首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of an Na+/Ca2+ exchange system in basolateral plasma membranes from rat small intestinal epithelium has been demonstrated by studying Na+ gradient-dependent Ca2+ uptake and the inhibition of ATP-dependent Ca2+ accumulation by Na+. The presence of 75 mM Na+ in the uptake solution reduces ATP-dependent Ca2+ transport by 45%, despite the fact that Na+ does not affect Ca2+-ATPase activity. Preincubation of the membrane vesicles with ouabain or monensin reduces the Na+ inhibition of ATP-dependent Ca2+ uptake to 20%, apparently by preventing accumulation of Na+ in the vesicles realized by the Na+-pump. It was concluded that high intravesicular Na+ competes with Ca2+ for intravesicular Ca2+ binding sites. In the presence of ouabain, the inhibition of ATP-dependent Ca2+ transport shows a sigmoidal dependence on the Na+ concentration, suggesting cooperative interaction between counter transport of at least two sodium ions for one calcium ion. The apparent affinity for Na+ is between 15 and 20 mM. Uptake of Ca2+ in the absence of ATP can be enhanced by an Na+ gradient (Na+ inside > Na+ outside). This Na+ gradient-dependent Ca2+ uptake is further stimulated by an inside positive membrane potential but abolished by monensin. The apparent affinity for Ca2+ of this system is below 1 μM. In contrast to the ATP-dependent Ca2+ transport, there is no significant difference in Na+ gradient-dependent Ca2+ uptake between basolateral vesicles from duodenum, midjejunum and terminal ileum. In duodenum the activity of ATP-driven Ca2+ uptake is 5-times greater than the Na+/Ca2+ exchange capacity but in the ileum both systems are of equal potency. Furthermore, the Na+/Ca2+ exchange mechanism is not subject to regulation by 1α,25-dihydroxy vitamin D-3, since repletion of vitamin D-deficient rats with this seco-steroid hormone does not influence the Na+/Ca2+ exchange system while it doubles the ATP-driven Ca2+ pump activity.  相似文献   

2.
An axolemma-rich membrane vesicle fraction was prepared from the leg nerve of the lobster, Homerus americanus. In this preparation Ca2+ transport across the membrane was shown to require a Na+ gradient (Na+-Ca2+ exchange), and external K+ was found to facilitate this Na+-Ca2+ exchange activity. In addition, at high Ca2+ concentrations (20 mM) a Ca2+-Ca2+ exchange system was shown to operate, which is stimulated by Li+. The Na+-Ca2+ exchange system is capable of operating in the reverse direction, with Ca2+ uptake coupled with Na+ efflux. Such a vesicular preparation has the potential for providing useful experimental approaches to study the mechanism of this important Ca2+ extrusion system in the nervous system.  相似文献   

3.
Vesicles isolated from rat heart, particularly enriched in sarcolemma markers, were examined for their sidedness by investigation of side-specific interactions of modulators with the asymmetric (Na+ + K+)-ATPase and adenylate cyclase complex. The membrane preparation with the properties expected for inside-out vesicles showed the highest rate of ATP-driven Ca2+ transport. The Ca2+ pump was stimulated 1.7- and 2.1-fold by external Na+ and K+, respectively, the half-maximal activation occurring at 35 mM monovalent cation concentration. In vesicles loaded with Ca2+ by pump action in a medium containing 160 mM KCl, a slow spontaneous release of Ca2+ started after 2 min. The rate of this release could be dramatically increased by the addition of 40 mM NaCl to the external medium. In contrast, 40 mM KCl exerted no appreciable effect on vesicles loaded with Ca2+ in a medium containing 160 mM NaCl. Ca2+ movements were also studied in the absence of ATP and Mg2+. Vesicles containing an outwardly directed Na+ gradient showed the highest Ca2+ uptake activity. These findings suggested the operation of a Ca2+/Na+ antiporter in addition to the active Ca2+ pump in these sarcolemmal vesicles. A valinomycin-induced inward K+-diffusion potential stimulated the Na+- Ca2+ exchange, suggesting its electrogenic nature. If in the absence of ATP and Mg2+ the transmembrane Nai+/Nao+ gradient exceeded 160/15 mM concentrations, Ca2+ uptake could be stimulated by the addition of 5 mM oxalate, indicating Na+ gradient-induced Ca2+ uptake to be a translocation of Ca2+ to the lumen of the vesicle. A sarcoplasmic reticulum contamination, removed by further sucrose gradient fractionation, contained rather low Na+-Ca2+ exchange activity. This result suggests that the activity can be entirely accounted for by the sarcolemmal content of the cardiac membrane preparation.  相似文献   

