首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antagonism betweenFusarium udum Butler causing wilt of pigeon-pea (Cajanus cajan (L.) Millsp.) and the saprophytic microflora of the root region of the host was studied with reference to colony interaction, hyphal interference, volatile and non-volatile metabolites and staling growth products. Studies were extended to screen potential antagonists against the wilt pathogen in soil. Aspergillus flavus, A. niger, A. terreus, Penicillium citrinum andMicromonospora globosa (an actinomycete) were antagonistic againstF. udum, whereas the pathogen parasitized and killedAspergillus luchuensis, Cunninghamella echinulata, Curvularia lunata, Mortierella subtilissima andSyncephalastrum racemosum. The pattern of growth of microorganisms on nutrient agar staled by rhizosphere soil inocula of healthy or wilted pigeon-pea plants was found to be different.F. udum colonized and grew on nutrient agar staled by the rhizosphere inoculum of the wilted plants upto 120h of incubation. However, it could not colonise and grow on the nutrient agar staled by rhizosphere microflora of healthy plants after 48h of incubation because of the presence of antagonists likeA. niger, A. flavus, A. terreus and a few species ofPenicillium in the soil inoculum. When pure cultures in soil ofF. udum was mixed with those of antagonists in different ratios,A. niger, A. flavus andM. globosa significantly suppressed the population ofF. udum, whereasA. terreus markedly reduced the population. When inoculated in soil, the antagonists exhibited a high fungistatic activity againstF. udum.  相似文献   

2.
Soylu S 《Mycopathologia》2004,158(4):457-464
In this study transmission electron microscopy (TEM) was used to examine details of the host–pathogen interface in Arabidopsis thaliana cotyledons infected by Albugo candida, causal agent of white blister. After successful entry through stomatal pores, the pathogen developed a substomatal vesicle and subsequently produced intercellular hyphae. TEM observations revealed that coenocytic intercellular hyphae ramified and spread intercellularly throughout the host tissue forming several haustoria in host mesophyll cells. Intracellular haustoria were spherical and 4.5 μm in diameter. Each haustorium was connected to intercellular hyphae by a narrow, slender haustorium neck. The cytoplasm of the haustorium included the organelles characteristic of the pathogen. No obvious response was observed in host cells following formation of haustoria. Most of the mesophyll cells contained normal haustoria and the host cytoplasm displayed a high degree of structural integrity. Absence of host cell wall alteration and cell death in penetrated host cells suggest that the pathogen exerts considerable control over basic cellular processes and in this respect, response to this biotrophic Oomycete differs considerably from responses to other pathogens such as necrotrophs. Modification of the host plasma membrane (PM) along the cell wall and around the haustoria, was detected by applying the periodic acid-chromic acid-phosphotungstic acid (PACP) staining technique. After staining with PACP, the host PM was found to be intensely electron dense where it was adjacent to the host cell wall and the distal region of the haustorial neck. By contrast, the extrahaustorial membrane, where the host PM surrounded the haustorium, was consistently very lightly stained.  相似文献   

3.
SeveralStreptomycesstrains are capable of suppressing potato scab caused byStreptomyces scabies.Although these strains have been successful in the biocontrol of potato scab in the field, little is known about how populations of pathogenicStreptomycesin the potato rhizosphere are influenced by inoculation of the suppressive strains. The effects of inoculum densities of pathogenic and suppressiveStreptomycesstrains on their respective populations on roots and in rhizosphere soil were examined during the growing season. The relationships between inoculum density or rhizosphere population densities and disease severity were also investigated. Populations of suppressiveStreptomycesstrain 93 increased significantly on roots with increasing inoculum dose. At its highest inoculum dose, the suppressive strain reached a population density greater than 106CFU/g root 14 weeks after planting. The ability of the suppressive strain to increase its populations with increasing inoculum density was hindered at high inoculum doses of the pathogen, suggesting that density-dependent competitive interactions may be occurring between the two antagonists. Strain 93 was most effective at preventing scab early in the growing season (8 weeks after planting), when tubers were most susceptible to the scab disease. Population densities of the suppressive strain in soil were more highly negatively correlated with scab severity than were populations on roots, suggesting that rhizosphere soil rather than potato roots may be the primary source of inoculum of the suppressive strain for tubers.  相似文献   

