首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fusion of sea urchin egg secretory vesicles to planar phospholipid bilayer membranes was studied by differential interference contrast (DIC) and fluorescent microscopy, in combination with electrical recordings of membrane conductance. A strong binding of vesicles to protein-free planar membranes was observed in the absence of calcium. Calciuminduced fusion of vesicles was detected using two independent assays: loss of the contents of individual vesicles visible by DIC microscopy; and vesicle content discharge across the planar membrane detected by an increase in the fluorescence of a dye. In both cases, no increase in the membrane conductance was observed unless vesicles were incubated with either Amphotericin B or digitonin prior to applying them to the planar membrane, an indication that native vesicles are devoid of open channels. Pre-incubation of vesicles with n-ethylmaleimide (NEM) abolished calcium-induced fusion. Fusion was also detected when vesicles were osmotically swollen to the point of lysis. In contrast, no fusion of vesicles to planar bilayers was seen when vesicles on plasma membrane (native cortices) were applied to a phospholipid membrane, despite good binding of vesicles to the planar membrane and fusion of vesicles to plasma membrane. It is suggested that cortical vesicles (CVs) have sufficient calcium-sensitive proteins for fusion to lipid membranes, but in native cortices granular fusion sites are oriented toward the plasma membrane. Removal of vesicles from the plasma membrane may allow fusion sites on vesicles access to new membranes.  相似文献   

2.
The fusion of individual influenza virions with a planar phospholipid membrane was detected by fluorescence video microscopy. Virion envelopes were loaded with the lipophilic fluorescent marker octadecylrhodamine B (R18) to a density at which the fluorescence of the probe was self-quenched. Labeled virions were ejected toward the planar membrane from a micropipette in a custom-built video fluorescence microscope. Once a virion fused with the planar membrane, the marker was free to diffuse, and its fluorescence became dequenched, producing a flash of light. This flash was detected as a transient spot of light which increased and then diminished in brightness. The diffusion constants calculated from the brightness profiles for the flashes are consistent with fusion of virus to the membrane with consequent free diffusion of probe within the planar membrane. Under conditions known to be fusigenic for influenza virus (low pH and 37 degrees C), flashes appeared at a high rate and the planar membrane quickly became fluorescent. To further establish that these flashes were due to fusion, we showed that red blood cells, which normally do not attach to planar membranes, were able to bind to membranes that had been exposed to virus under fusigenic conditions. The amount of binding correlated with the amount of flashing. This indicates that flashes signaled the reconstitution of the hemagglutinin glycoprotein (HA) of influenza virus, a well-known erythrocyte receptor, into the planar membrane, as would be expected in a fusion process. The flash rate on ganglioside-containing asolectin membranes increased as the pH was lowered. This is also consistent with the known fusion behavior of influenza virus with cell membranes and with phospholipid vesicles. We conclude that the flashes result from the fusion of individual virions to the planar membrane.  相似文献   

3.
It was previously shown (Cohen, F. S., J. Zimmerberg, and A. Finkelstein, 1980, J. Gen. Physiol., 75:251-270) that multilamellar phospholipid vesicles can fuse with decane-containing phospholipid bilayer membranes. An essential requirement for fusion was an osmotic gradient across the planar membrane, with the vesicle-containing (cis) side hyperosmotic with respect to the opposite (trans) side. We now report that unilamellar vesicles will fuse with "hydrocarbon-free" membranes subject to these same osmotic conditions. Thus the same conditions that apply to fusion of multilamellar vesicles with planar bilayer membranes also apply to fusion of unilamellar vesicles with these membranes, and hydrocarbon is not required for the fusion process. If the vesicles and/or planar membrane contain negatively charged lipids, divalent cation (approximately 15 mM Ca++) is required in the cis compartment (in addition to the osmotic gradient across the membrane) to obtain substantial fusion rates. On the other hand, vesicles made from uncharged lipids readily fuse with planar phosphatidylethanolamine planar membranes in the near absence of divalent cation with just an osmotic gradient. Vesicles fuse much more readily with phosphatidylethanolamine-containing than with phosphatidylcholine-containing planar membranes. Although hydrocarbon (decane) is not required in the planar membrane for fusion, it does affect the rate of fusion and causes the fusion process to be dependent on stirring in the cis compartment.  相似文献   

