首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amputated, regenerating forelimbs have been compared with the contralateral, denervated non-regenerating limb stumps in the adult newt Notophthalmus viridescens, with respect to hyaluronidase activity and the incorporation of 3H-acetate into glycosaminoglycans (GAG). At 10 days after amputation, which is the time of maximum hyaluronate production in the early growing regenerate, incorporation of 3H-acetate into GAG (cpm/mg protein) in the denervated, nonregenerating limb stump was approximately 50% of that in the contralateral regenerating limbs. At this stage, hyaluronate was the major GAG being produced, but the ratio of incorporation into hyaluronate relative to chondroitin sulfate was reduced in the denervated limbs. In intact, nonamputated limbs, the incorporation into GAG was 5% of that in the regenerating limb 10 days after amputation, and 10% of that in the denervated stumps.At 25 days, cartilage is forming and chondroitin sulfate synthesis predominates in the normal regenerate whilst the contralateral, denervated limb stumps are forming scars. GAG synthesis in the latter was less than one-quarter the level seen in the regenerating limbs, mostly due to low incorporation into chondroitin sulfate.Hyaluronidase activity, which appears in the regenerating limb during differentiation of skeletal elements (20–45 days), was not detectable in limbs denervated early enough to prevent regeneration. However, limbs denervated after formation of the blastema will regenerate without nerve, and hyaluronidase activity in such limbs was normal. Thus, hyaluronidase activity appears when regeneration reaches the cartilage deposition stage, with or without nerve.  相似文献   

2.
Regeneration blastemas were exchanged between surgically constructed forelimbs comprised of symmetrical tissues (double-anterior and double-posterior) and normal, unoperated forelimbs. Normal blastemas grafted at the stage of medium bud (MB) onto double-half forelimb stumps regenerated normal skeletal patterns in nearly all cases. Double-half blastemas transplanted at the stage of MB onto normal forelimb stumps did not regenerate complete limb patterns. These results indicate that a double-half blastema cannot be “rescued” by transplantation to a normal stump and that a double-half limb stump does not interfere with the ability of a normal blastema to distally transform. The regeneration blastema possesses sufficient positional information at the stage of MB to permit it to develop autonomously. Supernumerary forelimbs resulted from several types of graft-stump combinations. The location and handedness of these supernumerary limbs are predicted by the rules of a recently presented model for pattern regulation in epimorphic fields [French, V., Bryant, P. J., and Bryant, S. V. (1976). Science193, 969–981].  相似文献   

3.
The developing neural tubes and associated neural crest cells were removed from stage 30 Ambystoma maculatum embryos to obtain larvae with aneurogenic forelimbs. Forelimbs were allowed to develop to late 3 digit or early 4 digit stages. Limbs amputated through the mid radius-ulna regenerated typically in the aneurogenic condition. Experiments were designed to test whether grafts of aneurogenic limb tissues would rescue denervated host limb stumps into a regeneration response. In Experiment 1, aneurogenic limbs were removed at the body wall and grafted under the dorsal skin of the distal end of amputated forelimbs of control, normally innervated limbs of locally collected Ambystoma maculatum or axolotl (Ambystoma mexicanum) larvae. In Experiment 1, at the time of grafting or 1, 2, 3, 4, 5, 7, or 8 days after grafting, aneurogenic limbs were amputated level with the original host stump. At 7 and 8 days, this amputation included removing the host blastema adjacent to the graft. The host limb was denervated either one day after grafting or on the day of graft amputation. These chimeric limbs only infrequently exhibited delayed blastema formation. Thus, not only did the graft not rescue the host, denervated limb, but the aneurogenic limb tissues themselves could not mount a regeneration response. In Experiment 2, the grafted aneurogenic limb was amputated through its mid-stylopodium at 3, 4, 5, 7, or 8 days after grafting. By 7 and 8 days after grafting, the host limb stump exhibited blastema formation even with the graft extending out from under the dorsal skin. The host limb was denervated at the time of graft amputation. When graft limbs of Experiment 2 were amputated and host limbs were denervated on days 3, 4, or 5, host regeneration did not progress and graft regeneration did not occur. But, when graft limbs were amputated on days 7 or 8 with concomitant denervation of the host limb, regeneration of the host continued and graft regeneration occurred. Thus, regeneration of the graft was correlated with acquisition of nerve-independence by the host limb blastema. In Experiment 3, aneurogenic limbs were grafted with minimal injury to the dorsal skin of neurogenic hosts. When neurogenic host limbs were denervated and the aneurogenic limbs were amputated through the radius/ulna, regeneration of the aneurogenic limb occurred if the neurogenic limb host was not amputated, but did not occur if the neurogenic limb host was amputated. Results of Experiment 3 indicate that the inhibition of aneurogenic graft limb regeneration on a denervated host limb is correlated with substantial injury to the host limb. In Experiment 4, aneurogenic forelimbs were amputated through the mid-radius ulna and pieces of either peripheral nerve, muscle, blood vessel, or cartilage were grafted into the distal limb stump or under the body skin immediately adjacent to the limb at the body wall. In most cases, peripheral nerve inhibited regeneration, blood vessel tissue sometimes inhibited, but other tissues had no effect on regeneration. Taken together, the results suggest: (1) Aneurogenic limb tissues do not produce the neurotrophic factor and do not need it for regeneration, and (2) there is a regeneration-inhibiting factor produced by the nerve-dependent limb stump/blastema after denervation that prevents regeneration of aneurogenic limbs.  相似文献   

