首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou H  Hickford JG  Fang Q 《Immunogenetics》2005,57(6):453-457
Genetic variation in immunoglobulin A, the most abundant immunoglobulin in mammalian cells, has not been reported in ruminants. In this study, variation in the immunoglobulin heavy alpha chain constant gene (IGHA) of sheep was investigated by amplification of a fragment that included the hinge coding sequence, followed by single-strand conformational polymorphism (SSCP) analysis and DNA sequencing. Three novel sequences, each characterized by unique SSCP banding patterns, were identified. One or two sequences were detected in individual sheep and all the sequences identified shared high homology to the published ovine and bovine IGHA sequences, suggesting that these sequences represent allelic variants of the IGHA gene in sheep. Sequence alignment showed that these sequences differed mainly in the 3′ end of exon 1 and in the coding sequence of the hinge region. There was either a deletion or an insertion of two codons in the hinge coding region in these allelic variants. Codon usage in the hinge coding region was quite different from that in the non-hinge coding regions of the gene, suggesting different evolution of the IGHA hinge sequence. Three novel amino acid sequences of ovine IGHA were also predicted, and variation in these sequences might not only affect antigen recognition but also susceptibility to cleavage by bacterial or parasitic proteases. Nucleotide sequence data reported in this paper have been submitted to the NCBI GenBank nucleotide sequence database and have been assigned the accession nos. AY956424–AY956426.  相似文献   

2.
3.
Sodium bisulfite treatment of single-stranded DNA deaminates exposed cytosine residues to form uracil, resulting in cytosine-to-thymidine transition mutations following DNA replication. We have used this reaction in vitro to destroy the recognition sequences for the restriction endonucleases HindIII and XmaI in the aminoglycoside 3'-phosphotransferase I coding region of plasmid pUC4K. This procedure should be applicable to the mutation of any recognition sequence of restriction endonucleases which generate cytosine-containing single-stranded ends. The possibility of mutagenesis of restriction sites to generate stop codons in coding regions is discussed.  相似文献   

4.
5.
Creating new restriction sites by silent changes in coding sequences   总被引:4,自引:0,他引:4  
J W Little  D W Mount 《Gene》1984,32(1-2):67-73
We present methods for identifying a useful type of DNA site--one that can be mutated to create a new restriction site within a coding region without changing the amino acid sequence. These "latent sites" are abundant--silent mutations creating one of 44 different 6-bp or 8-bp recognition sites were found at relatively high density, roughly one latent site per 9 bp, in the eleven genes tested. Our analysis suggests that site-directed mutagenesis can be used to refashion coding sequences at will for flexible analysis.  相似文献   

6.
Nucleotide sequence of the glnA control region of Escherichia coli   总被引:10,自引:0,他引:10  
The RNA polymerase binding sites present along a DNA segment encompassing the glnA, glnL, and glnG genes have been identified in a hybrid plasmid carrying this chromosomal region of Escherichia coli. The DNA sequence was determined of an 817 base pair segment that contains the region coding for the first 42 amino acids of the NH2-terminal and of the glnA structural gene, as well as its regulatory region. Analysis of this nucleotide sequence revealed three probable RNA polymerase recognition sites, imperfect palindromes, inverted repeats, and direct repeated sequences.  相似文献   

7.
A segment of Bacillus subtilis chromosomal DNA homologous to the Escherichia coli spc ribosomal protein operon was isolated using cloned E. coli rplE (L5) DNA as a hybridization probe. DNA sequence analysis of the B. subtilis cloned DNA indicated a high degree of conservation of spc operon ribosomal protein genes between B. subtilis and E. coli. This fragment contains DNA homologous to the promoter-proximal region of the spc operon, including coding sequences for ribosomal proteins L14, L24, L5, S14, and part of S8; the organization of B. subtilis genes in this region is identical to that found in E. coli. A region homologous to the E. coli L16, L29 and S17 genes, the last genes of the S10 operon, was located upstream from the gene for L14, the first gene in the spc operon. Although the ribosomal protein coding sequences showed 40-60% amino acid identity with E. coli sequences, we failed to find sequences which would form a structure resembling the E. coli target site for the S8 translational repressor, located near the beginning of the L5 coding region in E. coli, in this region or elsewhere in the B. subtilis spc DNA.  相似文献   