4.
Banksia attenuata plants were treated with soil drenches or foliar sprays of benzoic acid (BZA) to determine induced resistance to Phytophthora cinnamomi. Stems of B. attenuata were inoculated with the pathogen 1 week after treatment with BZA. Resistance was estimated by measuring P. cinnamomi lesions on stems. Treatment with 0.10 mM, 0.25 mM or 0.50 mM BZA caused a reduction in lesion size with 0.50 mM BZA applied as a soil drench being the most effective treatment at suppressing the development of lesions. This is the first report of BZA induced host resistance in any plant species to any pathogen.  相似文献   

5.
The poor growth of young Eucalyptus regnans seedlings in undried soil from the mature forest of E. regnans can be overcome by previously air-drying the soil or by adding sufficient amounts of complete soluble fertilizer or equivalent concentrations of P (as NaH2PO4) and N (as NaNO3). A factorial pot experiment in which phosphate and nitrate were added to undried soil indicated that P was the primary deficiency for young seedlings and that response to N did not occur until this lack was satisfied. In dried soil, seedlings also responded to additions of complete fertilizer but most of this effect was due to N rather than P. Field trials in the mature forest also indicated greater growth in dried soil than undried soil and confirmed a response of young seedlings to superphosphate. In pot experiments, the concentration of P and N per g plant dry weight after four months was relatively constant irrespective of the final size of the plant. Seedlings in dried soil extracted up to 15 times more P than did those grown in undried soil. In general, chemical analysis of soil indicated more extractable P and N from dried soil although this was not always consistently so. Soil desiccation resulted in an increase in soil surface area due to the fragmentation of larger peds and to an increase in the number of microfractures which remained in the soil crumbs after rewetting. Mycorrhiza are likely to be important since the differentiation of the growth response of seedlings in dried and undried soil, which occurred at 5–6 weeks, corresponded with the establishment of full ectomycorrhizal development (80% root tips). The factors concerned with the increase in fertility after air-drying are discussed.Abbreviations GR Growth Ratio  相似文献   

6.
为探究球毛壳ND35微生物菌剂对楸树幼苗生长及土壤肥力的作用机制,本研究楸树幼苗为研究对象,采用室内盆栽试验,设计0(CK),10(T1),15(T2),20(T3)4种微生物菌剂施用量,测定幼苗生长情况、土壤微生物组成结构、土壤酶和土壤养分等特征。研究结果如下:(1)球毛壳ND35微生物菌剂可显著促进楸树幼苗的生长,株高、地径、地上及地下生物量显著提高(P<0.05),T2处理下促生效果最好。(2)施用球毛壳ND35微生物菌剂可显著提高土壤中有机质、硝态氮、铵态氮含量及脲酶、磷酸酶、蔗糖酶活性(P<0.05)。(3)球毛壳ND35微生物菌剂可显著影响土壤细菌群落组成,提高细菌群落的丰富度和多样性,使土壤中β-变形菌纲(Betaproteobacteria)、γ-变形菌纲(Gammaproteobacteria)的相对丰度显著下降,α-变形菌纲(Alphaproteobacteria)、δ-变形菌纲(Deltaproteobacteria)的相对丰度呈显著提高,可使土壤中鞘氨醇单胞菌属(Sphingomonas)的相对丰度显著提高21.88%-103.56%(P<0.05),芽孢杆菌属(Bacillus)的相对丰度提高66.28%-65.97%(P<0.05),酸杆菌属(Acidibacter)的相对丰度提高12.76%-38.06%。(4)冗余分析(RDA)结果表明,土壤硝态氮、铵态氮、有机质是影响土壤细菌群落分布和多样性的重要环境因子,土壤细菌群落结构的改变会显著影响土壤脲酶、蔗糖酶、碱性磷酸酶的活性。因此,施用球毛壳ND35微生物菌剂可通过影响植物根际土壤的化学性质及生物性质,促进楸树幼苗的生长。这一研究结果为楸树繁育提供了新的指导方向,亦为将其用于困难立地及退化生态系统植被恢复提供基础理论指导。  相似文献   