4.
When blastemas of several stages of differentiation were grafted in normal orientation to stump levels proximal or distal to their level of origin, normal limbs regenerated. Histological and autoradiographic studies of the development of these regulated limbs showed that the grafted blastemas formed only structures normally distal to their level of origin. In the case of a blastema transplanted proximally, regulation occurred by intercalary regeneration from the stump, whereas, when blastemas were transplanted distally, regulation appeared to take place within the blastema itself by a distal shift in its pattern of organization. The results suggest that the proximal limit of the limb regenerate is determined by level-specific properties of the limb cells but that these properties allow for interactions leading to regulation when different levels of stump and blastema are brought together.  相似文献   

5.
C J Hubbard 《Life sciences》1983,33(17):1695-1702
The temporal relationship of changes in cAMP and cGMP to oocyte maturation was examined in proestrous hamsters (day 4). The first series of experiments showed, in normal cycling hamsters, an increase in cAMP and a decrease in cGMP at 1400 h shortly after the rise in LH with oocyte maturation beginning at 1800 h. When a second group of animals was injected with phenobarbital at 1200 h to block the LH surge, no significant change occurred in either cyclic nucleotide and oocyte maturation was prevented. In the second series of experiments single injections of either saline, hCG (30 IU), LH (10 micrograms) or FSH (10 micrograms) were given each to a group of animals at 0900 h on day 4. Animals were killed at five time intervals between 15 min and 3 h following the injection. LH and hCG stimulated a simultaneous increase in cAMP and decline in cGMP. The injection of FSH, however, did not cause an increase in cAMP but still produced a sharp decline in cGMP. Oocyte maturation occurred at 3 h in those animals injected with gonadotropins. Animals injected with saline showed neither cyclic nucleotide changes nor oocyte maturation. When cAMP and cGMP levels were expressed as a ratio (cAMP/cGMP) a significant increase occurred in the normal cycling animals and in those injected at 0900 h with gonadotropins. Phenobarbital and saline injected control animals showed no significant increase in the cAMP/cGMP ratio and no oocyte maturation. The results of these experiments and previous studies by this investigator indicate that cGMP may play an important role in oocyte maturation in the hamster prior to the LH surge. Since, in the presence of gonadotropins, the cAMP/cGMP ratio increases prior to oocyte maturation, it may be that the cyclic nucleotide ratio is also of importance in this process. Previous work by Hubbard and Terranova (1) has shown that guanosine 3':5' cyclic monophosphate (cGMP), can inhibit spontaneous maturation of hamster oocytes in vitro. This inhibitory action was dose dependent and overcome by LH. The cGMP-mediated inhibition occurred only in cumulus-enclosed oocytes, while adenosine 3':5' cyclic monophosphate (cAMP) inhibited spontaneous maturation in both cumulus-enclosed and denuded oocytes. The results of this study suggested that cGMP may play a role in inhibiting oocyte maturation prior to the LH surge. LH, the initiator of oocyte maturation, has also been shown in the intact proestrous rat and hamster to cause a decrease in cGMP at the same time that cAMP is rising (2,3).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Cells of amputated, denervated larval Ambystoma forelimbs dedifferentiate and enter the cell cycle but do not subsequently proliferate sufficiently to form a blastema. The denervated limb stump resorbs slowly until reinnervation stimulates regeneration. We used this system to investigate the fate of cells in denervated limbs which undergo early but limited cycling in response to amputation. In Experiment 1, cells were labeled with [3H]thymidine (3H-T) on Day 4 postamputation (PA)/Day 3 postdenervation (PD). Labeled cells were still present on Day 7 PA, but were less frequently observed on Day 13 PA when the limbs were reinnervated and beginning to regenerate. In Experiment 2 we denervated 1 day preamputation to obtain earlier reinnervation and prevent loss of Day 4 PA labeled cells. Cells labeled with 3H-T on Day 4 PA/Day 5 PD were present throughout the denervation period and most were still present on Day 13 PA. Little or no mitotic activity was found among the labeled cells after the initial round of cycling. The apparent cell cycle block was released upon reinnervation on Days 12 and 13 PA when cycling resumed. Labeled mitotic figures were present on Day 13 PA, and the mitotic index of the labeled population increased as a result of reinnervation. These results demonstrate that blocked cells are rescued by nerves, re-enter the cell cycle, and thus contribute to the reinnervation blastema.  相似文献   