4.
Video fluorescence microscopy was used to study adsorption and fusion of unilamellar phospholipid vesicles to solvent-free planar bilayer membranes. Large unilamellar vesicles (2-10 microns diam) were loaded with 200 mM of the membrane-impermeant fluorescent dye calcein. Vesicles were ejected from a pipette brought to within 10 microns of the planar membrane, thereby minimizing background fluorescence and diffusion times through the unstirred layer. Vesicle binding to the planar membrane reached a maximum at 20 mM calcium. The vesicles fused when they were osmotically swollen by dissipating a KCl gradient across the vesicular membrane with the channel-forming antibiotic nystatin or, alternatively, by making the cis compartment hyperosmotic. Osmotically induced ruptures appeared as bright flashes of light that lasted several video fields (each 1/60 s). Flashes of light, and therefore swelling, occurred only when channels were present in the vesicular membrane. The flashes were observed when nystatin was added to the cis compartment but not when added to the trans. This demonstrates that the vesicular and planar membranes remain individual bilayers in the region of contact, rather than melding into a single bilayer. Measurements of flash duration in the presence of cobalt (a quencher of calcein fluorescence) were used to determine the side of the planar membrane to which dye was released. In the presence of 20 mM calcium, 50% of the vesicle ruptures were found to result in fusion with the planar membrane. In 100 mM calcium, nearly 70% of the vesicle ruptures resulted in fusion. The methods of this study can be used to increase significantly the efficiency of reconstitution of channels into planar membranes by fusion techniques.  相似文献   

5.
Fusion of multilamellar phospholipid vesicles with planar phospholipid bilayer membranes was monitored by the rate of appearance in the planar membrane of an intrinsic membrane protein present in the vesicle membranes. An essential requirement for fusion is an osmotic gradient across the planar membrane, with the cis side (the side containing the vesicles) hyperosmotic to the opposite (trans) side; for substantial fusion rates, divalent cation must also be present on the cis side. Thus, the low fusion rates obtained with 100 mM excess glucose in the cis compartment are enhanced orders of magnitude by the addition of 5-10 mM CaCl2 to the cis compartment. Conversely, the rapid fusion rates induced by 40 mM CaCl2 in the cis compartment are completely suppressed when the osmotic gradient (created by the 40 mM CaCl2) is abolished by addition of an equivalent amount of either CaCl2, NaCl, urea, or glucose to the trans compartment. We propose that fusion occurs by the osmotic swelling of vesicles in contact with the planar membrane, with subsequent rupture of the vesicular and planar membranes in the region of contact. Divalent cations catalyze this process by increasing the frequency and duration of vesicle-planar membrane contact. We argue that essentially this same osmotic mechanism drives biological fusion processes, such as exocytosis. Our fusion procedure provides a general method for incorporating and reconstituting transport proteins into planar phospholipid bilayer membranes.  相似文献   

6.
To fuse, membranes must bend. The energy of each lipid monolayer with respect to bending is minimized at the spontaneous curvature of the monolayer. Two lipids known to promote opposite spontaneous curvatures, lysophosphatidylcholine and arachidonic acid, were added to different sides of planar phospholipid membranes. Lysophosphatidylcholine added to the contacting monolayers of fusing membranes inhibited the hemifusion we observed between lipid vesicles and planar membranes. In contrast, fusion pore formation depended upon the distal monolayer of the planar membrane; lysophosphatidylcholine promoted and arachidonic acid inhibited. Thus, the intermediates of hemifusion and fusion pores in phospholipid membranes involve different membrane monolayers and may have opposite net curvatures, Biological fusion may proceed through similar intermediates.  相似文献   

7.
《The Journal of cell biology》1984,98(3):1063-1071
We demonstrate that there are two experimentally distinguishable steps in the fusion of phospholipid vesicles with planar bilayer membranes. In the first step, the vesicles form a stable, tightly bound pre-fusion state with the planar membrane; divalent cations (Ca++) are required for the formation of this state if the vesicular and/or planar membrane contain negatively charged lipids. In the second step, the actual fusion of vesicular and planar membranes occurs. The driving force for this step is the osmotic swelling of vesicles attached (in the pre- fusion state) to the planar membrane. We suggest that osmotic swelling of vesicles may also be crucial for biological fusion and exocytosis.  相似文献   

