首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《FEBS letters》1985,185(1):191-196
We have used azido[14C]atrazine to photoaffinity label thylakoids from wild-type (WT) Scenedesmus and a mutant, LF-1, which is blocked on the oxidizing side of photosystem II (PS II). One protein is labeled in each case, at 34 kDa in the WT and 36 kDa in LF-1. Previous comparison of the WT with LF-1 had been used to assign a PS II donor side function to the 34-kDa protein. These results suggest that this photoaffinity technique does not label the herbicide-binding protein involved in electron transfer on the reducing side of PS II.  相似文献   

2.
The polypeptide composition and spectral properties of three photosystem II (PSII) deficient mutants of the cyanobacterium Synechocystis 6803 have been determined. The levels of the 43 and 47 kilodalton chlorophyll-binding proteins and the reaction center component D2 are affected differently in each mutant; the 33 kD polypeptide of the oxygen-evolving complex is found at wild-type levels in all three. The 43 and 47 kilodalton proteins are implicated as important elements in the assembly and/or stability of the PSII reaction center, although the loss of one of these polypeptides does not lead to the loss of all PSII proteins. Low temperature fluorescence emission spectra of wild-type cells reveal chlorophyll-attributable peaks at 687 (PSII), 696 (PSII), and 725 (photosystem I) nanometers. All three mutants retain the 725 nanometer fluorescence but lack the 696 nanometer peak. This suggests that the latter fluorescence arises from PSII reaction center chlorophyll or results from interactions among functional PSII components in vivo. Cells that contain the 43 kilodalton and lack the 47 kilodalton protein, retain the 687 fluorescence; furthermore, in as much as this fluorescence is absent from cells without the 43 kilodalton protein, the 687 nanometer peak is judged to emanate from the 43 kilodalton chlorophyll-protein. A new peak, probably previously obscured, is revealed at 691 nanometers in cells that retain the 47 kilodalton protein but lack the 43 kilodalton polypeptide, suggesting that emission near 691 nanometers can be attributed to the 47 kilodalton polypeptide. Membrane-bound phycobilisomes are retained in these cells as is coupled-energy transfer between phycocyanin and allophycocyanin. Energy transfer to photosystem I by way of phycocyanin excitation proceeds as in wild-type cells despite the absence of certain PSII components.  相似文献   

3.
Transport of thiomethyl-β-D-galactoside (TMG) via the melibiose permease system (TMG permease II) in Salmonella typhimurium is known to be a sodium-dependent co-transport system. We have shown that this co-transport of sodium and TMG is associated with extrusion of protons from the cells. The rate and extent of proton extrusion during TMG uptake were measured in wild-type cells and mutants containing internal and extended deletions in the pts locus. No differences between these various strains were noted.  相似文献   

4.
Strains of E. coli with fusions between the lac structural genes and the promoter region of the fumarate reductase system were constructed from a parental strain deleted in the native lac operon. Like fumarate reductase in wild-type cells, β-galactosidase in these fusion strains is inducible by fumarate, but only under anaerobic conditions. From one of these strains, three classes of mutants altered in the expression of the hybrid operon were isolated. By anaerobic selection for growth on lactose in the absence of fumarate, mutants that synthesize β-galactosidase constitutively both aerobically and anaerobically were obtained. By aerobic selection for growth on lactose in the presence of fumarate, mutants that are inducible in the enzyme both aerobically and anaerobically and mutants that are inducible in the enzyme only aerobically were obtained. The regulatory behaviors of the mutants studied suggest that substrate and respiratory control of the expression of the fumarate reductase complex are mechanistically connected.  相似文献   

5.
The psbC gene of Chlamydomonas reinhardtii encodes P6, the 43 kd photosystem II core polypeptide. The sequence of P6 is highly homologous to the corresponding protein in higher plants with the exception of the N-terminal region where the first 12 amino acids are missing. Translation of P6 is initiated at GUG in C. reinhardtii. The chloroplast mutant MA16 produces a highly unstable P6 protein. The mutation in this strain maps near the middle of the psbC gene and consists of a 6 bp duplication that creates a Ser-Leu repeat at the end of one transmembrane domain. Two nuclear mutants, F34 and F64, and one chloroplast mutant, FuD34, are unable to synthesize P6. All of these mutants accumulate wild-type levels of psbC mRNA. The FuD34 mutation has been localized near the middle of the 550 bp 5' untranslated region of psbC where the RNA can be folded into a stem-loop structure. A chloroplast suppressor of F34 has been isolated that partially restores synthesis of the 43 kd protein. The mutation of this suppressor is near that of FuD34, in the same stem-loop region. These chloroplast mutations appear to define the target site of a nuclear factor that is involved in P6 translation.  相似文献   

