首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Fifteen-week-old rats were subjected to unloading induced by hindlimb suspension for 3 weeks. The peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and forkhead box-containing protein O1 (FOXO1) mRNA levels and fiber profiles of the soleus and plantaris muscles in rats subjected to unloading (unloaded group) were determined and compared with those of age-matched control rats (control group). The body weight and both the soleus and plantaris muscle weights were lower in the unloaded group than in the control group. The PGC-1α mRNA was downregulated in the soleus, but not in the plantaris muscle of the unloaded group. The FOXO1 mRNA was upregulated in both the soleus and plantaris muscles of the unloaded group. The oxidative enzyme activity was reduced in the soleus, but not in the plantaris muscle of the unloaded group. The percentage of type I fibers was decreased and the percentages of type IIA and IIC fibers were increased in the soleus muscle of the unloaded group, whereas there was no change in fiber type distribution in the plantaris muscle of the unloaded group. Atrophy of all types of fibers was observed in both the soleus and plantaris muscles of the unloaded group. We conclude that decreased oxidative capacity and fiber atrophy in unloaded skeletal muscles are associated with decreased PGC-1α and increased FOXO1 mRNA levels.  相似文献   

2.
One leg of tail-casted suspended rats was immobilized in a plantar-flexed position to test whether chronic shortening of posterior leg muscles affected the metabolic response to unloading. The immobilized plantaris and gastrocnemius muscles of these animals showed approximately 20% loss of muscle mass in contrast to simply a slower growth rate with unloading. Loss of mass of the soleus muscle during suspension was not accentuated by chronic shortening. Although protein degradation in the isolated soleus muscle of the plantar-flexed limb was slightly faster than in the contralateral free limb, this difference was offset by faster synthesis of the myofibrillar protein fraction of the chronically shortened muscle. Total adenine nucleotides were 17% lower (P less than 0.005) in the chronically shortened soleus muscle following incubation. Glutamate, glutamine, and alanine metabolism showed little response to chronic shortening. These results suggest that, in the soleus muscle, chronic shortening did not alter significantly the metabolic responses to unloading and reduced activity.  相似文献   

3.
4.
Cheema IR  Hermann C  Postell S  Holifield B 《Cytobios》1999,97(386):133-139
The total sarcoplasmic and myofibrillar protein synthesis was reduced in incubated fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus of rat after in vivo tumour necrosis factor-alpha treatment at 50 micrograms/kg/day for 5 days. The rate of protein synthesis in the myofibrillar fraction was inhibited more severely (41% in EDL and 34% in soleus) than that in the sarcoplasmic fraction (23% in EDL and 14% in soleus). Sucrose density gradient centrifugation analysis indicated that TNF-alpha treatment impaired polysomal aggregation in rat diaphragm muscle. Compared with the control muscles, the ratio of 40S and 60S subunits to polysomes was higher in TNF-alpha treated muscles. These findings suggest a role for TNF-alpha in the translational regulation of protein synthesis in rat skeletal muscle.  相似文献   

5.
Biomechanical unloading of the rat soleus by hindlimb unweighting is known to induce atrophy and a slow- to fast-twitch transition of skeletal muscle contractile properties, particularly in slow-twitch muscles such as the soleus. The purpose of this study was to determine whether the expression of the dihydropyridine (DHP) receptor gene is upregulated in unloaded slow-twitch soleus muscles. A rat DHP receptor cDNA was isolated by screening a random-primed cDNA lambda gt10 library from denervated rat skeletal muscle with oligonucleotide probes complementary to the coding region of the rabbit DHP receptor cDNA. Muscle mass and DHP receptor mRNA expression were assessed 1, 4, 7, 14, and 28 days after hindlimb unweighting in rats by tail suspension. Isometric twitch contraction times of soleus muscles were measured at 28 days of unweighting. Northern blot analysis showed that tissue distribution of DHP receptor mRNA was specific for skeletal muscle and expression was 200% greater in control fast-twitch extensor digitorum longus (EDL) than in control soleus muscles. A significant stimulation (80%) in receptor message of the soleus was induced as early as 24 h of unloading without changes in muscle mass. Unloading for 28 days induced marked atrophy (control = 133 +/- 3 vs. unweighted = 62.4 +/- 1.8 mg), and expression of the DHP receptor mRNA in the soleus was indistinguishable from levels normally expressed in EDL muscles. These changes in mRNA expression are in the same direction as the 37% reduction in time to peak tension and 28% decrease in half-relaxation time 28 days after unweighting. Our results suggest that muscle loading necessary for weight support modulates the expression of the DHP receptor gene in the soleus muscle.  相似文献   