4.
Abstract: The inhibitory effects of Na+/Ca2+ exchange inhibitory peptide (XIP), which corresponds to residues 219–238 of the Na+/Ca2+ exchange protein from canine heart, were studied in both rat and human brain plasma membrane vesicles. XIP had very high potency with respect to the inhibition of the initial velocity of intravesicular Na+-dependent Ca2+ uptake in both rat brain [IC50 = 3.05 ± 0.69 µM (mean ± SE)] and human brain (IC50 = 3.58 ± 0.58 µM). The maximal inhibition seen in rat brain vesicles was ~80%, whereas human brain vesicles were inhibited 100%. XIP also inhibited extravesicular Na+-dependent Ca2+ release, and the inhibitory effect was enhanced by increasing the extravesicular Na+ concentration. In contrast, the inhibitory effect of bepridil was competitive with respect to extravesicular Na+. When XIP was added at steady state (5 min after the initiation of intravesicular Na+-dependent Ca2+ uptake), it was found that the intravesicular Ca2+ content declined with time. Analysis of unidirectional fluxes for Ca2+ at steady state showed that 50 µM XIP inhibited Ca2+ influx and efflux ~85 and 70%, respectively. This result suggested that XIP inhibited both Na+/Ca2+ exchange and Ca2+/Ca2+ exchange but had no effect on the passive release pathway for Ca2+. The results suggest structural homology among cardiac, rat, and human brain exchangers in the XIP binding domain and that the binding of Na+ or other monovalent cations, e.g., K+, is required for XIP to have its inhibitory effect on Ca2+ transport.  相似文献   

5.
We developed a technique that yields isolated adult rat myocytes, 70% of which are elongated and morphologically similar to intact tissue. Electrophysiological studies showed most of these cells were quiescent, Ca2+-tolerant and exhibited normal action potentials accompanied by contractions. We analyzed 45Ca2+ uptake data in terms of instantaneous, fast and slow compartments. 69% of total exchangeable Ca2+ was found in the slow compartment; the rest was almost equally divided between the instantaneous and fast compartments. Replacement of extracellular Na+ by Li+ or Tris increased 45Ca2+ uptake by the fast compartment; high [K+]o increased this uptake further. These increases appeared to be related also to internal concentrations of Na+. This conclusion was supported by experiments with digitonin-treated cells. Our results indicate that the way Na+-dependent 45Ca2+ uptake is affected by [Na+]o, [Na+]i and [K+]o is compatible with the Na+-Ca2+ exchange mechanism. Our preparation should prove useful in studies of regulation of Ca2+ transport in cardiac muscles.  相似文献   

6.
Abstract: We have previously demonstrated that activation of the Na+-Ca2+ exchanger in the reverse mode causes Ca2+ influx in astrocytes. In addition, we showed that the exchange activity was stimulated by nitric oxide (NO)/cyclic GMP and inhibited by ascorbic acid. The present study demonstrates that the Na+-Ca2+ exchanger is involved in agonist-induced Ca2+ signaling in cultured rat astrocytes. The astrocytic intracellular Ca2+ concentration ([Ca2+]i) was increased by l -glutamate, noradrenaline (NA), and ATP, and the increases were all attenuated by the NO generator sodium nitroprusside (SNP). SNP also reduced the ionomycin-induced increase in [Ca2+]i. The Na-induced Ca2+ signal was also attenuated by S-nitroso-l -cysteine and 8-bromo cyclic GMP, whereas it was enhanced by 3,4-dichlorobenzamil, an inhibitor of the Na+-Ca2+ exchanger. Treatment of astrocytes with antisense, but not sense, deoxynucleotides to the sequence encoding the Na+-Ca2+ exchanger enhanced the ionomycin-induced increase in [Ca2+]i and blocked the effects of SNP and 8-bromo cyclic GMP in reducing the NA-induced Ca2+ signal. Furthermore, the ionomycin-induced Ca2+ signal was enhanced by removal of extracellular Na+ and pretreatment with ascorbic acid. These findings indicate that the Na+-Ca2+ exchanger is a target for NO modulation of elevated [Ca2+]i and that the exchanger plays a role in Ca2+ efflux when [Ca2+]i is raised above basal levels in astrocytes.  相似文献   