7.
Interactions between an isolate of the ectomycorrhizal fungus Pisolithus sp. and Afzelia africana Sm. seedlings were studied at the structural and ultrastructural levels. Several different conditions were tested with or without sugar and in a sterile or nonsterile medium. In the growth cabinet, the A. africana/Pisolithus sp. interactions did not produce ectomycorrhizas. A fungal sheath was formed but no Hartig net, and an unusual host epidermal cell wall was observed. Hyphae of Pisolithus sp. induced modifications of epidermal cells of 15-day-old A. africana seedlings indicative of non-mycorrhizal interactions, such as wall thickening, wall ingrowth, papillae formation, degraded host wall material and the presence of intracellular hyphae. Wall ingrowth consisted of depositions of host cell wall materials giving a positive reaction for polysaccharides; however, wall thickenings and papillae showed no homogeneous reactions for polysaccharides. In glasshouse conditions, inocula of Pisolithus sp. in the form of spores or mycelia entrapped in peat-vermiculite added to sterilized soil produced typical ectomycorrhizae only with 6-month-old A. africana seedlings. Under these conditions, no conspicuous cell wall reactions occurred on A. africana roots. The results demonstrate that the establishment of an association between an ectomycorrhizal fungus and a potential host plant is strongly influenced by seedling age and/or environmental conditions. Therefore, in vitro synthesis is not a conclusive demonstration of a symbiotic relationship.  相似文献   

8.
Caribbean corals, including sea fans (Gorgonia spp.), are being affected by severe and apparently new diseases. In the case of sea fans, the pathogen is reported to be the fungus Aspergillus sydowii, and the disease is named aspergillosis. In order to understand coral diseases and pathogens, knowledge of the microbes associated with healthy corals is also necessary. In this study the fungal community of healthy Gorgonia ventalina colonies was contrasted with that of diseased colonies. In addition, the fungal community of healthy and diseased tissue within colonies with aspergillosis was contrasted. Fungi were isolated from healthy and diseased fans from 15 reefs around Puerto Rico, and identified by sequencing the nuclear ribosomal ITS region and by morphology. Thirty fungal species belonging to 15 genera were isolated from 203 G. ventalina colonies. Penicillum and Aspergillus were the most common genera isolated from both healthy and diseased fans. However, the fungal community of healthy fans was distinct and more diverse than that of diseased ones. Within diseased fans, fungal communities from diseased tissues were distinct and more diverse than from healthy tissue. The reduction of fungi in diseased colonies may occur prior to infection due to environmental changes affecting the host, or after infection due to increase in dominance of the pathogen, or because of host responses to infection. Data also indicate that the fungal community of an entire sea fan colony is affected even when only a small portion of the colony suffers from aspergillosis. An unexpected result was that A. sydowii was found in healthy sea fans but never in diseased ones. This result suggests that A. sydowii is not the pathogen causing aspergillosis in the studied colonies, and suggests several fungi common to healthy and diseased colonies as opportunistic pathogens. Given that it is not clear that Aspergillus is the sole pathogen, calling this disease aspergillosis is an oversimplification at best. Communicated by Biology Editor Dr Michael Lesser  相似文献   

