首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
For 50 years, physiologic studies in Candida albicans have associated fermentation with filamentation and respiration with yeast morphology. Analysis of the mitochondrial proteome of a C. albicans NDH51 mutant, known to be defective in filamentation, identified increased expression of several proteins in the respiratory pathway. Most notable was a 15-fold increase in pyruvate dehydrogenase complex protein X (Pdx1), an essential component of the pyruvate dehydrogenase complex. In basal salts medium with < or = 100 mM glucose as carbon source, two independent pdx1 mutants displayed a filamentation defect identical to ndh51; reintegration of one PDX1 allele restored filamentation. Concentrations of glucose < or = 100 mM did not correct the filamentation defect. Expanding on previous work, these studies suggest that increased expression of proteins extraneous to the electron transport chain compensates for defects in the respiratory pathway to maintain yeast morphology. Mitochondrial proteomics can aid in the identification of C. albicans genes not previously implicated in filamentation.  相似文献   

2.
A Mo -reducing bacterium (strain 48), which grew on medium supplemented with 200 mM Mo, was isolated from stream water obtained from Chengkau, Malaysia. The chemical properties of strain 48 conform to the characteristics of Enterobacter cloacae. Under anaerobic conditions in the glucose-yeast extract medium containing phosphate ion (2.9 mM) and Mo (10 mM), the bacterium reduced Mo to form molybdenum blue. Approximately 27% of Mo added to the medium was reduced after 28 h of cultivation. The reduction of Mo with glucose as an electron donor was strongly inhibited by iodoacetic acid, sodium fluoride, and sodium cyanide, suggesting an involvement of the glycolytic pathway and electron transport in Mo reduction. NADH and N,N,N',N' -tetramethyl-p-phenylenediamine served as electron donors for Mo reduction. When NADH was used as an electron donor, at first cytochrome b in the cell extract was reduced, and then molybdenum blue was formed. Sodium cyanide strongly inhibited Mo reduction by NADH (5 mM) but not the reduction of cytochrome b in the cell extract, suggesting that the reduced component of the electron transport system after cytochrome b serves as an electron donor for Mo reduction. Both ferric and stannous ions strongly enhanced the activity of Mo reduction by NADH.  相似文献   

3.
NADH dehydrogenase-2 (NDH-2) from Escherichia coli respiratory chain is a membrane-bound cupric-reductase encoded by ndh gene. Here, we report that the respiratory system of a ndh deficient strain suffered a faster inactivation than that of the parental strain in the presence of tert-butyl hydroperoxide due to endogenous copper. The inactivation was similar for both strains when copper concentration increased in the culture media. Furthermore, several ndh deficient mutants grew less well than the corresponding parental strains in media containing either high or low copper concentrations. A mutant strain complemented with ndh gene almost recovered the parental phenotype for growing in copper limitation or excess. Then, NDH-2 gives the bacteria advantages to diminish the susceptibility of the respiratory chain to damaging effects produced by copper and hydroperoxides and to survive in extreme copper conditions. These results suggest that NDH-2 contributes in the bacterial oxidative protection and in the copper homeostasis.  相似文献   

4.
This study finds lengthened circadian period in a congenic strain of mice homozygous for a null mutation in carbonic anhydrase isoenzyme-II gene on proximal Chromosome 3. Carbonic anhydrase II has the highest turnover rate of any constitutive enzyme. It catalyzes the reversible hydration of carbon dioxide to control intercellular acid/base balance. A strain of congenic mice has a carbonic anhydrase II null mutation within a DBA/2J inbred strain insert on a C57BL/6J inbred strain background. The locomotor activity levels and period of circadian rhythms were examined in the homozygous null mutants and their progenitors, mice heterozygous for the region around the carbonic anhydrase gene. The heterozygous mice siblings and the wild-type siblings served as the controls. During behavioral studies, male and female offspring and parents were housed singly in constant darkness. Locomotor activity was monitored using an infrared photobeam array. Mice homozygous for the carbonic anhydrase null mutation had a longer circadian period than either heterozygote or wild type littermates. Carbonic anhydrase null mutants also had low locomotor activity compared to either heterozygous or wild-type litter mates. This implies that either the physiological changes resulting from absence of carbonic anhydrase II isozyme or the presence of DBA/2J alleles around the carbonic anhydrase locus influence the circadian period and level of locomotor activity in laboratory mice.  相似文献   