7.
Ca2+ inhibited the Mg2+-dependent and K+-stimulated p-nitrophenylphosphatase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase. In the absence of K+, however, a Mg2+-dependent and Ca2+-stimulated phosphatase was observed, the maximal velocity of which, at pH 7.2, was about 20% of that of the K+-stimulated phosphatase. The Ca2+-stimulated phosphatase, like the K+-stimulated activity, was inhibited by either ouabain or Na+ or ATP. Ouabain sensitivity was decreased with increase in Ca2+, but the K0.5 values of the inhibitory effects of Na+ and ATP were independent of Ca2+ concentration. Optimal pH was 7.0 for Ca2+-stimulated activity, and 7.8–8.2 for the K+-stimulated activity. The ratio of the two activities was the same in several enzyme preparations in different states of purity. The data indicate that (a) Ca2+-stimulated phosphatase is catalyzed by (Na+ + K+)-ATPase; (b) there is a site of Ca2+ action different from the site at which Ca2+ inhibits in competition with Mg2+; and (c) Ca2+ stimulation can not be explained easily by the action of Ca2+ at either the Na+ site or the K+ site.  相似文献   

8.
Abstract: Bovine chromaffin secretory vesicle ghosts loaded with Na+ were found to take up Ca2+ when incubated in K+ media or in sucrose media containing micromolar concentrations of free Ca2+. Li+- or choline+loaded ghosts did not take up Ca2+. The Ca2+ accumulated by Na+-loaded ghosts could be released by the Ca2+ ionophore A23187, but not by EGTA. Ca2+ uptake was inhibited by external Sr2+, Na +, Li +, or choline +. All the 45Ca2+ accumulated by Na+-dependent Ca2+ uptake could be released by external Na +, indicating that both Ca2+ influx and efflux occur in a Na+-dependent manner. Na + -dependent Ca2+ uptake and release were only slightly inhibited by Mg2+. In the presence of the Na+ ionophore Monensin the Ca2+ uptake by Na +-loaded ghosts was reduced. Ca2+ sequestered by the Na+-dependent mechanism could also be released by external Ca2+ or Sr2+ but not by Mg2+, indicating the presence of a Ca2+/Ca2+ exchange activity in secretory membrane vesicles. This Ca2+/Ca2+ exchange system is inhibited by Mg2+, but not by Sr2+. The Na + -dependent Ca2+ uptake system in the presence of Mg2+ is a saturable process with an apparent Km of 0.28 μM and a Vmax= 14.5 nmol min?1 mg protein?1. Ruthenium red inhibited neither the Na+/Ca2+ nor the Ca2+/Ca2+ exchange, even at high concentrations.  相似文献   

9.
The kinetic characteristics of Na+ -Ca2+ exchange in isolated sarcolemma vesicles from new-borne chick heart, which contain about 70% of right-side-out vesicles, were compared with those of cultured embryonic chick heart cells. Na+ -Ca2+ exchange was monitored as Nai-dependent Ca2+ uptake. Increase in the internal concentration of Na+ ([Na+]i) in these two preparations caused increase in both the initial rate and the saturation-level of Ca2+ uptake. Plots of the rate of Ca2+ uptake against [Na+]i showed similar saturation-kinetics in these two preparations. The apparent Michaelis constant (Km) (0.35 mM) for Ca2+ uptake by the intact cells was much higher than that (0.031 mM) for Ca2+ uptake by the vesicles. The degree of inhibition by Mg2+ was also higher in the cells than in the vesicles. Some possible reasons (age of the chicks used, membrane potential, etc.), for these differences were examined and are discussed.  相似文献   