8.
Sarcoplasmic reticulum (SR) membranes isolated from rabbit skeletal muscle were reconstituted into two types of giant vesicles: (1) Giant proteoliposomes prepared by freeze-thawing of a mixture of SR vesicles and sonicated phospholipid vesicles without the use of detergent. (2) Giant SR vesicles prepared by fusion of SR vesicles using poly(ethylene glycol) (PEG) as a fusogen and without the addition of exogenous lipid. These giant vesicles were patch-clamped and properties of the single voltage-dependent potassium channel in the excised patch were studied. Single-channel conductance in a symmetrical solution of 0.1 M KCl and 1 mM CaCl2 was 140.0 +/- 10 pS (n = 5) for freeze-thawed vesicles and 136.4 +/- 15 pS (n = 7) for PEG vesicles. Both types of vesicles exhibited a sub-conductance state having 55% of the fully open state conductance. The voltage-dependence of open-channel probability could be expressed in terms of thermodynamic parameters of delta Gi = 0.95 kcal/mol and z = -0.77 for freeze-thawed vesicles and delta Gi = 0.92 kcal/mol and z = -0.87 for PEG vesicles. These values correlated well with previous data obtained by fusion of native SR vesicles with a planar lipid membrane. Channel orientation was found to be conserved in both types of vesicles used in the present study.  相似文献   

9.
Membrane fusion of a phospholipid vesicle with a planar lipid bilayer is preceded by an initial prefusion stage in which a region of the vesicle membrane adheres to the planar membrane. A resonance energy transfer (RET) imaging microscope, with measured spectral transfer functions and a pair of radiometrically calibrated video cameras, was used to determine both the area of the contact region and the distances between the membranes within this zone. Large vesicles (5-20 microns diam) were labeled with the donor fluorophore coumarin- phosphatidylethanolamine (PE), while the planar membrane was labeled with the acceptor rhodamine-PE. The donor was excited with 390 nm light, and separate images of donor and acceptor emission were formed by the microscope. Distances between the membranes at each location in the image were determined from the RET rate constant (kt) computed from the acceptor:donor emission intensity ratio. In the absence of an osmotic gradient, the vesicles stably adhered to the planar membrane, and the dyes did not migrate between membranes. The region of contact was detected as an area of planar membrane, coincident with the vesicle image, over which rhodamine fluorescence was sensitized by RET. The total area of the contact region depended biphasically on the Ca2+ concentration, but the distance between the bilayers in this zone decreased with increasing [Ca2+]. The changes in area and separation were probably related to divalent cation effects on electrostatic screening and binding to charged membranes. At each [Ca2+], the intermembrane separation varied between 1 and 6 nm within each contact region, indicating membrane undulation prior to adhesion. Intermembrane separation distances < or = 2 nm were localized to discrete sites that formed in an ordered arrangement throughout the contact region. The area of the contact region occupied by these punctate attachment sites was increased at high [Ca2+]. Membrane fusion may be initiated at these sites of closest membrane apposition.  相似文献   

10.
Role of channels in the fusion of vesicles with a planar bilayer.   总被引:7,自引:3,他引:7       下载免费PDF全文
Fluorescence microscopy combined with electrical conductance measurements were used to assess fusion of phospholipid vesicles with a planar bilayer. Large unilamellar vesicles (0.5-3 microns diam.) filled with the fluorescent dye, calcein, were made both with or without porin channels. Vesicle-bilayer fusion was induced by increasing the osmolarity of the solution on the side of the bilayer to which the vesicles were added. Fusion was detected optically by the fluorescent flash due to release of vesicular contents. Although both porin-containing and porin-free vesicles give the same kind of flash upon content release, the conditions necessary to induce release are very different. Only 4% of the porin-free vesicles fuse (release their contents) when subjected to 3 M urea. However, the same conditions induce 53% of the porin-containing vesicles to fuse and most of these fusions occur at a lower osmolarity ([urea] less than 400 mM). Thus channels greatly enhance fusion in this model system. A physical model based on the postulate that fusion is induced by an increase in surface tension, predicts that three conditions are necessary for fusion in this system: (a) an open channel in the vesicle membrane, (b) an osmotic gradient across the bilayer, and (c) the vesicle in contact with the planar membrane. These are the conditions that experimentally produce fusion in the model system.  相似文献   