8.
9.
Studies of Ig and TCR genes in transformed lymphocytes of scid mice have revealed aberrant DNA rearrangements. Here we present a more detailed analysis of the Igh gene recombination in nine scid pre-B cell lines transformed by Abelson murine leukemia virus. We found 85% of the rearranged Igh alleles to contain abnormal Dh-Jh deletions of varying size. All of these deletions encompassed Jh elements and extended into the Igh enhancer region, occasionally involving the switch (S) region of the C mu gene. Some of these rearrangements removed most of the Dh elements, but none appeared to extend to the Vh genes. DNA sequence analysis of the two abnormally rearranged Igh alleles in one pre-B cell line showed that no Dh or Jh coding sequences were retained at the recombination sites though heptamer-like (CACTGTG) recognition signal sequences were present in the absence of nonamer (GGTTTTTGT) recognition signal sequences. These results imply that a deregulated recombinase activity may be responsible for the abnormal Dh-Jh deletions and the absence of Vh-Dh joining in established lines of Abelson murine leukemia virus-transformed scid pre-B cells.  相似文献   

10.
Two distinct processed calmodulin genes of rat (lambda SC8 and lambda SC9) were identified, cloned and their DNA sequences determined. The existence of direct repeats of 19 base-pairs for lambda SC8 or 9 base-pairs for lambda SC9 at both ends of the coding plus non-coding regions suggested a possible involvement of a mRNA-mediated process of insertion. Total genomic Southern hybridization suggested the existence of at least three different calmodulin-related genes in the rat genome. The other gene was the bona fide calmodulin gene (lambda SC4) which was split into at least five exons. lambda SC9 contained insertions of one nucleotide and two 17 base-pair direct repeats in the coding region. These insertions cause frameshift mutations probably preventing it from encoding a functional calmodulin. It also carried an insertion of a rat middle repetitive sequence, identifier sequence (IDS: Sutcliffe et al., 1982) in the 3'-non-coding region. Otherwise, it consisted of an almost identical DNA sequence to that of the bona fide calmodulin gene (lambda SC4), including the 3'-non-coding region down to the poly(A) recognition signal, A-A-T-A-A-A. On the other hand, lambda SC8 did not possess frameshift mutations in the coding region, and hence was capable of encoding a functional protein. In fact, a probe specific to the lambda SC8 sequence identified a band in Northern blotting whose size was 300 nucleotides smaller than that of authentic calmodulin mRNA. Comparison of the nucleotide sequences showed that only the coding regions of these two processed genes were homologous, indicating that the divergence of these two processed genes from the common ancestor calmodulin was an ancient event.  相似文献   

11.
A new method which predicts internal exon sequences in human DNA has been developed. The method is based on a splice site prediction algorithm that uses the linear discriminant function to combine information about significant triplet frequencies of various functional parts of splice site regions and preferences of oligonucleotides in protein coding and intron regions. The accuracy of our splice site recognition function is 97% for donor splice sites and 96% for acceptor splice sites. For exon prediction, we combine in a discriminant function the characteristics describing the 5'-intron region, donor splice site, coding region, acceptor splice site and 3'-intron region for each open reading frame flanked by GT and AG base pairs. The accuracy of precise internal exon recognition on a test set of 451 exon and 246693 pseudoexon sequences is 77% with a specificity of 79%. The recognition quality computed at the level of individual nucleotides is 89% for exon sequences and 98% for intron sequences. This corresponds to a correlation coefficient for exon prediction of 0.87. The precision of this approach is better than other methods and has been tested on a larger data set. We have also developed a means for predicting exon-exon junctions in cDNA sequences, which can be useful for selecting optimal PCR primers.  相似文献   

12.

Background  

Restriction enzymes can produce easily definable segments from DNA sequences by using a variety of cut patterns. There are, however, no software tools that can aid in gene building -- that is, modifying wild-type DNA sequences to express the same wild-type amino acid sequences but with enhanced codons, specific cut sites, unique post-translational modifications, and other engineered-in components for recombinant applications. A fast DNA pattern design algorithm, ICRPfinder, is provided in this paper and applied to find or create potential recognition sites in target coding sequences.  相似文献   

13.
Coding junction formation in V(D)J recombination generates diversity in the antigen recognition structures of immunoglobulin and T-cell receptor molecules by combining processes of deletion of terminal coding sequences and addition of nucleotides prior to joining. We have examined the role of coding end DNA composition in junction formation with plasmid substrates containing defined homopolymers flanking the recombination signal sequence elements. We found that coding junctions formed efficiently with or without terminal DNA homology. The extent of junctional deletion was conserved independent of coding ends with increased, partial, or no DNA homology. Interestingly, G/C homopolymer coding ends showed reduced deletion regardless of DNA homology. Therefore, DNA homology cannot be the primary determinant that stabilizes coding end structures for processing and joining.  相似文献   