6.
The present study characterized total and myofibrillar protein breakdown rates in a muscle preparation frequently used in vitro, i.e. incubated extensor digitorum longus (EDL) and soleus (SOL) muscles of young rats. Total and myofibrillar protein breakdown rates were assessed by determining net production by the incubated muscles of tyrosine and 3-methylhistidine (3-MH) respectively. Both amino acids were determined by h.p.l.c. Both total and myofibrillar protein breakdown rates were higher in SOL than in EDL muscles and were decreased by incubating the muscles maintained at resting length, rather than flaccid. After fasting for 72 h, total protein breakdown (i.e. tyrosine release) was increased by 73% and 138% in EDL muscles incubated flaccid and at resting length respectively. Net production of tyrosine by SOL muscle was not significantly altered by fasting. In contrast, myofibrillar protein degradation (i.e. 3-MH release) was markedly increased by fasting in both muscles. When tissue was incubated in the presence of 1 munit of insulin/ml, total protein breakdown rate was inhibited by 17-20%, and the response to the hormone was similar in muscles incubated flaccid or at resting length. In contrast, myofibrillar protein breakdown rate was not altered by insulin in any of the muscle preparations. The results support the concepts of individual regulation of myofibrillar and non-myofibrillar proteins and of different effects of various conditions on protein breakdown in different types of skeletal muscle. Thus determination of both tyrosine and 3-MH production in red and white muscle is important for a more complete understanding of protein regulation in skeletal muscle.  相似文献   

7.
Disuse can induce numerous adaptive alterations in skeletal muscle. In the present study the effects of hindlimb unloading on muscle mass and biochemical responses were examined and compared in adult (450 g) and juvenile (200 g) rats after 1, 7, or 14 days of whole body suspension. Quantitatively and qualitatively the soleus (S), gastrocnemius (G), plantaris (P), and extensor digitorum longus (EDL) muscles of the hindlimb exhibited a differential sensitivity to suspension and weightlessness unloading in both adults and juveniles. The red slow-twitch soleus exhibited the most pronounced atrophy under both conditions, with juvenile responses being greater than adult. In contrast, the fast-twitch EDL hypertrophied during suspension and atrophied during weightlessness, with no significant difference between adults and juveniles. Determination of biochemical parameters (total protein, RNA, and DNA) indicated a less rapid rate of response in adult muscles. This was corroborated by assessment of muscle alpha-actin mRNA levels, which indicated a rapid (within 1 day) and significant (P less than 0.05) effect in juveniles but not in adults. The results of this investigation indicate 1) a qualitatively similar differential effect of unloading on muscles of adults and juveniles, 2) a quantitatively reduced and less rapid effect of suspension on adult muscles, and 3) a close similarity of adult and juvenile muscle responses during suspension and spaceflight, suggesting that this ground-based model simulates many of the unloading effects of weightlessness.  相似文献   

8.
Aim of this study is to analyze the effect of chronic administration of beta agonist isoproterenol hydrochloride (60 mg kg(-1) day(-1); 30 days) on soleus (a slow type) and extensor digitorum longus (EDL, a fast type) muscles in young mice. Isoproterenol resulted in significant increase in muscle weight to whole body weight ratio with no increase in hypertrophy index in soleus muscle. A significant increase in noncontractile protein collagen is also observed in both muscles but more prominent in soleus muscle. Collagen proliferation is also analyzed on sodium dodecyle sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of pepsin soluble and Cyanogen Bromide (CN Br) treated pepsin insoluble collagen. Isoproterenol remolded the myofibrillar proteins in both muscles but significant increase in myofibrillar ATPase activity occurred only in soleus muscle. It is concluded that growth stimulatory effect of isoproterenol hydrochloride is more prominent in soleus than FDL muscle. Isoproterenol augmented the proliferation of non-contractile protein collagen in soleus and EDL muscles. The transformation in myofibrillar proteins caused by isoproterenol might lead to an enhancement of contractile performance.  相似文献   

