首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3-Amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), a mutagenic principle in tryptophan pyrolysates, binds to DNA after metabolic activation by rat liver enzymes. The enzymes for activation of Trp-P-2 were found in both microsomes and the cytosol. The reaction required NADPH and ATP, metabolic and was inhibited by 7,8-benzoflavone. Considerable binding was observed with only microsomes as enzyme source, but further addition of cytosol enhanced the binding, enhancement depending on the amount of cytosol added. Inducers for microsomal mixed-function oxidases induced activating enzyme(s) for Trp-P-2, 3-methylcholanthrene being most effective, followed by polychlorinated biphenyls and then phenobarbital.  相似文献   

2.
Schistosoma japonicum infection has been associated with an increased incidence of liver and colorectal cancers in humans. To explore the mechanisms underlying this association, we investigated the carcinogen-metabolizing properties of liver S9 preparations from S. japonicum-infected mice and compared them with those of S9 from uninfected animals. When the carcinogen 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) was incubated with these S9s and the products were analyzed by high-performance liquid chromatography, we observed that the S9 from infected mice had a lower ability to convert Trp-P-2 into 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2(NHOH)), an activated form of promutagenic Trp-P-2, than the S9 from uninfected mice. We found that both of these S9 preparations have a high ability to reduce Trp-P-2(NHOH) into Trp-P-2; however, the infected-mouse S9 showed a significantly greater reducing power than the control S9. This difference appears to be responsible for the observed lower mutagen-activating potential of the infected mouse S9. These results suggest that hepatic enzyme activities of S. japonicum-infected mice are quantitatively different from those of normal mice.  相似文献   

3.
Trp-P-2(3-amino-1-methyl-5H-pyrido [4,3-b] indole) ingestion for 42 d by C3H/HeJJcl mice caused elevation of serum alanine transaminase (ALT) activity and several signs of liver injury. These alterations were not observed in mice fed the diet supplemented with 10% miso. This suggests a preventive effect of miso as to Trp-P-2 induced liver injury.  相似文献   

4.
5.
Harman and norharman, known as comutagens of many chemicals, were tested for their effect on the binding to DNA of 3-amino-1-methyl-5H-pyrido(4,3-b)indole, (Trp-P-2), a potent mutagen found with harman and norharman in the pyrolysate of tryptophan (1). We demonstrated that the alteration of the DNA helix by intercalation of these comutagens to DNA does not affect the affinity of this potent mutagen for DNA. Covalent binding, however, was inhibited by the comutagens.  相似文献   

6.
A dietary carcinogen, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) at 20 microM activates caspase-3-like proteases as an apoptotic marker in rat splenocytes. The present study demonstrated 100 microM Trp-P-1 induced necrosis with activation of caspase-3-like proteases. The activation in necrosis and apoptosis resulted from the activation of caspase-9 and caspase-8, respectively. Thus, Trp-P-1 induces apoptosis and necrosis with the activation of different caspases.  相似文献   

7.
The mechanism of inhibition by hemin of the mutagenic activities of food pyrolysate aminoazaarenes, particularly that of Trp-P-2 (3-amino-1-methyl-5H-pyrido[4,3-b]indole), was investigated. Hemin efficiently inhibited the metabolic activation by S9 of Trp-P-2, as demonstrated by high-performance liquid chromatographic analysis of the reaction mixtures in which Trp-P-2 had been treated with S9 in the presence or absence of hemin. N-Hydroxy-Trp-P-2, an activated form of Trp-P-2 having direct mutagenicity on Salmonella typhimurium TA98, undergoes spontaneous oxidative degradation in its aqueous solution, and the presence of hemin in the solution accelerated the degradation significantly. The presence of excess hemin with N-hydroxy-Trp-P-2 completely abolished the mutagenic activity of this mutagen towards Salmonella. A UV-visible spectroscopic study has suggested the formation of a complex between hemin and N-hydroxy-Trp-P-2/Trp-P-2. In support of this view, the fluorescence spectrum of a Trp-P-2 solution was quenched efficiently by the addition of hemin. These observations indicate that this complex formation plays a role in the observed multiple actions of hemin. Similar inhibitory actions of hemin on several other direct-acting aminoazaarene mutagens are also described, as well as the inhibition activities of protoporphyrin, chlorophyllin, biliverdin and bilirubin.  相似文献   

8.
Ascorbic acid enhanced the nonenzymatic binding of the mutagen 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (N-OH-Trp-P-2) to DNA with a concomitant increase in the mutagenicity of N-OH-Trp-P-2. The covalent binding of N-OH-Trp-P-2 to DNA was higher at pH 7.4 than pH 6.2 or 5.0. Ascorbic acid increased the binding of N-OH-Trp-P-2 at all pH levels examined. These results indicate that ascorbic acid enhances the DNA damage caused by N-OH-Trp-P-2.  相似文献   