10.
Ca2+ transport was studied in membrane vesicles of alkalophilic Bacillus. When Na+-loaded membrane vesicles were suspended in KHCO3/KOH buffer (pH 10) containing Ca2+, rapid uptake of Ca2+ was observed. The apparent Km value for Ca2+ measured at pH 10 was about 7 μM, and the Km value shifted to 24 μM when measured at pH 7.4. The efflux of Ca2+ was studied with Ca2+-loaded vesicles. Ca2+ was released when Ca2+-loaded vesicles were suspended in medium containing 0.4 M Na+.Ca2+ was also transported in membrane vesicles driven by an artificial pH gradient and by a membrane potential generated by K+-valinomycin in the presence of Na+.These results indicate the presence of Ca2+/Na+ and H+/Na+ antiporters in the alkalophilic Bacillus A-007.  相似文献   

11.
Na+ accumulation was investigated in the roots of 11-d-old cowpea [Vigna unguiculata (L.) Walp.] plants. The relative contribution of different membrane transporters on Na+ uptake was estimated by applying Ca2+, K+, NH4 +, and pharmacological inhibitors. Na+ accumulation into the root symplast was decreased by half in the presence of 1 mM Ca2+ and it was almost abolished by 100 mM K+. The inhibitory effect of external NH4+ on Na+ accumulation was more pronounced in the roots of NH4 +-free growing plants. Na+ accumulation was reduced about 73 % by 0.1 mM flufenamate and it was almost blocked by 2 mM quinine. In addition, 20 mM tetraethylammonium and 1.0 mM Cs+ decreased Na+ accumulation by 28 and 30 %, respectively. These results evidenced that low-affinity Na+ uptake by cowpea roots depends on Ca2+-sensitive and Ca2+-insensitive pathways. The Ca2+-sensitive pathway is probably mediated by nonselective cation channels and the Ca2+-insensitive one may involve K+ channels and to a lesser extent NH4 +-sensitive K+ transporters.  相似文献   

12.
Plasma membranes of rabbit thymus lymphocytes accumulated Ca2+ when a Na+ gradient (intravesicular > extravesicular) was formed across the membranes. Dissipation of the Na+ gradient by the addition of Na+ to the external medium decreased Ca2+ uptake. Ca2+ preloaded into the lymphocytes was extruded when Na+ was added to the external medium. The Ca2+ uptake decreased at acidic pH but increased at alkaline pH (above 8) and the activity was saturable for Ca2+ (apparent Km for Ca2+ was 61 μM and apparent Vmax was 11.5 nmol/mg protein per min). Na+-dependent uptake of Ca2+ was inhibited by tetracaine and verapamil, and partially inhibited by La3+. The uptake was not influenced by orthovanadate.  相似文献   

13.
Although the enzyme (Na+ + K+)-ATPase has been extensively characterized, few studies of its major role, ATP-dependent Na+ pumping, have been reported in vesicular preparations. This is because it is extremely difficult to determine fluxes of isotopic Na+ accurately in most isolated membrane systems. Using highly purified cardiac sarcolemmal vesicles, we have developed a new technique to detect relative rates of ATP-dependent Na+ transport sensitively. This technique relies on the presence of Na+-Ca2+ exchange and ATP-driven Na+ pump activities on the same inside-out sarcolemmal vesicles. ATP-dependent Na+ uptake is monitored by a subsequent Nai+-dependent Ca2+ uptake reaction (Na+-Ca2+ exchange) using 45Ca2+. We present evidence that the Na+-Ca2+ exchange will be linearly related to the prior active Na+ uptake. Although this method is indirect, it is much more sensitive than a direct approach using Na+ isotopes. Applying this method, we measure cardiac ATP-dependent Na+ transport and (Na+ + K+)-ATPase activities in identical ionic media. We find that the (Na+ + K+)-ATPase and the Na+ pump have identical dependencies on both Na+ and ATP. The dependence on [Na+] is sigmoidal, with a Hill coefficient of 2.8. Na+ pumping is half-maximal at [Na+] = 9 mM. The Km for ATP is 0.21 mM. ADP competitively inhibits ATP-dependent Na+ pumping. This approach should allow other new investigations on on ATP-dependent Na+ transport across cardiac sarcolemma.  相似文献   

