首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Kv2.1 potassium channel plays an important role in regulating membrane excitability and is highly phosphorylated in mammalian neurons. Our previous results showed that variable phosphorylation of Kv2.1 at multiple sites allows graded activity-dependent regulation of channel gating. Our previous studies also found functional differences between recombinant Kv2.1 channels expressed in HEK293 cells and COS-1 cells that were eliminated upon complete dephosphorylation of Kv2.1. To better understand how phosphorylation affects Kv2.1 gating in HEK293 and COS-1 cells we used stable isotope-labeling by amino acids in cell culture (SILAC) and mass spectrometry to determine the level of phosphorylation at one newly and thirteen previously identified sites on Kv2.1 purified from HEK293 and COS-1 cells. We identified seven phosphorylation sites on the Kv2.1 C-terminus that exhibit different levels of phosphorylation in HEK293 and COS-1 cells. Six sites have enhanced phosphorylation in HEK293 compared to COS-1, while one site exhibits enhanced phosphorylation in COS-1 cells. No sites were found phosphorylated in one cell type and not the other. Interestingly, the sites exhibiting differential phosphorylation in HEK293 and COS-1 cells under basal conditions are the same subset targeted by calcineurin-mediated signaling pathways. The data presented here suggests that differential phosphorylation at a specific subset of sites, as opposed to utilization of novel cell-specific phosphorylation sites, can explain differences in the gating properties of Kv2.1 in different cell types under basal conditions, and in the same cell type under basal versus stimulated conditions.  相似文献   

2.
3.
V G Tishchenkov 《Biofizika》1983,28(2):274-279
Rod outer segments (ROS) of the frog retina are shown to contain high affinity binding sites to guanylic nucleotides. Concentration of the binding sites comprises several per cent of rhodopsin concentration in our ROS preparations. These sites possess high affinity to GDP (Kd less than 10(-6) M) in dark-adapted preparations, and in the presence of bleached rhodopsin they effectively bind the non-hydrolizable analog of GTP--GPP (NH) P (Kd less than 10(-6) M). It is shown that one bleached rhodopsin molecule can induce the binding of up to 100 molecules of GPP (NH) P at low rhodopsin photolysis. Qur experimental results raise serious doubts as to the applicability of nucleotide exchange scheme by Fung and Stryer (1980).  相似文献   

4.
5.
cGMP-Phosphodiesterase 6 (PDE6) is the central effector enzyme in the phototransduction system of vertebrate photoreceptors. We have recently found that PDE6 accumulates in a detergent-resistant membrane (DRM) fraction in response to excitation of bovine rod phototransduction system. Here, we studied the molecular mechanism of the PDE6 translocation to DRM. Pertussis toxin inhibited the translocation of PDE6. Upon addition of AlF(4)(-) to dark-adapted ROS, PDE6 translocated to DRM along with a minor fraction of the alpha subunit of transducin (T alpha). The addition of an excess of the inhibitory subunit of PDE6 blocked its accumulation in the DRM, but did not block the translocation of the minor fraction of T alpha. These data suggested that the formation of a complex between activated T alpha and PDE6 imparted upon T alpha a high affinity for the DRM. The translocation of PDE6 to the DRM may be involved in the spatiotemporal regulation of its activity on disk membranes.  相似文献   

6.
Summary Rat retinas were treated in vitro with -SH reagents and stained with zinc iodide-osmium tetroxide (ZIO). Dithioerythritol (DTE), an -S-S-reducing agent, increased the electron opaque deposits observed after ZIO staining in the intraand extradiskal spaces of the rods. N-ethyl-maleimide (NEM), an -SH blocking agent, applied directly or after DTE, blocks the ZIO reaction. Furthermore, after treatment with NEM, distorted tubular and vesicular structures are substituted for the stacks of disks. These results strongly suggest that ZIO reacts with -SH groups in rod outer segments. They also indicate that SH-groups play an important role in the structural organization of rod outer segments.Supported by Grants from the Consejo Nacional de Investigaciones Cientificas y Técnicas, Argentina and Fight for Sight, Inc. N.Y. United StatesI am grateful to Miss Margarita López for her skilful technical assistance and to Mr. Alberto Saenz for the electron micrographs  相似文献   