9.
A simple and rapid method is described for analyzing the Monascus pigment-mediated degradation of 3-hydroxyamino-1-methyl-5H-pyrido[4, 3-b]indole (Trp-P-2(NHOH)). We used the in-capillary micellar electrokinetic chromatography (MEKC). During the electrophoresis, the mutagen and the pigment, due to their different migration velocities, mix for a certain period of time to interact, and then they are separated and quantified. Using this technique, we were able to demonstrate that Trp-P-2(NHOH) is degraded by the pigment. The degradation was pigment-dose dependent, and because the pigment was recovered unchanged, it was deduced that the pigment acted catalytically for the degradation. The entire MEKC procedure takes 8 min.  相似文献   

10.
3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), one of the tryptophan pyrolysates, is a dietary carcinogen and is formed in cooked meat and fish in our daily diet. Trp-P-1 will affect the cells in the blood circulation system before it causes carcinogenicity in target organs such as the liver. In this study, the cytotoxicity of Trp-P-1 was investigated in mononuclear cells (MNCs) from blood. Trp-P-1 (10-15 microM) decreased cell viability and induced apoptosis characterized both by morphological changes and by DNA fragmentation 4 h after treatment. DNA fragmentation was also observed following treatment at 1 nM after 24 h in culture. This result suggested that apoptosis would occur in the body following unexpected intake of foods containing Trp-P-1. To determine the mechanism of apoptosis, we investigated the activation of the caspase cascade in MNCs. Trp-P-1 (10-15 microM) activated the caspase cascade, i.e. the activity of caspase-3, -6, -7, -8 and -9 increased dose-dependently using peptide substrates, the active forms of caspase-3, -8 and -9 were detected by immunoblotting, and cleavage of poly(ADP-ribose) polymerase and protein kinase C-delta as the intracellular substrates for caspases was observed. A peptide inhibitor of caspase-8 completely suppressed activation of all other caspases, while an inhibitor of caspase-9 did not. These results indicated that caspase-8 may act as an apical caspase in the Trp-P-1-activated cascade.  相似文献   

11.
Heterocyclic aromatic amines (HAAs) are produced during cooking of proteinaceous food such as meat and fish. Humans eating a normal diet are regularly exposed to these food-borne substances. HAAs have proved to be carcinogenic in animals and to induce early lesions in the development of cancer. DNA adduct levels in mouse liver have been measured by 32P-HPLC after oral administration each of 14 different HAAs. The highest DNA adduct levels were detected for 3-amino-1-methyl-5H-pyrido[4,3-b]-indole (Trp-P-2), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 2-amino-9H-pyrido[2,3-b]indole (AalphaC), respectively. To assess a relative risk in a human population, a relative risk index was calculated by combining the DNA adduct levels in mouse liver with human daily intake of heterocyclic amines in a US and in a Swedish population. Such calculations suggest that AalphaC presents the highest risk for humans, e.g. nine-fold higher compared with the most abundant amines in food, 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP). Therefore, the distribution of DNA adducts in different tissues of mouse was investigated after oral administration of AalphaC. The highest AalphaC-DNA adduct levels were found in liver (137 adducts/10(8) normal nucleotides) followed by heart, kidney, lung, large intestine, small intestine, stomach and spleen, in descending order. To characterize the chemical structure of the major DNA adduct, chemical synthesis was performed. The major DNA adduct from the in vivo experiments was characterized by five different methods. On the basis of these results, the adduct was characterized as N2-(deoxyguanin-8-yl)-2-amino-9H-pyrido [2,3-b]indole. Considering the abundance of AalphaC not only in grilled meat, but also in other products like grilled chicken, vegetables and cigarette smoke and in light of the results of the present study, it is suggested that the human cancer risk for AalphaC might be underestimated.  相似文献   

12.
Trp-P-2(3-amino-1-methyl-5H-pyrido [4,3-b] indole) ingestion for 42 d by C3H/HeJJcl mice caused elevation of serum alanine transaminase (ALT) activity and several signs of liver injury. These alterations were not observed in mice fed the diet supplemented with 10% miso. This suggests a preventive effect of miso as to Trp-P-2 induced liver injury.  相似文献   

13.
3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), which is a tryptophan pyrolysate formed during cooking, induces apoptosis in rat splenocytes, thymocytes, and hepatocytes. In this study, we investigated whether Trp-P-1 is transported into these cells and causes apoptosis. Trp-P-1 was immediately incorporated into rat splenocytes, thymocytes, and hepatocytes in a dose- and time-dependent manner. Dopamine and serotonin significantly competed with the uptake of Trp-P-1 into these cells, and nomifensine and indatraline, which are inhibitors of dopamine- and serotonin-transporters, respectively, markedly suppressed the uptake of Trp-P-1. On the other hand, amino acids including tryptophan did not compete with Trp-P-1. Inhibition of monoamine transporters using nomifensine and indatraline partially suppressed Trp-P-1-induced cell death in these cells. In hepatocytes, the inhibition of transporters prevented Trp-P-1-induced morphological changes and activation of caspase-3. These results demonstrated that Trp-P-1 is incorporated into the cells through monoamine transporters and induces apoptosis.  相似文献   