9.
Pattinson GS  McGee PA 《Mycorrhiza》2004,14(2):119-125
Tap and primary lateral roots of seedlings of the putatively non-mycorrhizal Banksia ericifolia became marginally colonised when grown in an established mycelium of an arbuscular mycorrhizal (AM) fungus in the laboratory. A similar degree of colonisation was found in seedlings from an open woodland. All colonies lacked arbuscules. Two factors influencing colonisation and associated growth of host plants were examined experimentally: concentration of P in the soil and organic energy associated with the fungus. While some inoculated seedlings were slightly smaller when colonised by AM fungi, the results were inconsistent and never statistically significant. Seedlings take up insignificant quantities of soil P during early growth, even in the presence of abundant added P. Though colonisation was minor in all cases, an existing mycelium, whether or not connected to a companion plant, slightly increased the amount of root of B. ericifolia colonised by an AM fungus. All seedlings grew slowly. Shoots were significantly larger than roots, until the initiation of proteoid roots which commenced at about 40 days after germination, with both relatively high and low P supply.  相似文献   

10.
Cues used in below-ground host-searching behaviour and host discrimination were examined for Tiphia vernalis Rohwer and Tiphia pygidialis Allen (Hymenoptera: Tiphiidae), ecto-parasitoids of root-feeding larvae of the Japanese beetle, Popillia japonica Newman, and masked chafers, Cyclocephala spp. (Coleoptera: Scarabaeidae), respectively. Response to potential stimuli was compared in dual choice tests in an observation chamber filled with soil. Each wasp showed species-specific, directed movement along residual body odor trails made by dragging its respective host through the soil. Presence of a grub was not necessary for wasps to follow such trails. Frass from either host- or non-host grubs elicited trail-following, but each Tiphia species followed frass trails from its respective host when a choice was presented. Frass trails elicited stronger responses than body odor trails. The combination of host frass and body odor elicited the strongest trail-following responses. Our results suggest that once in the soil, Tiphia spp. locate their hosts using contact kairomones present in grub body odor trails and frass.  相似文献   

11.
Infection sites/green islands were formed in host leaf tissue infected with drops of H. teres. They exhibited higher cytokinin-like activity, sugar and starch than their surrounding tissue and tissue under water drops. The cytokinin-like activity at the infection sites increased from 24 to 72 h of incubation. However, the cytokinin-like activity of the tissue surrounding the infection drops and the tissue under water drops fell from 24 to 72 h incubation. The culture filtrate extracts of the fungus also produced cytokinin-like activity which increased from 1 to 10 days incubation. Application of this culture filtrate extract evoked green island formation. Application of kinetin to host leaves duplicated the green island effect. Thin-layer chromatographic fractions of the tissue extracts and the culture filtrate extracts revealed that a major portion of cytokinin-like activity corresponded to zeatin and zeatin riboside. The presence of zeatin and zeatin riboside (both in tissue and culture filtrate extracts) was confirmed by high performance liquid chromatography. Increases in the amounts of cytokinin-like substances, particularly zeatin and zeatin riboside, attributed to pathogen influence are suggested to be involved in infection and pathogenicity of H. teres.  相似文献   

12.
Ecological aspects of algal infectious diseases   总被引:1,自引:0,他引:1  
Correa  Juan A.  Sánchez  Pablo A. 《Hydrobiologia》1996,326(1):89-95
This study reports some epidemiological aspects of the infections of Mazzaella laminarioides by Endophyton sp. and Pleurocapsa sp., the organisms associated with the green patch and deformative diseases respectively.Infections affected an important segment of the host population and persisted throughout the year. The main infecting organism was Endophyton sp. Frequency, density and intensity index showed seasonal variations, with lower values in winter. It is suggested that tissue weakening and changes in the biomechanical properties of the infected individuals could be the responsible for this seasonal pattern of variation.This study demonstrates that, at the host population level, the two life history stages of M. laminarioides are susceptible to the pathogens. We also detected an association between reproduction of the host and infection, although the basis for it are unknown.The two pathogens showed different intra-frond distribution, with Endophyton sp. affecting preferentially the base of the frond. The spatial distribution within the beach was different for each pathogen. The main impact of Pleurocapsa sp. was recorded at the center, more protected sector of the beach.  相似文献   