5.
This study finds lengthened circadian period in a congenic strain of mice homozygous for a null mutation in carbonic anhydrase isoenzyme-II gene on proximal Chromosome 3. Carbonic anhydrase II has the highest turnover rate of any constitutive enzyme. It catalyzes the reversible hydration of carbon dioxide to control intercellular acid/base balance. A strain of congenic mice has a carbonic anhydrase II null mutation within a DBA/2J inbred strain insert on a C57BL/6J inbred strain background. The locomotor activity levels and period of circadian rhythms were examined in the homozygous null mutants and their progenitors, mice heterozygous for the region around the carbonic anhydrase gene. The heterozygous mice siblings and the wild-type siblings served as the controls. During behavioral studies, male and female offspring and parents were housed singly in constant darkness. Locomotor activity was monitored using an infrared photobeam array. Mice homozygous for the carbonic anhydrase null mutation had a longer circadian period than either heterozygote or wild type littermates. Carbonic anhydrase null mutants also had low locomotor activity compared to either heterozygous or wild-type litter mates. This implies that either the physiological changes resulting from absence of carbonic anhydrase II isozyme or the presence of DBA/2J alleles around the carbonic anhydrase locus influence the circadian period and level of locomotor activity in laboratory mice.  相似文献   

6.
Characterization and quantification of the Hxt2 (hexose transport) protein of Saccharomyces cerevisiae indicate that it is one of a set of differentially expressed high-affinity glucose transporters. The protein product of the HXT2 gene was specifically detected by antibodies raised against a synthetic peptide encompassing the 13 carboxyl-terminal amino acids predicted by the HXT2 gene sequence. Hxt2 migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a broad band or closely spaced doublet with an average M(r) of 47,000. Hxt2 cofractionated with the plasma membrane ATPase, Pma1, indicating that it is a plasma membrane protein. Hxt2 was not solubilized by high pH or urea but was solublized by detergents, which is characteristic of an integral membrane protein. Expression of the Hxt2 protein was measured under two different conditions that produce expression of high-affinity glucose transport: a medium shift from a high (2.0%) to a low (0.05%) glucose concentration (referred to below as high and low glucose) and growth from high to low glucose. Hxt2 as measured by immunoblotting increased 20-fold upon a shift from high-glucose to low-glucose medium, and the high-affinity glucose transport expressed had a strong HXT2-dependent component. Surprisingly, Hxt2 was not detectable when S. cerevisiae growing in high glucose approached glucose exhaustion, and the high-affinity glucose transport expressed under these conditions did not have an HXT2-dependent component. The role of Hxt2 in growth during aerobic batch culture in low-glucose medium was examined. An hxt2 null mutant grew and consumed glucose significantly more slowly than the wild type, and this phenotype correlated directly with appearance of the Hxt2 protein.  相似文献   

7.
The mitochondrial phosphate transporter of Saccharomyces cerevisiae, encoded by MIR1 (YJR077C) gene, shows divergence among the transporters in various eukaryotes. We have characterized another gene, YER053C, that appeared to encode an orthologous mitochondrial phosphate transporter of yeast. The predicted amino acid sequence of the YER053C protein is much more similar to that of mitochondrial phosphate transporters of other species than that of MIR1. RNA gel blot analysis indicated that, like the MIR1 promoter, the YER053C promoter is functional and that its activity varies according to aeration. An MIR1 gene null mutant did not grow on glycerol medium, whereas a YER053C null mutant grew well on the medium, suggesting that the YER053C gene is not essential for the mitochondrial function. YER053C also did not support the growth of the MIR1 null mutant on glycerol. The MIR1 and YER053C proteins were expressed in Escherichia coli and then reconstituted into liposomes. Unlike the proteoliposomes of MIR1, those of YER053C did not exhibit significant phosphate transport activity. Unexpectedly, it was shown that YER053C is localized in vacuoles, not mitochondria, by immunological electron microscopy. These results suggest that, during evolution, yeast lost the function and/or mitochondrial targeting of YER053C and then recruited an atypical MIR1 as the only transporter.  相似文献   