11.
Small unilamellar phosphatidylserine/phosphatidylcholine liposomes incubated on one side of planar phosphatidylserine bilayer membranes induced fluctuations and a sharp increase in the membrane conductance when the Ca2+ concentration was increased to a threshold of 3--5 mM in 100 mM NaCl, pH 7.4. Under the same ionic conditions, these liposomes fused with large (0.2 micrometer diameter) single-bilayer phosphatidylserine vesicles, as shown by a fluorescence assay for the mixing of internal aqueous contents of the two vesicle populations. The conductance behavior of the planar membranes was interpreted to be a consequence of the structural rearrangement of phospholipids during individual fusion events and the incorporation of domains of phosphatidylcholine into the Ca2+-complexed phosphatidylserine membrane. The small vesicles did not aggregate or fuse with one another at these Ca2+ concentrations, but fused preferentially with the phosphatidylserine membrane, analogous to simple exocytosis in biological membranes. Phosphatidylserine vesicles containing gramicidin A as a probe interacted with the planar membranes upon raising the Ca2+ concentration from 0.9 to 1.2 mM, as detected by an abrupt increase in the membrane conductance. In parallel experiments, these vesicles were shown to fuse with the large phosphatidylserine liposomes at the same Ca2+ concentration.  相似文献   

12.
While biological membrane fusion is classically defined as the leak-free merger of membranes and contents, leakage is a finding in both experimental and theoretical studies. The fusion stages, if any, that allow membrane permeation are uncharted. In this study we monitored membrane ionic permeability at early stages of fusion mediated by the fusogenic protein influenza hemagglutinin (HA). HAb2 cells, expressing HA on their plasma membrane, fused with human red blood cells, cultured liver cells PLC/PRF/5, or planar phospholipid bilayer membranes. With a probability that depended upon the target membrane, an increase of the electrical conductance of the fusing membranes (leakage) by up to several nS was generally detected. This leakage was recorded at the initial stages of fusion, when fusion pores formed. This leakage usually accompanied the "flickering" stage of the early fusion pore development. As the pore widened, the leakage reduced; concomitantly, the lipid exchange between the fusing membranes accelerated. We conclude that during fusion pore formation, HA locally and temporarily increases the permeability of fusing membranes. Subsequent rearrangement in the fusion complex leads to the resealing of the leaky membranes and enlargement of the pore.  相似文献   

13.
Small unilamellar phosphatidylserine/phosphatidylcholine liposomes incubated on one side of planar phosphatidylserine bilayer membranes induced fluctuations and a sharp increase in the membrane conductance when the Ca2+ concentration was increased to a threshold of 3–5 mM in 100 mM NaCl, pH 7.4. Under the same ionic conditions, these liposomes fused with large (0.2 μm diameter) single-bilayer phosphatidylserine vesicles, as shown by a fluorescence assay for the mixing of internal aqueous contents of the two vesicle populations. The conductance behavior of the planar membranes was interpreted to be a consequence of the structural rearrangement of phospholipids during individual fusion events and the incorporation of domains of phosphatidylcholine into the Ca2+-complexed phosphatidylserine membrane. The small vesicles did not aggregate or fuse with one another at these Ca2+ concentrations, but fused preferentially with the phosphatidylserine membrane, analogous to simple exocytosis in biological membranes. Phosphatidylserine vesicles containing gramicidin A as a probe interacted with the planar membranes upon raising the Ca2+ concentration from 0.9 to 1.2 mM, as detected by an abrupt increase in the membrane conductance. In parallel experiments, these vesicles were shown to fuse with the large phosphatidylserine liposomes at the same Ca2+ concentration.  相似文献   