9.
Unloading in spaceflight or long-term bed rest induces to pronounced atrophy of anti-gravity skeletal muscles. Passive stretch partially resists unloading-induced atrophy of skeletal muscle, but the mechanism remains elusive. The aims of this study were to investigate the hypotheses that stretch tension might increase protein level of neuronal nitric oxide synthase (nNOS) in unloaded skeletal muscle, and then nNOS-derived NO alleviated atrophy of skeletal muscle by inhibiting calpain activity. The tail-suspended rats were used to unload rat hindlimbs for 2 weeks, at the same time, left soleus muscle was stretched by applying a plaster cast to fix the ankle at 35° dorsiflexion. Stretch partially resisted atrophy and inhibited the decreased protein level and activity of nNOS in unloaded soleus muscles. Unloading increased frequency of calcium sparks and elevated intracellular resting and caffeine-induced Ca(2+) concentration ([Ca(2+)]i) in unloaded soleus muscle fibers. Stretch reduced frequency of calcium sparks and restored intracellular resting and caffeine-induced Ca(2+) concentration to control levels in unloaded soleus muscle fibers. The increased protein level and activity of calpain as well as the higher degradation of desmin induced by unloading were inhibited by stretch in soleus muscles. In conclusion, these results suggest that stretch can preserve the stability of sarcoplasmic reticulum Ca(2+) release channels which prevents the elevated [Ca(2+)]i by means of keeping nNOS activity, and then the enhanced protein level and activity of calpain return to control levels in unloaded soleus muscles. Therefore, stretch can resist in part atrophy of unloaded soleus muscles.  相似文献   

10.
Female rats(7-8 mo old, n = 40) wererandomly placed into the intact control (Int) and ovariectomizedcontrol (Ovx) groups. Two weeks after ovariectomy, animals were furtherdivided into intact 2-wk hindlimb unloaded (Int-HU) and ovariectomizedhindlimb unloaded (Ovx-HU). We hypothesized that there would be greater hindlimb unloading-related atrophy in Ovx than in Int rats. In situcontractile tests were performed on soleus (Sol), plantaris (Plan),peroneus longus (Per), and extensor digitorum longus (EDL) muscles.Body weight and Sol mass were ~22% larger in Ovx than in Int groupand ~18% smaller in both HU groups than in Int rats (Ovx × HUinteraction, P < 0.05), and therewas a similar trend in Plan muscle (P < 0.07). There were main effects (P < 0.05) for both ovariectomy (growth) and hindlimb unloading(atrophy) on gastrocnemius mass. Mass of the Per and EDL muscles wasunaffected by either ovariectomy or hindlimb unloading. Time to peaktwitch tension for EDL and one-half relaxation times for Sol, Plan,Per, and EDL muscles were faster (P < 0.05) in Ovx than in Int animals. The results suggest that1) ovariectomy led to similarincreases of ~20% in body weight and plantar flexor mass;2) hindlimb unloading may haveprevented ovariectomy-related muscle growth;3) greater atrophy may have occurredin Sol and Plan of Ovx animals compared with controls; and4) removal of ovarian hormonalinfluence decreased skeletal muscle contraction times.

  相似文献   

11.
The obese Zucker rat (OZR) is a model of metabolic syndrome, which has lower skeletal muscle size than the lean Zucker rat (LZR). Because satellite cells are essential for postnatal muscle growth, this study was designed to determine whether reduced satellite cell proliferation contributes to reduced skeletal mass in OZR vs. LZR. Satellite cell proliferation was determined by a constant-release 5-bromo-2-deoxyuridine (BrdU) pellet that was placed subcutaneously in each animal. Satellite cell proliferation, as determined by BrdU incorporation, was significantly attenuated in control soleus and plantaris muscles of the OZR compared with that shown in the LZR. To determine whether this attenuation of satellite cell activity could be rescued in OZR muscles, soleus and gastrocnemius muscles were denervated, placing a compensatory load on the plantaris muscle. In the LZR and the OZR after 21 days of loading, increases of approximately 25% and approximately 30%, respectively, were shown in plantaris muscle wet weight compared with that shown in the contralateral control muscle. The number of BrdU-positive nuclei increased similarly in loaded plantaris muscles from LZR and OZR. Myogenin, MyoD, and Akt protein expressions were lower in control muscles of OZR than in those of the LZR, but they were all elevated to similar levels in the loaded plantaris muscles of OZR and LZR. These data indicate that metabolic syndrome may reduce satellite cell proliferation, and this may be a factor that contributes to the reduced mass in control muscles of OZR; however, satellite cell proliferation can be restored with compensatory loading in OZR.  相似文献   

12.