8.
Ammonia-limited (3.5 mM ammonia) cultures of Bacteroides ruminicola B(1)4 had a high number of viable cells (greater than 10(9)/ml), but only when the concentration of glucose was not too high (10 mM or less). When the glucose concentration was increased from 10 to 50 mM, there was a marked decrease in viability (10(5)-fold or greater). Because there was little decline in pH and only a small increase in succinate and acetate as the glucose concentration was increased, it did not appear that end products were killing the cells. This conclusion was supported by the observation that reinoculated cultures grew in the spent medium which had been supplemented with ammonia. Unlabeled rhamnose did not inhibit [14C]-glucose uptake, and cultures which were selected with a low concentration of rhamnose tolerated high concentrations of glucose (50 mM). The glucose-resistant mutant transported glucose at a lower rate than the wild type, and the Vmax of glucose transport was fourfold lower. The wild type stored much more polysaccharide than the glucose-resistant mutant, but it is not clear if polysaccharide accumulation per se is responsible for the glucose toxicity. These results indicated that B. ruminicola B(1)4 is unable to regulate glucose transport and utilization when growth is limited by ammonia.  相似文献   

9.
Ammonia-limited (3.5 mM ammonia) cultures of Bacteroides ruminicola B(1)4 had a high number of viable cells (greater than 10(9)/ml), but only when the concentration of glucose was not too high (10 mM or less). When the glucose concentration was increased from 10 to 50 mM, there was a marked decrease in viability (10(5)-fold or greater). Because there was little decline in pH and only a small increase in succinate and acetate as the glucose concentration was increased, it did not appear that end products were killing the cells. This conclusion was supported by the observation that reinoculated cultures grew in the spent medium which had been supplemented with ammonia. Unlabeled rhamnose did not inhibit [14C]-glucose uptake, and cultures which were selected with a low concentration of rhamnose tolerated high concentrations of glucose (50 mM). The glucose-resistant mutant transported glucose at a lower rate than the wild type, and the Vmax of glucose transport was fourfold lower. The wild type stored much more polysaccharide than the glucose-resistant mutant, but it is not clear if polysaccharide accumulation per se is responsible for the glucose toxicity. These results indicated that B. ruminicola B(1)4 is unable to regulate glucose transport and utilization when growth is limited by ammonia.  相似文献   

10.
The ndhF gene of the unicellular marine cyanobacterium Synechococcus sp. strain PCC 7002 was cloned and characterized. NdhF is a subunit of the type 1, multisubunit NADH:plastoquinone oxidoreductase (NADH dehydrogenase). The nucleotide sequence of the gene predicts an extremely hydrophobic protein of 664 amino acids with a calculated mass of 72.9 kDa. The ndhF gene was shown to be single copy and transcribed into a monocistronic mRNA of 2,300 nucleotides. An ndhF null mutation was successfully constructed by interposon mutagenesis, demonstrating that NdhF is not required for cell viability under photoautotrophic growth conditions. The mutant strain exhibited a negligible rate of oxygen uptake in the dark, but its photosynthetic properties (oxygen evolution, chlorophyll/P700 ratio, and chlorophyll/P680 ratio) were generally similar to those of the wild type. Although the ndhF mutant strain grew as rapidly as the wild-type strain at high light intensity, the mutant grew more slowly than the wild type at lower light intensities and did not grow at all under photoheterotrophic conditions. The roles of the NADH:plastoquinone oxidoreductase in photosynthetic and respiratory electron transport are discussed.  相似文献   

11.
When the cytochrome-mediated mitochondrial electron transport chain of Neurospora crassa is disrupted, an alternative oxidase encoded by the nuclear aod-1 gene is induced. The alternative oxidase donates electrons directly to oxygen from the ubiquininol pool and is insensitive to chemicals such as antimycin A and KCN that affect the standard electron transport chain. To facilitate isolation of mutants affecting regulation of aod-1, a reporter system containing the region upstream of the aod-1 coding sequence fused to the coding sequence of the N. crassa tyrosinase gene (T) was transformed into a strain carrying a null allele of the endogenous T gene. In the resulting reporter strain, growth in the presence of chloramphenicol, an inhibitor of mitochondrial translation whose action decreases the level of mitochondrial translation products resulting in impaired cytochrome-mediated respiration, caused induction of both alternative oxidase and tyrosinase. Conidia from the reporter strain were mutagenized, plated on medium containing chloramphenicol, and colonies that did not express tyrosinase were identified as potential regulatory mutants. After further characterization, 15 strains were found that were unable to induce both the reporter and the alternative oxidase. Complementation analysis revealed that four novel loci involved in aod-1 regulation had been isolated. The discovery that several genes are required for regulation of aod-1 suggests the existence of a complex pathway for signaling from the mitochondria to the nucleus and/or for expression of the gene.  相似文献   