13.
K.D. Cox  H. Scherm   《Biological Control》2006,37(3):291-300
Armillaria root rot, caused by Armillaria tabescens and Armillaria mellea, is a major cause of premature tree death in peach orchards in the southeastern United States. The root systems of infected trees can become entirely colonized by Armillaria, serving as an inoculum source for adjacent trees and providing massive inoculum levels in replant situations. If dead or dying trees could be colonized by an effective competitor of Armillaria before their removal, the extent of root colonization by the pathogen could be reduced, thus decreasing the threat to adjacent trees and/or subsequent plantings. Interactions between five species of saprobic lignicolous fungi (Ganoderma lucidum, Hypholoma fasciculare, Phanerochaete velutina, Schizophyllum commune, and Xylaria hypoxylon) and the two Armillaria species were examined in controlled conditions to provide proof of concept for competitive exclusion of Armillaria from peach roots. On agar-coated glass slides, all five potential antagonists induced detrimental reactions in >58% of the Armillaria hyphae observed, with the majority resulting in hyphal swelling or granulation. On poplar wood blocks, all antagonists consistently either overgrew Armillaria colonies or—in the case of S. commune—engaged in deadlock reactions; in all cases, the viability of Armillaria colonies was reduced to <30% of that of unchallenged controls. When inoculated simultaneously onto opposite ends of peach root segments, all antagonists consistently reduced growth and viability of Armillaria on and under the bark, whereby reduction of pathogen growth underneath the bark, Armillaria’s primary ecological niche, was most pronounced for G. lucidum, S. commune, and X. hypoxylon. When root segments were allowed to be colonized entirely by Armillaria before being inoculated with the antagonists, the latter were able to overgrow the pathogen on the root surface but unable to pre-empt it from underneath the bark. In summary,G. lucidum, S. commune, and X. hypoxylon caused strong hyphal and mycelial interference reactions and the most pronounced reductions in growth of Armillaria above and below the bark, indicating that they would be the most promising candidates for field-scale evaluations to restrict colonization of dead or dying peach trees by Armillaria in the orchard.  相似文献   

14.
Greenhouse and laboratory experiments were conducted to determine the effects of various physical factors on the assessment of disease caused by Sclerotium rolfsii using field and artificially infested soils. Lentil(Lens esculenta Moench) seedlings growing in trays or pots with sand were inoculated by surrounding them with a layer of soil infested with the pathogen. The number of dead plants was maximal within a 10-day period following inoculation. Seedling mortality increased with the number of sclerotia in the soil to a maximum that depended on seedling spacing, depth of the soil layer, and soil type.  相似文献   

15.
J. J. Germida 《Plant and Soil》1986,90(1-3):117-128
Summary This study examined the ecology and interaction ofAzospirillum brasilense and its bacteriophage in soil. Four Chernozemic soils from Canada, a Latosol and three Podzolic soils from Brazil were assayed for phage. Only the Latosol containedA. brasilense phage. None of the soils contained phage for otherA. brasilense orA. lipoferum strains tested. Recovery of phage from soil depended on the growth of indigenous or added host cells. A phage isolated from the Latosol had a hexagonal head of 100 nm and a tail of 200 nm. This phage was morphologically distinct from previously described Azospirillum phage and its host range was limited toA. brasilense strains 29145 and 29711.Survival and recovery of phage added to phage-free soil was dependent on the phage, the initial phage population, the presence of host cells and nutrients, and the soil. Phage persisted in soils at undetectable levels for at least seven weeks, but were still able to interact with multiplying host cells and exhibit a 1000-fold increase in number. Phage required a host cell population of at least 100–1000 per g of soil in order to multiply. The phage burst detected under these conditions increased as the cell to phage ratio increased. Long term incubation studies showed that the activity of phage in soil closely followed the activity of host cells and thus both were manipulated by appropriate amendments to soil.  相似文献   