[Purpose]

αB-crystallin is a small heat shock protein that acts as a molecular chaperone under various stress conditions. Microtubules, which consist of tubulin, are related to maintain the intracellular organelles and cellular morphology. These two proteins have been shown to be related to the properties of different types of myofibers based on their contractile properties. The response of these proteins during muscular atrophy, which induces a myofibril component change, is not clearly understood.

[Methods]

We performed 15 days of hindlimb unloading on rats to investigate the transitions of these proteins by analyzing their absolute quantities. Protein contents were analyzed in the soleus, plantaris, and gastrocnemius muscles of the unloading and control groups (N = 6).

[Results]

All three muscles were significantly atrophied by hindlimb unloading (P < 0.01): soleus (47.5%), plantaris (16.3%), and gastrocnemius (21.3%) compared to each control group. αB-crystallin was significantly reduced in all three examined unloaded hindlimb muscles compared to controls (P < 0.01) during the transition of the myosin heavy chain to fast twitch muscles. α-Tubulin responded only in the unloaded soleus muscle. Muscle atrophy induced the reduction of αB-crystallin and α-tubulin expressions in plantar flexor muscles with a shift to the fast muscle fiber compared to the control.

[Conclusion]

The novel finding of this study is that both proteins, αB-crystallin and α-tubulin, were downregulated in slow muscles (P < 0.01); However, α-tubulin was not significantly reduced compared to the control in fast muscles (P < 0.01).  相似文献   

13.
Changes in alphaB-crystallin content in adult rat soleus and extensor digitorum longus (EDL) were examined after 8 wk of 3,5, 3'-triiodothyronine (T(3)) and propylthiouracil (PTU) treatments. Cellular distributions of alphaB-crystallin expression related to fiber type, and distribution shifts with these treatments were also examined in detail from the gray level of reactivity to specific anti-alphaB-crystallin antibody. alphaB-crystallin content in both soleus and EDL muscles was significantly decreased after T(3), and that in EDL was significantly increased over twofold after PTU treatment. In both control soleus and EDL muscles, the gray level of type I fibers was higher than that of type II fibers. alphaB-crystallin expression among type II subtypes was muscle specific; the order was type I > IIa > IIx > IIb in control EDL muscle and type IIx > or = IIa in soleus muscle. The relation was basically unchanged in both muscles after T(3) treatment and was, in particular, well maintained in EDL muscle. Under hypothyroidism conditions with PTU, the mean alphaB-crystallin levels of type IIa and IIx fibers were significantly lower than levels under control conditions. Thus the relation between fiber type and the expression manner of stress protein alphaB-crystallin is muscle specific and also is well regulated under thyroid hormone, especially in fast EDL muscle.  相似文献   

14.
β-Hydroxy-β-methylbutyrate (HMB) is a leucine metabolite shown to reduce protein catabolism in disease states and promote skeletal muscle hypertrophy in response to loading exercise. In this study, we evaluated the efficacy of HMB to reduce muscle wasting and promote muscle recovery following disuse in aged animals. Fisher 344×Brown Norway rats, 34 mo of age, were randomly assigned to receive either Ca-HMB (340 mg/kg body wt) or the water vehicle by gavage (n = 32/group). The animals received either 14 days of hindlimb suspension (HS, n = 8/diet group) or 14 days of unloading followed by 14 days of reloading (R; n = 8/diet group). Nonsuspended control animals were compared with suspended animals after 14 days of HS (n = 8) or after R (n = 8). HMB treatment prevented the decline in maximal in vivo isometric force output after 2 wk of recovery from hindlimb unloading. The HMB-treated animals had significantly greater plantaris and soleus fiber cross-sectional area compared with the vehicle-treated animals. HMB decreased the amount of TUNEL-positive nuclei in reloaded plantaris muscles (5.1% vs. 1.6%, P < 0.05) and soleus muscles (3.9% vs. 1.8%, P < 0.05). Although HMB did not significantly alter Bcl-2 protein abundance compared with vehicle treatment, HMB decreased Bax protein abundance following R, by 40% and 14% (P < 0.05) in plantaris and soleus muscles, respectively. Cleaved caspase-3 was reduced by 12% and 9% (P < 0.05) in HMB-treated reloaded plantaris and soleus muscles, compared with vehicle-treated animals. HMB reduced cleaved caspase-9 by 14% and 30% (P < 0.05) in reloaded plantaris and soleus muscles, respectively, compared with vehicle-treated animals. Although, HMB was unable to prevent unloading-induced atrophy, it attenuated the decrease in fiber area in fast and slow muscles after HS and R. HMB's ability to protect against muscle loss may be due in part to putative inhibition of myonuclear apoptosis via regulation of mitochondrial-associated caspase signaling.  相似文献   