14.
Summary The adhesion to horizontal, planar lipid membranes of lipid vesicles containing calcein in the aqueous compartment or fluorescent phospholipids in the membranes has been examined by phase contrast, differential interference contrast and fluorescence microscopy. With water-immersion lenses, it was possible to study the interactions of vesicles with planar bilayers at magnifications up to the useful limit of light microscopy. In the presence of 15 mM calcium chloride, vesicles composed of phosphatidylserine and either phosphatidylethanolamine or soybean lipids adhere to the torus, bilayer and lenses of planar bilayers of the same composition. Lenses of solvent appear, at the site where vesicles attach to decane-based bilayers and lipid fluorophores move from the vesicles to the lenses. Because the calcein contained in such vesicles is not released, we interpret this as indicating fusion of only the outer monolayer (hemifusion) of the vesicles with the decane lenses. In the case of squalene-based black lipid membranes (BLMs), in contrast, vesicles do not nucleate lenses but they apparently do fuse with the torus at the bilayer boundary. Interactions leading to hemifusions between vesicles and planar membranes thus occur predominantly in regions where hydrocarbon solvent is present. Osmotic water flow, induced by addition of urea to the compartment containing vesicles, causes coalescence of lenses in decane-based, BLMs as well as coalescence of the aqueous spaces of the vesicles that have undergone hemifusion with the lenses. We did not observe transfer of the aqueous phase of vesicles to therans side of either decane-or squalene-based planar membranes; however, we cannot rule out the possibility particularly in the latter case, that rupture of the planar membrane may have been an immediate result of vesicle fusion and thus precluded its detection.  相似文献   

15.
A study concerning membrane contact and fusion phenomena was made for phospholipid spherical bilayer systems with respect to temperature. Specific temperatures were obtained for the spherical bilayer membranes of phosphatidyl choline (PC) and phosphatidyl serine (PS) which indicated a greater degree of membrane fusion and were designated Tf (the fusion temperature -- PC: 43 degrees C, PS: 38 degrees C). These temperatures were reduced by about 10 degrees C for the membranes incorporated with 20% lysophosphatidyl choline. The results of the contact and fusion observed in the spherical membranes are compared and discussed with the conductance characteristics of the PC and PS planar bilayer membranes as well as dissolution study on the phospholipid monolayers formed at the air/water interface with respect to temperature. Also, a possible molecular mechanism of membrane fusion is discussed in terms of the fluidity and instability of the membrane.  相似文献   

16.
Membrane events involved in myoblast fusion   总被引:3,自引:3,他引:0       下载免费PDF全文
Myoblast fusion has been studied in cultures of chick embryonic muscle utilizing ultrastructural techniques. The multinucleated muscle cells (myotubes) are generated by the fusion of two plasma membranes from adjacent cells, apparently by forming a single bilayer that is particle-free in freeze-fracture replicas. This single bilayer subsequently collapses, and cytoplasmic continuity is established between the cells. The fusion between the two plasma membranes appears to take place primarily within particle-free domains (probably phospholipid enriched), and cytoplasmic unilamellar, particle-free vesicles are occasionally associated with these regions. These vesicles structurally resemble phospholipid vesicles (liposomes). They are present in normal myoblasts, but they are absent in certain fusion-arrested myoblast popluations, such as those treated with either 5-bromo-deoxyuridine (BUdR), cycloheximide (CHX), or pospholipase C (PLC). The unilamellar, particle-free vesicles are present in close proximity to the plasma membranes, and physical contact is observed frequently between the vesicle membrane and the plasma membrane. The regions of vesicle membrane-plasma membrane interaction are characteristically free of intramembrane particles. A model for myoblast fusion is presented that is based onan interpretation of these observations. This model suggests that the cytoplasmic vesicles initiate the generation of particle-depleted membrane domains, both being essential components in the fusion process.  相似文献   