14.
The fluorescence of microdissected pancreatic islets of ob/ob-mice was studied by microscope photometry after incubation with 10 μM chlorotetracycline. In Krebs-Ringer bicarbonate buffer, excitation at 390 nm yielded peak emission at 530 nm, suggesting that chelated Ca2+ was the major source of fluorescence. In support of this interpretation, incubation in Ca2+-free buffer markedly decreased the fluorescence, whereas withdrawal of Mg2+ increased it. Raising the Mg2+ concentration to 15 mM suppressed the fluorescence. In the presence of Ca2+, the substitution of choline ions for Na+ increased the fluorescence considerably; in the absence of Ca2+, however, Na+ deficiency had only little effect. Control experiments showed that Na+ or choline ions had no effect on the fluorescence of Ca2+-chlorotetracycline in 70 or 90% methanol. In 90%, but not in 70%, methanol 15 mM Mg2+ slightly quenched the fluorescence from 2.5 mM Ca2+ and 10 μM chlorotetracycline. It is suggested that Na+, and perhaps Mg2+, tends to decrease the amount of membrane-bound Ca2+ in the pancreatic islets.  相似文献   

15.
Abstract: We studied the effect of α-latrotoxin (αLTX) on [14C]acetylcholine ([14C]ACh) release, intracellular Ca2+ concentration ([Ca2+]i), plasma membrane potential, and high-affinity choline uptake of synaptosomes isolated from guinea pig cortex. αLTX (10?10-10?8M) caused an elevation of the [Ca2+]i as detected by Fura 2 fluorescence and evoked [14C]ACh efflux. Two components in the action of the toxin were distinguished: one that required the presence of Na+ in the external medium and another that did not. Displacement of Na+ by sucrose or N-methylglucamine in the medium considerably decreased the elevation of [Ca2+]i and [14C]ACh release by αLTX. The Na+-dependent component of the αLTX action was obvious in the inhibition of the high-affinity choline uptake of synaptosomes. Some of the toxin action on both [Ca2+]i and [14C]ACh release remained in the absence of Na+. Both the Na+-dependent and the Na+-independent components of the αLTX-evoked [14C]ACh release partly required the presence of either Mg2+ or Ca2+. The nonneurotransmitter [14C]choline was released along with [14C]ACh, but this release did not depend on the presence of either Na+ or Ca2+, indicating nonspecific leakage through the plasma membrane. We conclude that there are two factors in the release of ACh from synaptosomes caused by the toxin: (1) cation-dependent ACh release, which is related to (a) Na+-dependent divalent cation entry and (b) Na+-independent divalent cation entry, and (2) nonspecific Na+- and divalent cation-independent leakage.  相似文献   

16.
Ouabain-blocked toad urinary bladders were maintained in Na+-free mucosal solutions, and a depolarizing solution of high K+ activity containing only 5 mM Na+ on the serosal side. Exposure to mucosal sodium (20 mM activity) evoked a transient amiloride-blockable inward current, which decayed to near zero within one hour. The apical sodium conductance increased in the initial phase of the current decay and decreased in the second phase. The conductance decrease required Ca2+ to be present on the serosal side and was more rapid when the mucosal Na+ activity was higher. At 20 mM mucosal Na+ and 3 mM serosal Ca2+ the initial (maximal) rate of inhibition amounted to 20% in 10 min. The conductance decrease could be accelerated by raising the serosal Ca2+ activity to 10 mM. The inhibition reversed on lowering the serosal Ca2+ to 3 μM and, in addition, the mucosal Na+ to zero. Exposure of the mucosal surface to the ionophore nystatin abolished the Ca2+ sensitivity of the transcellular conductance, showing that the Ca2+-sensitive conductance resides in the apical membrane. The data imply that in the K+-depolarized epithelia, cellular Ca2+, taken up from the serosal medium by means of a Na+-Ca2+ antiport, cause feedback inhibition by blockage of apical Na+ channels. However, the rate of inhibition is small, such that this regulatory mechanism will have little effect at 1 mM serosal Ca2+ and less than 20 mM cellular Na+.  相似文献   