16.
In a field cropped with wheat, a high and low level of soil conduciveness to take-all were induced by applying a nitrogen fertilizer with either calcium nitrate or ammonium sulphate. From these two soils, two representative populations of fluorescent pseudomonads were tested for their in situ behaviour. Take-all index and root dry weight were assessed on plants cropped in soils infested with Gaeumannomyces graminis var tritici (Ggt) and each bacterized with one of the isolates of fluorescent pseudomonads. The bacteria tested can be split into three groups: antagonists which reduce take-all, deleterious isolates which aggravate the disease and neutral without evident effect on the disease. The predominance of antagonistic fluorescent pseudomonads in the NH4-treated soil and the predominance of deleterious ones in the NO3-treated soil was confirmed after statistical analysis. The microbial impact on take-all must be more considered as the resulting effect of divergent activities of both rhizobacteria types than the only consequences of the presence of antagonistic pseudomonads. All the high cyanogenic pseudomonads were antagonists in situ and were more numerous in the NH4-treated soil than in the NO3-treated soil.  相似文献   

17.
Alternate host plants of cereal rust fungi are necessary for studying the rust sexual cycle and pathogenicity. These plants are usually difficult to propagate through cloning, while seed-propagated plants may have variable responses to the pathogen. To overcome these obstacles, tissue culture, under controlled and aseptic conditions, was utilized for clonal propagation and in vitro inoculation of the following species: Rhamnus palaestinus Boiss., the alternate host of oat (Avena spp.) crown rust (Puccinia coronata Corda); Thalictrum speciosissimum L., the alternate host of brown leaf rust of wheat (Puccinia recondita f. sp. tritici Eriks. & Henn.); and Lycopsis arvensis L., the alternate host of rye (Secala spp.) leaf rust (Puccinia recondita f. sp. recondita Rob. & Desm.). Shoot culture procedures for initial establishment and proliferation were developed for all three alternate host species. Shoot cultures were multiplied at rates ranging from 0.3 to 1.7 shoots/week. Successful infection following inoculation with teliospores of the corresponding rust fungi was obtained for R. palaestinus and T. speciosissimum but not for L. arvensis. The hardening and acclimatization efficiency of rooted T. speciosissimum and L. arvensis was of 80–90%. The propagation efficiency for R. palaestinus was not successful because of the low rate and poor quality of its rooting. It is concluded that the in vitro system might be used as an alternative method for inoculation and multiplication of alternate hosts of cereal rusts, although more experimentation is needed to define accurately the appropriate conditions for the proper infection response. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Tomato plants pre-colonised by the arbuscular mycorrhizal fungusGlomus mosseae showed decreased root damage by the pathogenPhytophthora nicotianae var.parasitica. In analyses of the cellular bases of their bioprotective effect, a prerequisite for cytological investigations of tissue interactions betweenG. mosseae andP. nicotianae v.parasitica was to discriminate between the hyphae of the two fungi within root tissues. We report the use of antibodies as useful tools, in the absence of an appropriate stain for distinguishing hyphae ofP. nicotianae v.parasitica from those ofG. mosseae inside roots, and present observations on the colonisation patterns by the pathogenic fungus alone or during interactions in mycorrhizal roots. Infection intensity of the pathogen, estimated using an immunoenzyme labelling technique on whole root fragments, was lower in mycorrhizal roots. Immunogold labelling ofP. nicotianae v.parasitica on cross-sections of infected tomato roots showed that inter or intracellular hyphae developed mainly in the cortex, and their presence induced necrosis of host cells, the wall and contents of which showed a strong autofluorescence in reaction to the pathogen. In dual fungal infections of tomato root systems, hyphae of the symbiont and the pathogen were in most cases in different root regions, but they could also be observed in the same root tissues. The number ofP. nicotianae v.parasitica hyphae growing in the root cortex was greatly reduced in mycorrhizal root systems, and in mycorrhizal tissues infected by the pathogen, arbuscule-containing cells surrounded by intercellularP. nicotianae v.parasitica hyphae did not necrose and only a weak autofluorescence was associated with the host cells. Results are discussed in relation to possible processes involved in the phenomenon of bioprotection in arbuscular mycorrhizal plants.  相似文献   