15.
Hyperammonemia is considered to be the main cause of decreased levels of the branched-chain amino acids (BCAA), valine, leucine, and isoleucine, in liver cirrhosis. In this study we investigated whether the decrease in BCAA is caused by the direct effect of ammonia on BCAA metabolism and the effect of ammonia on BCAA and protein metabolism in different types of skeletal muscle. M. soleus (SOL, slow-twitch, red muscle) and m. extensor digitorum longus (EDL, fast-twitch, white muscle) of white rat were isolated and incubated in a medium with or without 500 μM ammonia. We measured the exchange of amino acids between the muscle and the medium, amino acid concentrations in the muscle, release of branched-chain keto acids (BCKA), leucine oxidation, total and myofibrillar proteolysis, and protein synthesis. Hyperammonemia inhibited the BCAA release (81% in SOL and 60% in EDL vs. controls), increased the release of BCKA (133% in SOL and 161% in EDL vs. controls) and glutamine (138% in SOL and 145% in EDL vs. controls), and increased the leucine oxidation in EDL (174% of controls). Ammonia also induced a significant increase in glutamine concentration in skeletal muscle. The effect of ammonia on intracellular BCAA concentration, protein synthesis and on total and myofibrillar proteolysis was insignificant. The data indicates that hyperammonemia directly affects the BCAA metabolism in skeletal muscle which results in decreased levels of BCAA in the extracellular fluid. The effect is associated with activated synthesis of glutamine, increased BCAA oxidation, decreased release of BCAA, and enhanced release of BCKA. These metabolic changes are not directly associated with marked changes in protein turnover. The effect of ammonia is more pronounced in muscles with high content of white fibres.  相似文献   

16.
We investigated selected histochemical and histometrical characteristics of the heterogeneous fiber types of rat skeletal muscle following long-term compensatory muscle growth. Sixty days following surgical removal of the synergistic gastrocnemius muscle, the compensated ipsilateral plantaris and soleus muscles and the corresponding control muscles from the contralateral leg were excised and stained histochemically for myofibrillar ATPase and DPNH-diaphorase activities. The number of fibers per cross-section was determined by a direct count from transverse sections taken from the midportion of the muscles. Fiber area was determined by direct planimetry. The plantaris and soleus muscles hypertrophied 103% and 45%, respectively, within 60 days. Compensatory hypertrophy of the plantaris muscle was accompanied by a significant but disproportionate increase in the cross-sectional areas of the three muscle fiber types. There was an approximate 4-fold increase in the number of slow-twitch-oxidative (SO) fibers observed per transverse section. The hypertrophied plantaris muscle exhibited a significantly greater number of fibers per cross-section (29%) than the respective control muscle. The compensated soleus muscle consisted of nearly 100% SO fibers compared to 83% for the control soleus muscle.  相似文献   

17.
The purpose of this study was to determine whether skeletal muscle mass, myofibrillar adenosinetriphosphatase activity, and the expression of myosin heavy (MHC) and light chain subunits are differentially affected in juvenile (4 wk) and young adult (12 wk) rats by a hypertrophic growth stimulus. Hypertrophy of the plantaris or soleus was studied 4 wk after ablation of either two [gastrocnemius (GTN) and soleus or plantaris] or one (GTN) synergistic muscle(s). There was no difference in the relative magnitude of hypertrophy because of age. Plantaris myofibrillar adenosinetriphosphatase activity was decreased 21 and 12% in juvenile and adult rats, respectively, as a result of ablation of both the GTN and soleus. Slow myosin light chain isoforms (1s and 2s) were expressed to a greater extent in hypertrophied plantaris muscles of both ages, but the increase in 1s was greater in juvenile rats. The relative expression of slow beta-MHC in hypertrophied plantaris muscles increased by 470 and 350%, whereas MHC IIb decreased by 70 and 33% in juvenile and adult rats, respectively. The relative expression of MHC IIa increased (56%) in the plantaris after ablation in juvenile rats only. These shifts in myosin subunit expression and the increases in mass were generally about one-half the magnitude when only the GTN was removed. There were no detectable myosin shifts in hypertrophied soleus muscles. Although the extent of muscle hypertrophy is similar, the shifts in myosin subunits were greater in juvenile than in young adult rats.  相似文献   