12.
The effect of the glucocorticoids, insulin, and glucose concentration on glycogen deposition in adult rat liver parenchymal cells maintained in a chemically defined, serum-free medium has been studied. Increasing the medium concentration of glucose from 5.6 mM to 30.6mM in the absence of hormones increased cellular glycogen content from 6.5 to 51 μg of glycogen per mg of cell protein. Treatment of the cells with insulin increased the glycogen content by 15 to 30% at medium glucose concentrations above 10.6 mM. The addition of the synthetic glucocorticoid, dexamethasone, to the culture medium resulted in 40 to 105% increases in glycogen content at glucose concentrations greater than 5.6 mM. The addition of dexamethasone and insulin together in the culture medium resulted in an increase in glycogen content that was greater than the additive effect of each hormone alone. This established that glucose concentrations above 10.6 mM stimulate glycogen deposition in the absence of any hormonal stimulus. In addition, glucocorticoids directly stimulate glycogen deposition at glucose concentrations which are greater than physiological (5.6 mM).  相似文献   

13.
14.
1. The activities of glycolysis and K-+ transport have been studied in slices of Morris hepatoma 3924A incubated under anaerobic conditions in the presence of different concentrations of glucose (1-50 mM). 2. Ouabain-sensitive net transport of K-+ was observed at all glucose concentrations greater than 1 mM; ouabain reduced the rate of glycolysis by about 25% at all glucose concentrations able to support ion transport. 3. The net entry of glucose into the intracellular phase was studied at varying glucose concentrations. The rate of glucose entry was similar to the rate of glucose utilisation by anaerobic glycolysis at medium concentrations of 10 mM and less, but exceeded the rate of glycolysis at 20 mM and above. 4. The glucose entry was not Na-+-dependent and was not inhibited by ouabain. 5. The results suggest (a) that the reduction in glycolytic activity caused by ouabain is not due to an inhibition of glucose transport and (b) that the glucose transport system of this poorly differentiated hepatoma has properties similar to that of normal liver.  相似文献   

15.
Optimal cell yield of Pseudomonas aeruginosa grown under denitrifying conditions was obtained with 100 mM nitrate as the terminal electron acceptor, irrespective of the medium used. Nitrite as the terminal electron acceptor supported poor denitrifying growth when concentrations of less than 15 mM, but not higher, were used, apparently owing to toxicity exerted by nitrite. Nitrite accumulated in the medium during early exponential phase when nitrate was the terminal electron acceptor and then decreased to extinction before midexponential phase. The maximal rate of glucose and gluconate transport was supported by 1 mM nitrate or nitrite as the terminal electron acceptor under anaerobic conditions. The transport rate was greater with nitrate than with nitrite as the terminal electron acceptor, but the greatest transport rate was observed under aerobic conditions with oxygen as the terminal electron acceptor. When P. aeruginosa was inoculated into a denitrifying environment, nitrate reductase was detected after 3 h of incubation, nitrite reductase was detected after another 4 h of incubation, and maximal nitrate and nitrite reductase activities peaked together during midexponential phase. The latter coincided with maximal glucose transport activity.  相似文献   

16.
Optimal cell yield of Pseudomonas aeruginosa grown under denitrifying conditions was obtained with 100 mM nitrate as the terminal electron acceptor, irrespective of the medium used. Nitrite as the terminal electron acceptor supported poor denitrifying growth when concentrations of less than 15 mM, but not higher, were used, apparently owing to toxicity exerted by nitrite. Nitrite accumulated in the medium during early exponential phase when nitrate was the terminal electron acceptor and then decreased to extinction before midexponential phase. The maximal rate of glucose and gluconate transport was supported by 1 mM nitrate or nitrite as the terminal electron acceptor under anaerobic conditions. The transport rate was greater with nitrate than with nitrite as the terminal electron acceptor, but the greatest transport rate was observed under aerobic conditions with oxygen as the terminal electron acceptor. When P. aeruginosa was inoculated into a denitrifying environment, nitrate reductase was detected after 3 h of incubation, nitrite reductase was detected after another 4 h of incubation, and maximal nitrate and nitrite reductase activities peaked together during midexponential phase. The latter coincided with maximal glucose transport activity.  相似文献   