17.
Ya. M. Shuba 《Neurophysiology》1997,29(4-5):227-232
The plasmalemmal Na+−Ca2+ exchanger is a coupled Na+ and Ca2+ transport mechanism that plays an important role in regulation of Ca2+ homeoslasis in many cell types. A robust Na+−Ca2+ exchange system is present in the heart where it comprises essential Ca2+ extrusion, as well as Ca2+ entry pathways, that significantly contribute to the maintenance of cardiac contractility. The review examines the basic properties of Na+−Ca2+ exchange, the patterns of its regulation, as well as the latest achievements in the cloning and structure-function studies of a Na+−Ca2+ exchanger molecule.  相似文献   

18.
Experiments on the effects of varying concentrations of Ca2+ on the Mg2+ + Na+-dependent ATPase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase showed that Ca2+ was a partial inhibitor of this activity. When Ca2+ was added to the reaction mixture instead of Mg2+, there was a ouabain-sensitive Ca2+ + Na+-dependent ATPase activity the maximal velocity of which was 30 to 50% of that of Mg2+ + Na+-dependent activity. The apparent affinities of the enzyme for Ca2+ and CaATP seemed to be higher than those for Mg2+ and MgATP. Addition of K+, along with Ca2+ and Na+, increased the maximal velocity and the concentration of ATP required to obtain half-maximal velocity. The maximal velocity of the ouabain-sensitive Ca2+ + Na+ + K+-dependent ATPase was about two orders of magnitude smaller than that of Mg2+ + Na+ + K+-dependent activity. In agreement with previous observations, it was shown that in the presence of Ca2+, Na+, and ATP, an acid-stable phosphoenzyme was formed that was sensitive to either ADP or K+. The enzyme also exhibited a Ca2+ + Na+-dependent ADP-ATP exchange activity. Neither the inhibitory effects of Ca2+ on Mg2+-dependent activities, nor the Ca2+-dependent activities were influenced by the addition of calmodulin. Because of the presence of small quantities of endogenous Mg2+ in all reaction mixtures, it could not be determined whether the apparent Ca2+-dependent activities involved enzyme-substrate complexes containing Ca2+ as the divalent cation or both Ca2+ and Mg2+.  相似文献   

19.
Petr Paucek  Martin Jab?rek 《BBA》2004,1659(1):83-91
The Na+/Ca2+ antiporter was purified from beef heart mitochondria and reconstituted into liposomes containing fluorescent probes selective for Na+ or Ca2+. Na+/Ca2+ exchange was strongly inhibited at alkaline pH, a property that is relevant to rapid Ca2+ oscillations in mitochondria. The effect of pH was mediated entirely via an effect on the Km for Ca2+. When present on the same side as Ca2+, K+ activated exchange by lowering the Km for Ca2+ from 2  to 0.9 μM. The Km for Na+ was 8 mM. In the absence of Ca2+, the exchanger catalyzed high rates of Na+/Li+ and Na+/K+ exchange. Diltiazem and tetraphenylphosphonium cation inhibited both Na+/Ca2+ and Na+/K+ exchange with IC50 values of 10 and 0.6 μM, respectively. The Vmax for Na+/Ca2+ exchange was increased about fourfold by bovine serum albumin, an effect that may reflect unmasking of an autoregulatory domain in the carrier protein.  相似文献   

20.
Na+-H+ exchange and passive Na+ flux were investigated in cardiac sarcolemmal vesicles as a function of changing the ionic composition of the reaction media. The inclusion of EGTA in the reaction medium resulted in a potent stumulation of Na+ uptake by Na+-H+ exchange. It was found that millimolar concentrations of Mg2+ and Li+ were capable of inhibiting Na+-H+ exchange by 80%. One mechanism by which these ions may inhibit intravesicular Na+ accumulation by Na+-H+ exchange is via an increase in Na+ efflux. An examination of Na+ efflux kinetics from vesicles pre-loaded with Na+ revealed that Na+, Ca2+, Mg2+ and Li+ could stimulate Na+ efflux. Na+-H+ exchange was potently inhibited by an organic divalent cation, dimenthonium, which screens membrane surface charge. This would suggest that Na+-H+ exchange occurs in the diffuse double layer region of cardiac sarcolemma and this phenomenon is distinctly different from other Na+ transport processes. The results in this study indicate that in addition to a stimulation of Na+ efflux, the inhibitory effects of Mg2+, Ca2+ and Li+ on Na+-H+ exchange may also involve a charge dependent screening of Na+ interactions with the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号