6.
The evolution of H2 gas in an in vitro illuminated chloroplast plus hydrogenase system was shown to function for six and a half hours at a continuous rate of about 10 μmoles H2/mg. chlorophyll/hour. Chloroplasts from various plant species, using different isolation media, and storage in a fixed state (glutaraldehyde) at 4°, ?5° and ?196° were shown to catalyze H2 production. Both Clostridium and E. coli hydrogenase were used. From the use of the photosystem II inhibitors DCMU and DBMIB and heat inactivation of photosystem II, it was concluded that H2O was the source of electrons for H2 gas production.  相似文献   

7.
A P700-chlorophyll a-protein complex has been purified from several higher plants by hydroxylapatite chromatography of Triton X-100-dissociated chloroplast membranes. The isolated material exhibits a red wavelength maximum at 677 nm, major spectral forms of chlorophyll a at 662, 669, 677, and 686 nm, a chlorophyll/P700 ratio of 40–451, and contains only chlorophyll a and β-carotene of the photosynthetic pigments present in the chloroplast. The spectral characteristics and composition of the higher plant material are homologous to those of the P700-chlorophyll a-protein previously isolated from blue-green algae; however, unlike the blue-green algal component, cytochromes f and b6 are associated with the higher plant material. Evidence is presented that a chlorophyll a-protein termed “Complex I” which can be isolated from sodium dodecyl sulfate extracts of chloroplast membranes is a spectrally altered form of the eucaryotic P700-chlorophyll a-protein. The isolation procedure described in this paper is a more rapid technique for obtaining the heart of photosystem I than presently exists; furthermore, the P700 photooxidation and reduction kinetics in the fraction are improved over those in other isolated components showing the same enrichment of P700. It appears very probable that the heart of photosystem I is organized in the same manner in all chlorophyll a-containing organisms.  相似文献   

8.
Photosystem II particles of Chlamydomonas reinhardtii contain three extrinsic polypeptides of 29, 20, and 16 kilodaltons, whose functions are incompletely defined. We prepared a monospecific polyclonal antibody against the 29 kilodalton protein and determined that it also specifically recognizes a protein of approximately 33 kilodaltons in thylakoid membrane fractions of several vascular plants, eukaryotic algae, and a cyanobacterium. The cross-reacting 33 kilodalton protein of pea was removed from inverted thylakoid vesicles by CaCl2 washes demonstrating the structural relationship between the Chlamydomonas polypeptide and the largest subunit of the water oxidation complex of vascular plants. Functional identity of the Chlamydomonas polypeptide was confirmed by antibody inhibition of O2 evolution in inverted pea vesicles. In contrast to wild-type cells, only low levels of the 29 kilodalton polypeptide are recovered with purified thylakoid membranes of the mutants examined. However, we show that the mature form of the 29 kilodalton polypeptide accumulates to wild-type levels in whole cell extracts of photosystem II deficient mutants and a water oxidation mutant of Chlamydomonas. Impaired membrane assembly has no effect on the maturation or stability of this component of the multi-subunit water oxidation complex.  相似文献   

9.
Smith KA  Low PS 《Plant physiology》1989,90(2):575-581
Sensitive differential scanning calorimetry was employed to investigate thylakoid membrane structure. Calorimetric scans of chloroplast membranes suspended in a low ionic strength Hepesbuffered medium revealed endothermic transitions centered at the following temperatures (°C): A (42.5), B (60.6), C1 (64.9), C2 (69.6), D (75.8), E (84.3), and F (88.9). The B transition was demonstrated by several different methods to originate from denaturation of the photosystem II reaction center complex. Evidence for this conclusion is as follows: (a) the isolated reaction center complex denatures near the temperature of the B transition; (b) inorganic phosphate destablizes the isolated reaction center complex and the B endotherm to a similar extent; (c) heat inactivation of the photosystem II-mediated 1,5-diphenylcarbazide → dichloroindophenol photoreaction occurs at the temperature of the B transition and is influenced in a manner similar to B by the presence of phosphate; (d) thermal gel analysis indicates that the 43 and 47 kilodalton polypeptides of the photosystem reaction center complex denature at the temperature of the B transition, both in the presence and absence of phosphate; (e) low temperature (77 Kelvin) fluorescence reveals that a change in photosystem II emission at 695 nanometers occurs during the B transition; and (f) ioxynil, a specific inhibitor of photosystem II, selectively stabilizes the B endotherm. With the identification of the B transition established, the origins of six of the eight major transitions of the chloroplast membrane have now been determined.  相似文献   