7.
Interactions between the limb stump and the developing regenerate were studied in the limbs of adult newts, Notophthalmus viridescens. Forelimb blastemas at various stages were transplanted to the contralateral forelimb such that the anterior-posterior axes of stump and blastema were opposed. The blastemas were transplanted either from a proximal to distal, distal to proximal, proximal to proximal, or distal to distal level limb stump. The results indicate that at the earliest stage studied the anterior-posterior axis of the blastema is established but is not stable. An interection between the stump and blastema at this early stage results in the production of a variety of limbs intermediate in polarity between the graft and the stump. At all later stages, the original anterior-posterior axis of the blastema can be retained, although under certain grafting conditions the stump can still exert considerable influence over the anterior-posterior organization of the final regenerate. In those circumstances in which the blastema retains its original handedness, the interaction between stump and blastema results in the production of separate anterior and posterior supernumerary regenerates.The results of transplanting proximal blastemas to a distal limb level indicate that the proximal boundary of the blastema has been established by the earliest stage studied, leading to the production of limbs with serially duplicated segments. However, irrespective of the stage of a blastema transplanted from a distal to proximal level, there are no deleted structures in the proximal-distal axis of the resulting limb. From both histological examination of transplanted regenerates and the arrangement of skeletal elements of the resulting limbs, it is postulated that the stump plays an important role in the production of the intercalary regenerate.  相似文献   

8.
Using a radioimmunoassay (RIA) for the determination of adenosine 3'5' cyclic monophosphate (cAMP) and an acetylation-RIA procedure to measure guanosine 3'5' cyclic monophosphate (cGMP), we observed that cGMP levels, but not cAMP levels, were significantly elevated in murine thymocytes which had been incubated with preparations containing the thymic hormone, thymosin. Stimulation of intracellular cGMP levels was seen as early as 1 minute after incubation with thymosin fraction 5 and was maximal at approximately 10 minutes. Dose response studies indicated an optimum stimulation of cGMP with a thymosin concentration of 100 microg/ml. A control spleen fraction prepared by an identical procedure as fraction 5 did not affect the levels of either cyclic nucleotide.  相似文献   

9.
The effects of the divalent cation ionophore A23187, papaverine, and chlorpromazine on the mitotic index and cyclic nucleotide levels in newt limb regeneration blastemata (Notophthalmus viridescens) were assessed. The results of the experiments suggest that an intracellular increase in divalent cation (Ca2+) concentration results in elevated cGMP levels, suppressed cAMP levels, and a corresponding increase in blastema cell proliferation. The results also suggest that the converse conditions, namely, calcium efflux or inhibition of calmodulin activation (i.e., inhibition of Ca2+ binding), yields elevated cAMP levels, suppressed cGMP levels, and a corresponding decrease in blastema cell divisions.  相似文献   

10.
The effects of chick brain-spinal cord extract on morphological development and cyclic nucleotide levels of cultured chick embryo skeletal muscle cells were determined. It had previously been shown that the extract stimulated morphological differentiation, protein synthesis, and choliniesterase activity of muscle cells. Myoblasts fused earlier and an increase in number as well as diameter of myotubes were seen in the extract treated cultures. Cyclic nucleotides levels were higher (almost twice the controls for both adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate) and preceded their occurrence in the control cultures. It was suggested that factor(s) in the extract interact with membrane receptor(s) to alter nucleotide levels which, in turn, allow the effects to be expressed.  相似文献   