19.
The interaction between Glomus intraradices and the root-lesion nematode Pratylenchus vulnus was studied on micropropagated BA-29 quince rootstock during one growing season. Inoculation with G. intraradices significantly increased growth of plants in low P soil and was more effective than P fertilization at increasing top-plant development. In the presence of the nematode, mycorrhizal plants achieved higher values in all growth parameters measured. P. vulnus caused a significant decrease in the percentage of root length colonized by G. intraradices and fewer internal vesicles were formed within the host roots. Enhanced root mass production accounted for the twofold increase in final nematode population recovered from plants with combined inoculations of pathogen and symbiont. Low levels were found of Al, Fe, Mn and Zn in nonmycorrhizal nematode-infected plants in low P soil. G. intraradices-inoculated plants reached the highest foliar levels of N, Ca, Mg, Mn, Cu and Zn. Mycorrhizal plants infected with P. vulnus maintained normal to high levels of Mn, Cu, and Zn. Inoculation with G. intraradices favours quince growth and confers protection against P. vulnus by improving plant nutrition.  相似文献   

20.
【目的】了解健康烟株与感染青枯病烟株在根际土壤、茎杆发病部位、茎杆病健交界部位以及未发病茎杆的细菌群落结构与多样性。【方法】分别对土壤与茎杆样品中细菌的16S rRNA基因V3-V4区进行扩增,采用Illumina MiSeq测序技术对扩增片段进行高通量测序,然后对健康烟株与感染青枯病烟株不同部位细菌群落结构与多样性进行分析。【结果】感染青枯病烟株发病茎杆及根际土壤的细菌群落多样性高于健康烟株茎杆及其根际土壤样品,病健交界茎杆样品细菌群落多样性低于健康烟株。变形菌门(Proteobacteria)在所有样品中均为优势菌门;所有烟株根际土壤的优势菌门为拟杆菌门(Bacteroidetes)、酸杆菌门(Acidobacteria)、放线菌门(Actinobacteria)和绿弯菌门(Chloroflexi);健康烟株茎杆部位的优势菌门为蓝细菌门(Cyanobacteria);感染青枯病烟株发病茎杆和病健交界茎杆部位的优势菌门为蓝细菌门(Cyanobacteria)和厚壁菌门(Firmicutes)。所有根际土壤样品的优势菌属为劳尔氏菌属(Ralstonia)、假单胞菌属(Pseudomonas)、鞘脂单胞菌属(Sphingomonas)、黄杆菌属(Flavobacterium)和代尔夫特菌属(Delftia),而感染青枯病烟株根际土壤的劳尔氏菌属(Ralstonia)和假单胞菌属(Pseudomonas)相对丰度显著高于健康烟株根际土壤,鞘脂单胞菌属相对丰度显著低于健康烟株根际土壤。烟株茎杆的优势菌属为劳尔氏菌属和假单胞菌属等。感染青枯病烟株病健交界茎杆中劳尔氏菌属、肠杆菌属(Enterobacter)和泛菌属(Pantoea)相对丰度显著低于健康烟株样品。【结论】健康与感染青枯病烟株茎杆样品细菌群落的丰富度和多样性明显低于相应的根际土壤样品。较健康烟株而言,感染青枯病烟株根际土壤和茎杆样品细菌群落丰富度和多样性均表现出不同程度地增加,且根际土壤细菌群落结构变化较茎杆样品明显,而病健交界茎杆样品细菌群落丰富度和多样性降低。烟草青枯病为典型土传病害,其病原茄科劳尔氏菌尽管能在烟株维管束中蔓延扩增,但主要还是分布于土壤中;它的存在似乎对土壤细菌群落的影响大于茎杆样品的。该研究结果提示对于青枯病的防治不能局限于烟株本身,田间土壤也应加大防治力度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号