17.
Interactions of apolipoprotein A-I (apoA-I) with cell membranes appear to be important in the initial steps of reverse cholesterol transport. The objective of this work was to examine the effect of three distinct conformations of apoA-I (lipid-free and in 78 A or 96 A reconstituted high density lipoproteins, rHDL) on its ability to bind to, and abstract lipids from, palmitoyl oleoyl phosphatidylcholine membrane vesicles (small unilamellar vesicles, SUV, and giant unilamellar vesicles, GUV). The molecular interactions were observed by two-photon fluorescence microscopy, and the binding parameters were quantified by gel-permeation chromatography or isothermal titration microcalorimetry. Rearrangement of apoA-I-containing particles after exposure to SUVs was examined by native gel electrophoresis. The results indicate that lipid-free apoA-I binds reversibly, with high affinity, to the vesicles but does not abstract a significant amount of lipid nor perturb the vesicle structure. The 96 A rHDL, where all the amphipathic helices of apoA-I are saturated with lipid within the particles, do not bind to vesicles or perturb their structure. In contrast, the 78 A rHDL have a region of apoA-I, corresponding to a few amphipathic helical segments, which is available for external or internal phospholipid binding. These particles bind to vesicles with measurable affinity (lower than lipid-free apoA-I), abstract lipids from the membranes, and form particles of larger diameters, including 96 A rHDL. We conclude that the conformation of apoA-I regulates its binding affinity for phospholipid membranes and its ability to abstract lipids from the membranes.  相似文献   

18.
Fusion of synaptic vesicles with various target membranes was investigated on the cell-free model system that reflects the final step of exocytosis. Plasma membranes, synaptic vesicles and liposomes were used as acceptor membranes. The process of membrane fusion was triggered by Ca2+. We have demonstrated that synaptic vesicles are prone to fuse with liposomes in buffer solution. This process was strongly dependent on ionic force of medium and phospholipid composition of liposomes. Cytosolic proteins of synaptosomes inhibited the fusion of synaptic vesicles with liposomes, while these were required for the fusion of synaptic vesicles with native membrane structures. Trypsinolysis of acceptor membranes markedly inhibited the fusion response. It means protein components of target membrane are necessary for realization of the final step of exocytosis.  相似文献   

19.
Voltage-gated anion channels in vesicles prepared from the electric organ of Narke japonica were studied using two methods. Ionic permeability was measured by the light scattering method, which could be used to measure the ion permeation of whole vesicles but only at a time scale of slower than about 0.1 s. The single channel conductances and permeability ratios for various ions were measured after fusing the vesicles to phospholipid bilayers. Both sets of results coincided, indicating that the anion channels observed with the planar bilayer method are the major route for anion passage in these vesicles. The channels showed anion selectivity and did not allow the permeation of cations such as K+ and choline+. The single channel conductance was 18 pS in 0.1 M Cl-. SCN- inhibited the conductance in a voltage-dependent reversible manner on both sides of a channel. SCN- may bind to the Cl- binding site in a channel and thus block it. 4,4'-Diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) blocked a channel on the cis (extracellular) side irreversibly. The number of anion channels per vesicle was estimated to be about 50. It was also shown that all anion channels in the vesicles were open at the very instance of fusion with planar membranes.  相似文献   

20.
The binding of the major water-soluble lens protein alpha-crystallin to the lens plasma membrane has been investigated by reassociating purified alpha-crystallin with alpha-crystallin-depleted membranes and with phospholipid vesicles in which the lens membrane protein MP26 had been reconstituted. alpha-Crystallin reassociates at high affinity (Kd = 13 X 10(-8)M) with alkali-washed lens plasma membranes but not with lens plasma membranes treated with guanidine/HCl, nor with phospholipid vesicles or erythrocyte membranes. Binding to lens plasma membranes is dependent on salt, temperature and pH and occurs in a saturable manner. Reconstitution of MP26 into phospholipid vesicles and subsequent analysis of alpha-crystallin binding suggests the involvement of this transmembrane protein. Binding ist not influenced by pretreatment of membranes with proteases, suggesting that the 4-kDa cytoplasmic fragment of MP26 is not necessary for alpha-crystallin binding. Labeling experiments using (trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine as a probe for intrinsic membrane proteins further showed that alpha-crystallin contains hydrophobic regions on its surface which might enable this protein to make contact with the lipid bilayer. Newly synthesized alpha-crystallin, in lens culture, is not associated with the plasma membrane, suggesting that the assembly of alpha-crystallin aggregates does not take place in a membrane-bound mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号