphaeroides R-26 except for the contributions due to cytochrome and carotenoid. 1 mol reaction center contained 4 mol bacteriochlorophyll a, 2 mol bacteriopheophytin a, 4 mol cytochrome c-554, 2 mol ubiquinone-10, and carotenoid. The reaction center consisted of four different polypeptides of 26, 30, 32 and 42 kDa. The last one retained heme c. Absorbance at 450 nm oscillated with the period of two on consecutive flashes. The light-minus-dark difference spectrum had two peaks at 450 nm and 420 nm, indicating that odd flashes generated a stable ubisemiquinone anion and even flashes generated quinol. o-Phenanthroline accelerated the re-reduction of flash-oxidized reaction centers, indicating that o-phenanthroline inhibited the electron transfer between QA and QB. The cytochrome (cytochrome c-554) in the reaction center was oxidized on flash activation. The midpoint potential of the primary electron acceptor (QA) was determined by measuring the extent of oxidation of cytochrome c-554 at various ambient potentials. The mid-point potential of QA was −44 mV, irrespective of pH between 5.5 and 5.9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号