14.
The binding of mutagenic pyrolyzates to cell fractions from some gram-negative intestinal bacteria and to thermally treated bacterial cells was investigated. 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) were effectively bound by several of the bacterial cells. The cell wall skeletons of all bacteria effectively bound Trp-P-1 and Trp-P-2. Their cytoplasmic fractions retained Trp-P-1 and Trp-P-2, but to a lesser extent than the cell wall skeletons. 2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) was not found in their cytoplasmic fractions. These cell wall skeletons also bound 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1), 2-amino-5-phenylpyridine (Phe-P-1), IQ, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQX). The amount of each mutagen bound differed with the type of mutagen and the bacterial strain used. The outer membrane of Escherichia coli IFO 14249 showed binding of about 123.7 micrograms/mg of Trp-P-2, and its cytoplasmic membrane bound 57.14 micrograms/mg. Trp-P-2 bound to the bacterial cells was extracted with ammonia (5%), methanol, and ethanol but not with water.  相似文献   

15.
3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) is known as a dietary carcinogen and it requires metabolic activation by cytochrome P450 (CYP) 1A subfamily to have carcinogenicity. On the other hand, our previous report demonstrated that Trp-P-1 induces apoptosis in primary cultured rat hepatocytes, but the metabolically activated Trp-P-1 added extracelluarly to hepatocytes did not induce apoptosis. In this study, we focused on the intracellular status of CYPs and investigated apoptotic events induced by Trp-P-1 using hepatocytes isolated from rats treated with three chemical inducers for CYPs. In cultured hepatocytes from rats treated with 3-methylchoranthrene, which mainly induces CYP 1A, Trp-P-1-induced apoptosis was suppressed. In the same cultures, intact Trp-P-1 was decreased and its metabolites were increased. Phenobarbital and pyridine did not affect Trp-P-1-induced apoptosis. These results suggested that evoking CYP 1A activity might interfere with apoptosis induced by Trp-P-1 in rat hepatocytes under the ex vivo system.  相似文献   

16.
The interactions between lipids and the mutagenic active metabolite of 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) and 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (N-hydroxy-Trp-P-2), were studied. Oleic acid showed an inhibitory effect on the formation of this active metabolite mainly by inhibition of hepatic microsomal oxidation systems. On the other hand, microsomal lipids from rat liver and commercial pig liver lecithin diminished the amount of N-hydroxy-Trp-P-2 without inhibiting the metabolism of Trp-P-2. The direct reaction of these lipids with N-hydroxy-Trp-P-2 was disclosed by experiments using N-hydroxy-Trp-P-2 and lipids without microsomes. Furthermore, the participation of lipid peroxides in this reaction was suggested by a linear relationship between the concentrations of the conjugated diene of lipids and the disappearance of N-hydroxy-Trp-P-2. When [3H]N-hydroxy-Trp-P-2 was incubated in the presence of pig liver lecithin, the polar products which were not formed in the incubation without lipids were newly detected by thin-layer chromatography (TLC) analysis.  相似文献   

17.
Early work from our laboratory has shown that the mutagenicity of heterocyclic amines in Salmonella can be inhibited by hemin and chlorophyllins. We have speculated that the inhibition is a result of complex formation between heterocyclic amines and the pigments, and the speculation has been given a line of experimental evidence. We have now found that ferric-chlorophyllin (Fe-chlorophyllin) can modify the mutagenicity of 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2(NHOH)), a metabolically activated form of 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2). The mutagenicity of Trp-P-2(NHOH)) in Salmonella typhimurium TA 98 (without S9) was strongly inhibited by an addition of an equimolar Fe-chlorophyllin in the pre-incubation mixture. Fe-chlorophyllin also inhibited the mutagenicity of 2-hydroxyamino-6-methyldipyrido[1,2-a:3′,2′-d] imidazole (Glu-P-1(NHOH)). A rapid change in the UV spectrum of a mixture of Trp-P-2(NHOH) and Fe-chlorophyllin was observed. Analysis by high performance liquid chromatography showed that Trp-P-2(NHOH) was converted into 3-nitroso-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2(NO)), the mutagenic potency of which is a quarter of that of Trp-P-2(NHOH). Furthermore, the mutagenicity of Trp-P-2(NO), in turn, was inhibited by Fe-chlorophyllin. We conclude that the suppression of the mutagenicity of Trp-P-2(NHOH) is ascribable to the oxidative function of Fe-chlorophyllin, coupled with its ability to form complex formation with the planar surface of the heterocyclic amine molecules.  相似文献   