11.
This study was designed to investigate and determine for how long, after either hypophysectomy or the third (last) growth hormone injection (to previously hypophysectomized newts), the circulating and now declining titers of endogenous or exogenous hormone remained at a sufficient concentration to permit a morphologically normal forelimb regeneration response in the adult newt Notophthalmus viridescens. To examine the declining levels of endogenous hormone (hormone withdrawal series [HW]), left forelimbs were amputated at specific times following hypophysectomy. Right forelimbs were amputated 5 days prior to hypophysectomy. The declining levels of exogenous hormone (hormone replacement series [HR] were examined in newts whose left forelimbs were amputated at specific times following the last of three consecutive alternate-day growth hormone injections that were initiated 5 days post hypophysectomy. Right forelimbs were amputated immediately following the first hormone injection. All experimental animals were sacrificed when their right forelimbs regenerated to an advanced digitiform regenerate. In both series right forelimbs regenerated normally. In the HW series normal regeneration resulted only when forelimbs were amputated within 48 hours post hypophysectomy, whereas in the HR series normal regeneration occurred in only those newts whose forelimbs were amputated within 12 hours of the last hormone injection. The regeneration response of left forelimbs in both series gradually declined with the time interval between either hypophysectomy or hormone injection and forelimb amputation. As the hormone titer declined, fewer limbs initiated a normal response; they became progressively more hypomorphic and eventually failed to undergo typical regeneration.  相似文献   

12.
To establish the relationship between thyroid hormone and cyclic Adenosine monophosphate (cAMP) during lacertilian tail regeneration, cAMP phosphodiesterase, the hydrolytic enzyme of cAMP, was assayed in the tail regenerate, liver, and skeletal muscle of control (group A), chemically thyroidectomized (group B), and thyroidectomized and T4-replaced (group C) animals during various periods of tail regeneration. Enzyme activity was elevated in all three tissues of group B animals. Animals of group C showed an intermediate level of enzyme activity between controls (group A) and experimental animals (group B). These observations suggest a possible regulatory role of thyroxine in maintaining optimum levels of phosphodiesterase. The retardation in regeneration observable in the hypothyroid group of animals may be correlated with low levels of tissue cAMP. However, the operation of other influencing factors on phosphodiesterase during regeneration can be surmised from the observed tendency to exhibit similar patterns of phase-specific modulations in enzyme activity. Our observations are discussed in terms of phase-specific involvement of cAMP in regeneration, as well as its role in other metabolic aspects and the possible mode of indirect control exerted by thyroxine on lacertilian tail regeneration. © 1996 Wiley-Liss, Inc.  相似文献   

13.
张卓航  姜振宇  杨忠 《生命科学》2012,(10):1202-1206
蝾螈等有尾两栖类在其肢体任何节段被截断后,能通过准确的时空模式调节完成具有位置匹配关系的再生修复,该过程由受损肢体残端产生的芽基组织介导完成。芽基细胞的来源目前尚有争议,其产生受局部基质微环境诱导并涉及细胞表观遗传学改变,性状上呈现不完全的细胞再编程特征,增殖分化具有神经依赖性。哺乳类包括人类仅具有极为有限的肢体再生能力,其肢体再生限于指(趾)末端受损离断。深入探讨有尾两栖类等肢体再生过程的细胞分子机制,将为探索新的干细胞损伤修复途径及再生促进策略提供线索。  相似文献   

14.
In order to study endocrine influence upon cholinesterase activity during regeneration, adult newts were hypophysectomized either prior to limb transection or during regeneration. Homogenates of limb tissues were assayed for cholinesterase activity during each stage of regeneration.In animals with pituitaries intact, cholinesterase activity in regenerating limb tissues decreases soon after amputation, and then it rises to the level of activity in intact limbs of normal animals, during the period of differentiation. In hypophysectomized newts there seems to be no alteration of this basic pattern of activity, but removal of the pituitary does result in more elevated levels of enzymatic activity. In the intact forelimbs of control newts undergoing regeneration, cholinesterase activity greatly increases as the other transected limb begins to regenerate but it returns to normal as regeneration progresses. If these animals are hypophysectomized, no such increase is observed during the early stages of regeneration. Rather, there is an initial decrease in cholinesterase activity that is followed by an increase in such activity.These data are compatible with the hypothesis that the pituitary modulates cholinesterase activity in the limb tissues of adult newts.  相似文献   