14.
Liu C  Shi L  Xu X  Li H  Xing H  Liang D  Jiang K  Pang X  Song J  Chen S 《PloS one》2012,7(5):e35146
The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, "DNA barcode" actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR) code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications.  相似文献   

15.
A recombinant phage, SpC3, containing a 17 kb genomic DNA insert representing approximately 60% of the 3' portion of the sheep collagen alpha 2 gene, was evaluated by electron microscopic R loop analysis. A minimum of 17 intervening sequences (introns) and 18 alpha 2 coding sequences (exons) were mapped. With the exception of the 850 base pair exon located at the extreme 3' end of the insert, all exons contained 250 base pairs or less. The total length of all the exons in SpC3 was 3,014 base pairs. The length distribution of the 17 introns ranged from 300 to 1600 base pairs; together, all of the introns comprised 14,070 base pairs of SpC3 DNA. Thus, the DNA region required for coding the interspersed 3 kb of alpha 2 collagen genetic information was 5.6 fold longer than the corresponding alpha 2 mRNA coding sequences.  相似文献   

16.
Locating protein coding regions in genomic DNA is a critical step in accessing the information generated by large scale sequencing projects. Current methods for gene detection depend on statistical measures of content differences between coding and noncoding DNA in addition to the recognition of promoters, splice sites, and other regulatory sites. Here we explore the potential value of recurrent amino acid sequence patterns 3-19 amino acids in length as a content statistic for use in gene finding approaches. A finite mixture model incorporating these patterns can partially discriminate protein sequences which have no (detectable) known homologs from randomized versions of these sequences, and from short (< or = 50 amino acids) non-coding segments extracted from the S. cerevisiea genome. The mixture model derived scores for a collection of human exons were not correlated with the GENSCAN scores, suggesting that the addition of our protein pattern recognition module to current gene recognition programs may improve their performance.  相似文献   

17.
Interpolated markov chains for eukaryotic promoter recognition.   总被引:9,自引:0,他引:9  
MOTIVATION: We describe a new content-based approach for the detection of promoter regions of eukaryotic protein encoding genes. Our system is based on three interpolated Markov chains (IMCs) of different order which are trained on coding, non-coding and promoter sequences. It was recently shown that the interpolation of Markov chains leads to stable parameters and improves on the results in microbial gene finding (Salzberg et al., Nucleic Acids Res., 26, 544-548, 1998). Here, we present new methods for an automated estimation of optimal interpolation parameters and show how the IMCs can be applied to detect promoters in contiguous DNA sequences. Our interpolation approach can also be employed to obtain a reliable scoring function for human coding DNA regions, and the trained models can easily be incorporated in the general framework for gene recognition systems. RESULTS: A 5-fold cross-validation evaluation of our IMC approach on a representative sequence set yielded a mean correlation coefficient of 0.84 (promoter versus coding sequences) and 0.53 (promoter versus non-coding sequences). Applied to the task of eukaryotic promoter region identification in genomic DNA sequences, our classifier identifies 50% of the promoter regions in the sequences used in the most recent review and comparison by Fickett and Hatzigeorgiou ( Genome Res., 7, 861-878, 1997), while having a false-positive rate of 1/849 bp.  相似文献   

18.
Macronuclear gene-sized molecules of hypotrichs.   总被引:7,自引:1,他引:6       下载免费PDF全文
The macronuclear genome of hypotrichous ciliates consists of DNA molecules of gene-sized length. A macronuclear DNA molecule contains a single coding region. We have analyzed the many hypotrich macronuclear DNA sequences sequenced by us and others. No highly conserved promoter sequences nor replication initiation sequences have been identified in the 5' nor in the 3' non-translated regions, suggesting that promoter function in hypotrichs may differ from other eukaryotes. The macronuclear genes are intron-poor; approximately 19% of the genes sequenced to date have one to three introns. Not all macronuclear DNA molecules may be transcribed; some macronuclear molecules may not have any coding function. Codon bias in hypotrichs is different in many respects from other ciliates and from other eukaryotes.  相似文献   

19.
20.
The SalGI restriction endonuclease. Enzyme specificity.   总被引:5,自引:2,他引:3       下载免费PDF全文
We have analysed the kinetics of DNA cleavage in the reaction between the SalGI restriction endonuclease and plasmid pMB9. This reaction is subject to competitive inhibition by DNA sequences outside the SalGI recognition site; we have determined the Km and Vmax. for the reaction of this enzyme at its recognition site and the KI for its interaction at other DNA sequences. We conclude that the specificity of DNA cleavage by the enzyme is only partly determined by the discrimination it shows for binding at its recognition sequence compared with binding to other DNA sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号