18.
Gao F  Yu ZB 《生理学报》2005,57(5):653-658
为观察模拟失重对大鼠比目鱼肌(soleus,SOL)与趾长伸肌(extensor digitorum longus,EDL)间断强直收缩功能的影响,以及对刺激频率的调节作用,采用离体骨骼肌条灌流技术,观测其产生强直收缩最大张力的最适刺激频率、疲劳性与疲劳后恢复过程。结果表明:对照组大鼠SOL强直收缩的最适刺激频率为60Hz,尾部悬吊1周大鼠SOL的最适刺激频率亦为60Hz,尾部悬吊2周后,其最适刺激频率增高为80Hz,4周后则为100Hz;在最适刺激频率作用下,悬吊大鼠SOL间断强直收缩的最大张力(Po)在悬吊1与2周未见改变,第4周才呈现显著性降低(P〈0.01)。间断强直收缩5min后,对照组大鼠SOL张力降低到22.8%Po:悬吊1、2与4周组疲劳性均增加,与其同步对照组相比均有显著性差异(P〈0.01)。疲劳性强直收缩后,在20min内对照大鼠SOL张力基本恢复到疲劳前水平,而悬吊1、2与4周组则不能完全恢复(P〈0.05)。对照组大鼠EDL的最适刺激频率为120Hz,悬吊1、2与4周组EDL的最适刺激频率、疲劳性以及疲劳后恢复过程均未发生改变。以上结果提示,增加刺激频率可对悬吊1与2周大鼠SOL强直收缩最大张力的降低有代偿作用,但不能代偿悬吊4周大鼠SOL最大收缩张力的降低,亦不影响悬吊大鼠SOL间断强直收缩疲劳性的增加与疲劳后恢复的减缓。  相似文献   

19.
The effect of glucagon on the rate of muscle protein synthesis was examined in vivo and in the isolated perfused rat hemicorpus. An inhibition of protein synthesis in skeletal muscles from overnight-fasted rats at various plasma concentrations of glucagon was demonstrated in vivo. The plantaris muscle (Type II, fibre-rich) was more sensitive than the soleus (Type I, fibre-rich). Myofibrillar and sarcoplasmic proteins were equally sensitive in vivo. However, protein synthesis in mixed protein and in sarcoplasmic and myofibrillar fractions of the heart was unresponsive to glucagon in vivo. In isolated perfused muscle preparations from fed animals, the addition of glucagon also decreased the synthesis of mixed muscle proteins in gastrocnemius (Type I and II fibres) and plantaris, but not in the soleus. The sarcoplasmic and myofibrillar fractions of the plantaris were also equally affected in vitro. Similar results were observed in vitro with 1-day-starved rats, but the changes were less marked.  相似文献   

20.
Comparisons of soleus and extensor digitorum longus (EDL) muscles from male Sprague-Dawley rats (350-400 g) after 7 days of weightlessness, 7 and 14 days of whole body suspension (WBS), and 7 days of recovery from WBS and from vivarium controls were made. Muscle mass loss of approximately 30% was observed in soleus after 7 and 14 days of WBS. Measurement of slow- and fast-twitch fibers showed significant alterations. Reductions in cross-sectional areas and increases in fiber densities in soleus after spaceflight and WBS were related to previous findings of muscle atrophy during unloading. Capillary density also showed a marked increase with unloading. Seven days of weightlessness were sufficient to effect a 20 and 15% loss in absolute muscle mass in soleus and EDL, respectively. However, the antigravity soleus was more responsive in terms of cross-sectional area reductions. After 7 days of recovery from WBS, with normal ambulatory loading, the parameters studied showed a reversal to control levels. Muscle plasticity, in terms of fiber and capillary responses, indicated differences in responses in the two types of muscles and further amplified that antigravity posture muscles are highly susceptible to unloading. Studies of recovery from spaceflight for both muscle metabolism and microvascular modifications are further justified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号