7.
An all-trans-retinal (ATR) dimer (1) isolated from photoreceptor outer segments was found to have a stereogenic center at C13' flanked by tetraene (295 nm) and hexaenal (438 nm) chromophores. Analytical chiral HPLC (Chiralcel OD) revealed that the isolated retinoid had formed in 13% enantiomeric excess. Using a combination of (1)H-(1)H NOESY constraints, molecular modeling, and CD exciton coupling analysis, it was determined that the favored enantiomer was 13'(R). Three low-energy conformers of the 13'(S) model were found with MMFF/DFT and were used to calculate the CD spectrum of the ATR dimer (DeVoe method). The Boltzmann weighted spectrum was found to exhibit a positive exciton couplet, in excellent agreement with the experimental spectrum for the first eluted enantiomer. This further suggested that despite the large energy difference between the two interacting chromophores, the dominant source of optical activity in the CD spectrum is the nondegenerate exciton mechanism.  相似文献   

8.
9.
Small GTP binding proteins regulate diverse biological processes including gene expression, cytoskeleton reorganization, and protein and vesicular transport. While small GTPases have been investigated in a wide variety of cells, few studies have addressed their role in photoreceptors. In vertebrate retinal rods, the light stimulus is transmitted from rhodopsin via the pathway mediated by the heterotrimeric G protein transducin. To increase their sensitivity to light, photoreceptors accumulate remarkably high concentrations of rhodopsin and transducin in specialized cellular compartments, the outer segments (OS). Transport of these proteins from the inner segments is regulated by the small GTPases Rab6 and Rab8, which do not enter OS. Here, we asked if small G proteins have other functions in photoreceptors. We show that OS contain the small GTPase Rac-1, a member of the Rho family. In contrast to other cells, Rac-1 in OS is exclusively associated with the membranes and resides in lipid rafts. Most importantly, Rac-1 is activated by light. This activation is specifically blocked by a synthetic peptide corresponding to the Asn-Pro-X-X-Tyr motif found in rhodopsin, and Rac-1 coprecipitates with rhodopsin on Concanavalin A Sepharose. These data provide the first direct evidence for the existence of a novel pathway activated by rhodopsin.  相似文献   

10.
Wu Q  Chen C  Koutalos Y 《Biophysical journal》2006,91(12):4678-4689
The visual pigment protein of vertebrate rod photoreceptors, rhodopsin, contains an 11-cis retinyl moiety that is isomerized to all-trans upon light absorption. Subsequently, all-trans retinal is released from the protein and reduced to all-trans retinol, the first step in the recycling of rhodopsin's chromophore group through the series of reactions that constitute the visual cycle. The concentration of all-trans retinol in photoreceptor outer segments can be monitored from its fluorescence. We have used two-photon excitation (720 nm) of retinol fluorescence and fluorescence recovery after photobleaching to characterize the mobility of all-trans retinol in frog photoreceptor outer segments. Retinol produced after rhodopsin bleaching moved laterally in the disk membrane bilayer with an apparent diffusion coefficient of 2.5 +/- 0.3 micro m(2) s(-1). The diffusion coefficient of exogenously added retinol was 3.2 +/- 0.5 micro m(2) s(-1). These diffusion coefficients are in close agreement with those reported for lipids, suggesting that retinol is not tightly bound to protein sites that would be diffusing much more slowly in the plane of the membrane. In agreement with this interpretation, a fluorescent-labeled C-16 fatty acid diffused laterally with a similar diffusion coefficient, 2.2 +/- 0.2 micro m(2) s(-1). Retinol also moved along the length of the rod outer segment, with an apparent diffusion coefficient of 0.07 +/- 0.01 micro m(2) s(-1), again suggesting that it is not tightly bound to proteins that would confine it to the disks. The axial diffusion coefficient of exogenously added retinol was 0.05 +/- 0.01 micro m(2) s(-1). In agreement with passive diffusion, the rate of axial movement was inversely proportional to the square of the length of the rod outer segment. Diffusion of retinol on the plasma membrane of the outer segment can readily account for the measured value of the axial diffusion coefficient, as the plasma membrane comprises approximately 1% of the total outer-segment membrane. The values of both the lateral and axial diffusion coefficients are consistent with most of the all-trans retinol in the outer segments moving unrestricted and not being bound to carrier proteins. Therefore, and in contrast to other steps of the visual cycle, there does not appear to be any specialized processing for all-trans retinol within the rod outer segment.  相似文献   

11.
Lipid and fatty acid composition of frog photoreceptor outer segments   总被引:1,自引:0,他引:1  
  相似文献   

12.
Eye derived growth factor II (EDGF II), the retinal form of acidic fibroblast growth factor (aFGF) is present in rod outer segments (ROS) purified in the dark, which display higher EDGF specific activity than all other parts of the retina. EDGF binds to ROS disc membranes upon illumination. This binding is not reversible in the dark. ATP, but not GTP, readily releases EDGF from either dark-adapted or previously bleached ROS. The release of EDGF activity from ROS membranes would require a phosphorylation mechanism since AMP-PNP, an ATP analogue, is not efficient. ROS membranes compete with cellular EDGF receptors of retinal pigment epithelial cells in vitro for the binding of labelled EDGF II, suggesting that they also possess specific binding sites. These data suggest that EDGF II is involved in photoreceptor cell biology.  相似文献   