17.
It is well established that calcium ionophore A 23187 induces acrosome reaction (AcR) of uncapacitated spermatozoa in the presence of extracellular Ca2+ ions. In the present study, we have investigated how extracellular energy substrates (glucose, pyruvate, and lactate) affect the ionophore-induced AcR of guinea pig spermatozoa. It was found that 0.3 microM concentration of A 23187 had the maximum effect to initiate AcR of guinea pig spermatozoa. Virtually no spermatozoa underwent their AcR when incubated in substrate-free modified Tyrode's medium containing 0.3 microM A 23187 and 2 mM Ca2+. At least one exogenous substrate is essential for the ionophore-induced AcR of spermatozoa. As for efficacy of the substrates, lactate was more effective than pyruvate and glucose. However, a better result was observed when lactate was added along with pyruvate. Malonate inhibited the ionophore-induced AcR but not the hyperactivated motility of spermatozoa. The mitochondrial electron transport chain blockers rotenone, antimycin, and oligomycin failed to inhibit AcR, although in the presence of these blockers spermatozoa were unable to show hyperactivated motility. These results suggest that the mitochondrial citric acid cycle, not the electron transport chain, is probably the energy source for ionophore-induced AcR of guinea pig spermatozoa.  相似文献   

18.
Growth on lactose was found to be restricted in an Escherichia coli strain deficient in its ability to transport glucose and galactose. If the latter sugars were removed from the medium as they were being produced, a wild-type strain grew only poorly, while the transport-deficient strain did not grow at all. These results suggested that all of the products of beta-galactosidase action on lactose are released into the medium before being metabolized. This contention was strongly supported by the finding that the appearance of products in the medium was equal to lactose disappearance at three limiting lactose concentrations and by an experiment which showed that essentially all of the label from added lactose ( [1-14C]glucose) was found in the medium as glucose when chased with unlabelled lactose.  相似文献   

19.
A Katoh  M Sonoda  H Katoh    T Ogawa 《Journal of bacteriology》1996,178(18):5452-5455
cotA of Synechocystis sp. strain PCC6803 was isolated as a gene that complemented a mutant defective in CO2 transport and is homologous to cemA that encodes a chloroplast envelope membrane protein (A. Katoh, K.S. Lee, H. Fukuzawa, K. Ohyama, and T. Ogawa, Proc. Natl. Acad. Sci. USA 93:4006-4010, 1996). A mutant (M29) constructed by replacing cotA in the wild-type (WT) Synechocystis strain with the omega fragment was unable to grow in BG11 medium (approximately 17 mM Na+) at pH 6.4 or at any pH in a low-sodium medium (100 microM Na+) under aeration with 3% (vol/vol) CO2 in air. The WT cells grew well in the pH range between 6.4 and 8.5 in BG11 medium but only at alkaline pH in the low-sodium medium. Illumination of the WT cells resulted in an extrusion followed by an uptake of protons. In contrast, only proton uptake was observed for the M29 mutant in the light without proton extrusion. There was no difference in sodium uptake activity between the WT and mutant. The mutant still possessed 51% of the WT CO2 transport activity in the presence of 15 mM NaCl. On the basis of these results we concluded that cotA has a role in light-induced proton extrusion and that the inhibition of CO2 transport in the M29 mutant is a secondary effect of the inhibition of proton extrusion.  相似文献   

20.
A Mo6+ -reducing bacterium (strain 48), which grew on medium supplemented with 200 mM Mo6+, was isolated from stream water obtained from Chengkau, Malaysia. The chemical properties of strain 48 conform to the characteristics of Enterobacter cloacae. Under anaerobic conditions in the glucose-yeast extract medium containing phosphate ion (2.9 mM) and Mo6+ (10 mM), the bacterium reduced Mo6+ to form molybdenum blue. Approximately 27% of Mo6+ added to the medium was reduced after 28 h of cultivation. The reduction of Mo6+ with glucose as an electron donor was strongly inhibited by iodoacetic acid, sodium fluoride, and sodium cyanide, suggesting an involvement of the glycolytic pathway and electron transport in Mo6+ reduction. NADH and N,N,N′,N′ -tetramethyl-p-phenylenediamine served as electron donors for Mo6+ reduction. When NADH was used as an electron donor, at first cytochrome b in the cell extract was reduced, and then molybdenum blue was formed. Sodium cyanide strongly inhibited Mo6+ reduction by NADH (5 mM) but not the reduction of cytochrome b in the cell extract, suggesting that the reduced component of the electron transport system after cytochrome b serves as an electron donor for Mo6+ reduction. Both ferric and stannous ions strongly enhanced the activity of Mo6+ reduction by NADH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号