10.
A highly purified light-harvesting pigment-protein complex (LHC) was obtained by fractionation of cation-depleted chloroplast membranes using the nonionic detergent, Triton X-100. The isolated LHC had a chlorophyll ab ratio of 1.2 and exhibited no photochemical activity. SDS-polyacrylamide gel electrophoresis of the LHC revealed three polypeptides in the molecular weight classes of 23, 25, and 30 × 103. Antibodies were prepared against the LHC and their specificity was established. The effect of the α-LHC (antibodies to LHC) on salt-mediated changes in PS I and PS II photochemistry, Chl α fluorescence inductions, and 77 °K fluorescence emission spectra was investigated. The results show that: (i) The Mg2+-induced 20% decrease in photosystem I (PS I) quantum yield observed in control chloroplasts was blocked by the presence of the α-LHC antibody, (ii) The Mg2+-induced 70% increase in photosystem II (PS II) quantum yield of control chloroplasts was reduced 35% for plastids in the presence of α-LHC antibody, (iii) The Mg2+-induced increase in room-temperature variable fluorescence was reduced 60% by α-LHC antibody, (iv) The Mg2+-induced increase in the F685F730 emission peak ratio at 77 °K was inhibited 50% in the presence of α-LHC antibody. These results provide direct evidence for the involvement of the light-harvesting complex in cation regulation of energy redistribution between the photosystems. The fact that the α-LHC antibody does not fully block Mg2+-induced PS II increases or chlorophyll fluorescence increases supports the concept that Mg2+ has two mechanisms of action: one effect on energy distribution and a second direct effect on photosystem II centers.  相似文献   

11.
Effects on oxygen evolution of the storage of detached cucumber (Cucumis sativus) leaves at 0°C in the dark were investigated with thylakoids and oxygen-evolving photosystem II membranes isolated from stored leaves. The cold and dark treatment of leaves selectively inactivated electron transport on the oxidizing side of photosystem II. Photosystem II membranes isolated from treated leaves were largely depleted of two proteins of 20 and 14 kilodaltons, which correspond to the extrinsic 23- and 17- kilodalton proteins of spinach functioning in oxygen evolution. The manganese content of photosystem II membranes was also markedly reduced by the treatment. Thus, the inactivation of oxygen evolution induced by the dark, chilling treatment is ascribed to solubilization of the 20- and 14-kilodalton proteins and extraction of manganese.  相似文献   

12.
Two sites in the photosynthetic electron transport chain of spinach chloroplasts are sensitive to inhibition by the plastoquinone antagonist dibromothymoquinone (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone). This compound imposes maximal inhibition on reactions involving electron transport from water to a terminal acceptor such as ferricyanide at concentrations of about 1 μm. At concentrations of about 10 μm, dibromothymoquinone also inhibits electron transport reactions catalyzed by photosystem II in the presence of p-phenylenediimines or p-benzoquinones. This inhibition is observed in both untreated and KCNHg-inhibited chloroplast preparations. Thiol incubation of chloroplasts exposed to dibromothymoquinone relieves inhibition at both sites. This reversal of inhibition is, however, different for the two sites. Restoration of ferricyanide reduction, which is blocked by 1 μm dibromothymoquinone, required high thiol/inhibitor ratios and incubation times with thiol of up to 3 min. The reversal of inhibition of p-phenylenediimine reduction by photosystem II, on the other hand, requires a thiol/inhibitor ratio of 1, and incubation times as short as 5 s. Addition of bovine serum albumin to absorb dibromothymoquinone results in a partial restoration of photosystem II reactions, but ferricyanide reduction, which requires photosystem II and photosystem I, cannot be restored by this procedure.  相似文献   

13.
Strain S296, isolated by screening 2000 colonies after nitrosoguanidine mutagenesis, yields extracts with less than 1% of wild-type RNase activity against (3H) poly(U). Unlike other E.coli strains, S296 grows with a doubling time of about 2 hr., both in nutrient broth and in minimal medium, and at 30°, 37° and 42°. The strain retains 10 to 20% of wild-type exonuclease activity against (3H) rRNA or T4 phage-specific mRNA; but two further mutants, made by screening mutagenized colonies of strain S296, are reduced to 3% of wild-type activity against those substrates as well.  相似文献   

14.
15.
We have monitored the accumulation of photosynthetic proteins in developing pigment-deficient mutants of Zea mays. The proteins examined are the CO2-fixing enzymes, phoshoenolpyruvate carboxylase (E.C. 4.1.1.31) and ribulose-1,5-bisphosphate carboxylase (E.C.4.1.1.39), and three thylakoid membrane proteins, the light-harvesting chlorophyll a/b binding protein (LHCP) of photosystem II, the 65 kilodalton chlorophyll a binding protein of photosystem I and the alpha subunit polypeptide of coupling factor I. Using a sensitive protein-blot technique, we have compared the relative quantities of each protein in mutants and their normal siblings. Carboxylase accumulation was found to be independent of chlorophyll content, while the amounts of the thylakoid proteins increase at about the same time as chlorophyll in delayed-greening mutants. The relative quantity of LHCP is closely correlated with the relative quantity of chlorophyll at all stages of development in all mutants. Because pigment-deficient mutants are arrested at early stages in chloroplast development, these findings suggest that the processes of chloroplast development, chlorophyll synthesis and thylakoid protein accumulation are coordinated during leaf development but that carboxylase accumulation is controlled by different regulatory mechanisms. A white leaf mutant was found to contain low levels of LHCP mRNA, demonstrating that the accumulation of LHCP mRNA is not controlled exclusively by phytochrome.  相似文献   