13.
Summary. Calcium ion (Ca2+) uptake was measured in rod outer segments (ROS) isolated from rat retina in the presence of varying concentrations of CaCl2 in the incubation buffer (1.0–2.5 mM). It is known that taurine increases Ca2+ uptake in rat ROS in the presence of ATP and at low concentrations of CaCl2 (Lombardini, 1985a); taurine produces no significant effects when CaCl2 concentrations are increased to 1.0 and 2.5 mM. With the removal of both taurine and ATP, Ca2+ uptake in rat ROS increased significantly in the presence of 2.5 mM CaCl2. Taurine treatment in the absence of ATP was effective in decreasing Ca2+ uptake at the higher levels of CaCl2 (2.0 and 2.5 mM). Similar effects were observed with ATP treatment. The data suggest that taurine and ATP, alone or in combination, limit the capacity of the rat ROS to take up Ca2+ to the extent that a stable uptake level is achieved under conditions of increasing extracellular Ca2+, indicating a protective role for both agents against calcium toxicity. Received January 25, 2000/Accepted January 31, 2000  相似文献   

14.
15.
Rhodopsin, a prototypical G protein receptor, is found both in the plasma membrane and in discs of bovine rod outer segments. The ability of each of these membranes to activate phosphodiesterase upon stimulation by light in the presence of GTP and cGMP was investigated. The plasma membrane showed little or no activity when compared with disc membranes. The plasma membrane contains approximately 28 mol% cholesterol compared to 8 mol % found in discs. Upon oxidation of at least 70 % of the cholesterol in the plasma membrane to cholestenone, the phosphodiesterase activity in the plasma membrane approached that initiated by the disc membranes. When a 50:50 mixture of disc and plasma membrane rhodopsin was tested for phosphodiesterase activity, the results were found to be additive. Therefore, cholesterol is implicated in regulation of the receptor activity.  相似文献   

16.
17.
The initial events of visual transduction occur on disc membranes which are sequestered within the photoreceptor outer segment. In rod cells, the discs are stacked in the outer segment. Discs are formed at the base of the rod outer segment (ROS) from evaginations of the plasma membrane. As new discs form, older discs move toward the apical tip of the rod, from which they are eventually shed and subsequently phagocytosed by the adjacent pigment epithelium. Thus, disc membranes within a given rod cell are not of uniform age. We have recently shown that disc membranes are not homogeneous with respect to cholesterol content (Boesze-Battaglia, K., Hennessey, T., and Albert, A. D. (1989) J. Biol. Chem. 264, 8151-8155). In the present study, freshly isolated bovine retinas were incubated with [3H]leucine for 4 h in order to allow sufficient time for the radiolabeled proteins to become incorporated into the basal-most (newest) discs. Osmotically intact discs were then isolated. After the addition of digitonin, the discs were fractionated based on cholesterol content, and radioactivity (indicative of newly synthesized protein) was measured. Discs which exhibited high cholesterol content also exhibited high radio-activity. These results demonstrate that the cholesterol heterogeneity of ROS disc membranes is related to the age, and thus the position, of the discs in the ROS.  相似文献   

18.
The RCS rat is a widely studied model of recessively inherited retinal degeneration. The genetic defect, known as rdy (retinal dystrophy), results in failure of the retinal pigment epithelium (RPE) to phagocytize shed photoreceptor outer segment membranes. We previously used positional cloning and in vivo genetic complementation to demonstrate that Mertk is the gene for rdy. We have now used a rat primary RPE cell culture system to demonstrate that the RPE is the site of action of Mertk and to obtain functional evidence for a key role of Mertk in RPE phagocytosis. We found that Mertk protein is absent from RCS, but not wild-type, tissues and cultured RPE cells. Delivery of rat Mertk to cultured RCS RPE cells by means of a recombinant adenovirus restored the cells to complete phagocytic competency. Infected RCS RPE cells ingested exogenous outer segments to the same extent as wild-type RPE cells, but outer segment binding was unaffected. Mertk protein progressively co-localized with outer segment material during phagocytosis by primary RPE cells, and activated Mertk accumulated during the early stages of phagocytosis by RPE-J cells. We conclude that Mertk likely functions directly in the RPE phagocytic process as a signaling molecule triggering outer segment ingestion.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号