15.
The regenerative capacity of larval Xenopus laevis hindlimbs amputated through the tarsalia at different stages of development and explanted in vitro was tested. In the first experimental series hindlimb stumps from stage 53, 54, 55, and 57 larvae (according to Nieuwkoop and Faber, '56) were cultured in Leibovitz's L-15 medium supplemented with 10% FCS, and 0.04 U of insulin and 10(-8) mg of L-thyroxine per ml of medium. Results showed that the distal part of the limb stumps from stages 53, 54, and 55 formed a regeneration blastema composed of proliferating mesenchymal cells beneath a typical apical cap. No blastema was formed in the proximal part of the stump. In limb stumps from stage 57, a regeneration blastema did not form either in the proximal or in the distal part of the stump. In a second experimental series, hindlimb stumps from stage 55 larvae, denervated 5 days prior to amputation in order to eliminate any residual neurotrophic factor, were cultured in a simplified L-15 medium containing 2% FCS and lacking insulin and thyroxine. Results showed that also in these experimental conditions the stumps from stage 55 formed a conical regeneration blastema at the distal tip. The blastema cells duplicated their own DNA and divided. At the proximal extremity no regeneration blastema was formed. In the same culture medium, the stumps of larvae at stage 57 did not form a regeneration blastema.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Summary Polyacrylamide gel electrophoresis was used to investigate the role of nerves in controlling patterns of RNA synthesis in regenerating limbs of the adult newt,Triturus viridescens. Denervation has the same effect on nerve-dependent and independent stages of regeneration, reducing by approximately 40–50% the synthesis of ribosomal and transfer RNA. Although a differential qualitative response of messenger RNA synthesis to denervation between nerve-dependent and independent stages has not been ruled out, the results would indicate that the effect of the nerve on RNA metabolism in individual blastema cells is the same over the whole process of regeneration. Since the one constant effect of denervation on regeneration is to inhibit regenerate growth in volume, the emancipation of blastemal morphogenetic activity from nerve requirements is more likely to be a function of attaining a critical mass of blastema cells, rather than a change in the metabolic response of blastema cells to the nerve.Research supported by a Biomedical Sciences Grant from the School of Life Sciences, University of Illinois, to D.L.S.  相似文献   

17.
Young blastemas of the newt resorb if the limb is denervated, and are thus called "nerve dependent". Late bud and later stage regenerates are termed "nerve independent" because, while denervation inhibits their growth, they proceed through differentiation to form a normally patterned regenerate. Schotté and Liversage ('59) found that reamputation of a denervated nerve independent regenerate causes it to resorb. The present study asked whether injuries of varying severity are equally effective at promoting resorption. Newt forelimbs were amputated through the mid-radius/ulna. At nerve independent stages, the regenerates were denervated and injured in one of a variety of ways, then monitored for signs of resorption. Reamputation of the tip or incisions which created large gaps in the wound epidermis promoted resorption in 77-90% of the cases. Histology showed that the tissue removed by tip reamputation was a small proportion of the entire regenerate, suggesting that blastema resorption is not determined simply by the number of cells directly affected by the injury. Pin prick injuries, which created small disruptions of the wound epidermis, never caused resorption. Devascularization, caused by severing the brachial artery, promoted resorption in 17% of cases. These results are not consistent with the hypothesis that avascularity is a major causative factor in nerve dependence.  相似文献   

18.
19.
Tail regeneration occurs following autotomy of the tail in the salamander Desmognathus fuscus. Studies based on histology and autoradiography suggest that the cells of the regeneration blastema arise from the connective tissue of the tail stump. Following autotomy of the tail in Desmognathus the muscle of the regenerate is not derived from de differentiated or modulated striated muscle fibers of the autotomy stump. Possible sources of myogenic cells are discussed.  相似文献   

20.
Addition of insulin to cultured mouse plasma tumor cells (MPC-11) increases the entry of tritiated cyclic adenosine 3',5'-monophosphate (3H-cAMP). No increase of entry of N6-O2-dibutyryl adenosine 3',5' cyclic monophosphate (DBcAMP), 5' adenosine monophosphate (5' AMP) or adenosine was noted in the presence of insulin. The stimulation of cAMP transport by insulin was concentration dependent and inactivated insulin had no effect on nucleotide transport. Intracellular radioactivity after transport of cAMP was largely 5'AMP, while most of the extracellular radioactivity remained as cAMP after incubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号