16.
Summary We have examined 78 chloroplast mutants of Chlamydomonas reinhardii lacking photosystem II activity. Most of them are unable to synthesize the 32 Kdalton protein. Analysis of 22 of these mutants reveals that they have deleted both copies of the psbA gene (which codes for the 32 Kdalton protein) in their chloroplast genome. Although these mutants are able to synthesize and to integrate the other photosystem II polypeptides in the thylakoid membranes, they are unable to assemble a stable functional photosystem II complex. The 32 Kprotein appears therefore to play an important role not only in photosystem II function, but also in stabilizing this complex.  相似文献   

17.
Acrystalliferous strains of Bacillusthuringiensis subsp. kurstaki were isolated at a high frequency following heat treatment of spores. Spores of these strains lacked a 130,000 dalton glycoprotein, the major component common to both parasporal crystals and coats and were nontoxic to tobacco hornworm larvae. Moreover, the deficiency of this glycoprotein resulted in lysozyme sensitivity of the spores of some mutants and the presence of new spore coat proteins in others. All nontoxic acrystalliferous mutants lacked the complete array of at least six plasmids present in the wild type, implying a relationship between presence of plasmid(s) and toxicity. The unique capacity of this species to alter the surface coating of spores which appears to be related to crystal formation may provide flexibility for germination and growth in diverse soil environments.  相似文献   

18.
A comparative study of aerobic generation of O2 and anaerobic photoproduction of H2 in whole cells of a wild-type strain of Chlamydomonas reinhardtii and its photosystem I-deficient mutants B4 and F8 found no contribution of photosystem II to ferredoxin photoreduction, which is not consistent with data of recent studies by Greenbaum et al. (Nature, 1995, 376, 438-441; and Science, 1996, 273, 364-367) who reported that they had discovered such a capacity in these mutant strains. In the wild-type and mutant strains, action spectra showed that O2 was evolved by photosystem II, whereas photoinhibition of chlororespiration and evolution of H2 depended on the activity of photosystem I. Single-turnover flash measurements of H2 evolution showed that the contents of photosystem I in mutant strains amounted to 3-35% of that in the wild-type strain. This fraction of photosystem I in "leaky" mutants displayed abnormal kinetic features and was highly sensitive to photoinhibition.  相似文献   

19.
The qualitative screening method used to select complex I mutants in the microalga Chlamydomonas, based on reduced growth under heterotrophic conditions, is not suitable for high‐throughput screening. In order to develop a fast screening method based on measurements of chlorophyll fluorescence, we first demonstrated that complex I mutants displayed decreased photosystem II efficiency in the genetic background of a photosynthetic mutation leading to reduced formation of the electrochemical proton gradient in the chloroplast (pgrl1 mutation). In contrast, single mutants (complex I and pgrl1 mutants) could not be distinguished from the wild type by their photosystem II efficiency under the conditions tested. We next performed insertional mutagenesis on the pgrl1 mutant. Out of about 3000 hygromycin‐resistant insertional transformants, 46 had decreased photosystem II efficiency and three were complex I mutants. One of the mutants was tagged and whole genome sequencing identified the resistance cassette in NDUFAF3, a homolog of the human NDUFAF3 gene, encoding for an assembly factor involved in complex I assembly. Complemented strains showed restored complex I activity and assembly. Overall, we describe here a screening method which is fast and particularly suited for the identification of Chlamydomonas complex I mutants.  相似文献   

20.
The mitochondrial phenotype of poky and other extra-nuclear Neurospora mutants is known to predominate over that of wild type in heteroplasms. This phenomenon was investigated in heterokaryons using normally occurring strain differences in restriction enzyme patterns to distinguish wild-type and poky mitochondrial DNAs. Each of ten independent heterokaryons eventually showed the poky phenotype as judged by slow growth rate and deficiency of 19 S RNA. Six heterokaryons contained mitochondrial DNAs with restriction enzyme patterns of the poky parent whereas four contained DNAs which lacked restriction enzyme fragments characteristic of the poky parent. The latter may be recombinants of wild-type and poky mitochondrial DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号