18.
3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) is a potent carcinogen present in cooked meat. Although the target of this carcinogen is mainly in the liver, Trp-P-1 is distributed in the thymus and spleen as well as in the liver after administration. However, the cytotoxic effect of Trp-P-1 on lymphocytes has not been examined in detail. In the present study, we investigated the cytotoxicity of Trp-P-1 against rat splenocytes and thymocytes. Trp-P-1 reduced viability of both types of cells in the same manner, the LD50 at 6 h in culture was 15 μM, and the time for the 50% decrease in cell viability (t1/2) at 20 μM was 3 h. In both types of cells, Trp-P-1 caused the activation of caspase-3-like proteases and the cleavage of poly(ADP-ribose) polymerase, both of which are biochemical markers of apoptosis. On the other hand, DNA fragmentation occured in splenocytes, but not in thymocytes although Trp-P-1 activated 32–34 kDa nucleases that may not be able to degrade DNA into nucleosomal units. These results indicated that Trp-P-1 induces apoptosis in both splenocytes and thymocytes by different mechanisms in which distinct apoptotic pathways may exist downstream of the caspase cascade.  相似文献   

19.
Sulforaphane, a constituent of broccoli was investigated for its antimutagenic potential against different classes of cooked food mutagens (heterocyclic amines). These include imidazoazaarenes such as 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP); pyridoindole derivatives such as 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2); and, dipyridoimidazole derivative such as 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1). Tests were carried out by Ames Salmonella/reversion assay using Salmonella typhimurium TA98 (frame shift mutation sensitive) and TA100 (base pair mutation sensitive) bacterial strains in the presence of Aroclor 1254-induced rat liver S9. Results of these in vitro antimutagenicity studies strongly suggest that sulforaphane is a potent inhibitor of the mutagenicity induced by imidazoazaarenes such as IQ, MeIQ and MeIQx (approximately 60% inhibition) and moderately active against pyridoindole derivatives such as Trp-P-1 and Trp-P-2 (32-48% inhibition), but ineffective against dipyridoimidazole derivative (Glu-P-1) in TA 100.  相似文献   

20.
2-Amino-9H-pyrido[2,3-b]indole (AαC) is a carcinogenic heterocyclic aromatic amine (HAA) that arises in tobacco smoke. UDP-glucuronosyltransferases (UGTs) are important enzymes that detoxicate many procarcinogens, including HAAs. UGTs compete with P450 enzymes, which bioactivate HAAs by N-hydroxylation of the exocyclic amine group; the resultant N-hydroxy-HAA metabolites form covalent adducts with DNA. We have characterized the UGT-catalyzed metabolic products of AαC and the genotoxic metabolite 2-hydroxyamino-9H-pyrido[2,3-b]indole (HONH-AαC) formed with human liver microsomes, recombinant human UGT isoforms, and human hepatocytes. The structures of the metabolites were elucidated by (1)H NMR and mass spectrometry. AαC and HONH-AαC underwent glucuronidation by UGTs to form, respectively, N(2)-(β-D-glucosidurony1)-2-amino-9H-pyrido[2,3-b]indole (AαC-N(2)-Gl) and N(2)-(β-D-glucosidurony1)-2-hydroxyamino-9H-pyrido[2,3-b]indole (AαC-HON(2)-Gl). HONH-AαC also underwent glucuronidation to form a novel O-linked glucuronide conjugate, O-(β-D-glucosidurony1)-2-hydroxyamino-9H-pyrido[2,3-b]indole (AαC-HN(2)-O-Gl). AαC-HN(2)-O-Gl is a biologically reactive metabolite and binds to calf thymus DNA (pH 5.0 or 7.0) to form the N-(deoxyguanosin-8-yl)-AαC adduct at 20-50-fold higher levels than the adduct levels formed with HONH-AαC. Major UGT isoforms were examined for their capacity to metabolize AαC and HONH-AαC. UGT1A4 was the most catalytically efficient enzyme (V(max)/K(m)) at forming AαC-N(2)-Gl (0.67 μl·min(-1)·mg of protein(-1)), and UGT1A9 was most catalytically efficient at forming AαC-HN-O-Gl (77.1 μl·min(-1)·mg of protein(-1)), whereas UGT1A1 was most efficient at forming AαC-HON(2)-Gl (5.0 μl·min(-1)·mg of protein(-1)). Human hepatocytes produced AαC-N(2)-Gl and AαC-HN(2)-O-Gl in abundant quantities, but AαC-HON(2)-Gl was a minor product. Thus, UGTs, usually important enzymes in the detoxication of many procarcinogens, serve as a mechanism of bioactivation of HONH-AαC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号