首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1996,135(5):1309-1321
Elongation factor 1 alpha (EF1 alpha) is an abundant protein that binds aminoacyl-tRNA and ribosomes in a GTP-dependent manner. EF1 alpha also interacts with the cytoskeleton by binding and bundling actin filaments and microtubules. In this report, the effect of purified EF1 alpha on actin polymerization and depolymerization is examined. At molar ratios present in the cytosol, EF1 alpha significantly blocks both polymerization and depolymerization of actin filaments and increases the final extent of actin polymer, while at high molar ratios to actin, EF1 alpha nucleates actin polymerization. Although EF1 alpha binds actin monomer, this monomer-binding activity does not explain the effects of EF1 alpha on actin polymerization at physiological molar ratios. The mechanism for the inhibition of polymerization is related to the actin-bundling activity of EF1 alpha. Both ends of the actin filament are inhibited for polymerization and both bundling and the inhibition of actin polymerization are affected by pH within the same physiological range; at high pH both bundling and the inhibition of actin polymerization are reduced. Additionally, it is seen that the binding of aminoacyl-tRNA to EF1 alpha releases EF1 alpha's inhibiting effect on actin polymerization. These data demonstrate that EF1 alpha can alter the assembly of F-actin, a filamentous scaffold on which non- membrane-associated protein translation may be occurring in vivo.  相似文献   

2.
Tropomyosin binds to actin filaments and is implicated in stabilization of actin cytoskeleton. We examined biochemical and cell biological properties of Caenorhabditis elegans tropomyosin (CeTM) and obtained evidence that CeTM is antagonistic to ADF/cofilin-dependent actin filament dynamics. We purified CeTM, actin, and UNC-60B (a muscle-specific ADF/cofilin isoform), all of which are derived from C. elegans, and showed that CeTM and UNC-60B bound to F-actin in a mutually exclusive manner. CeTM inhibited UNC-60B-induced actin depolymerization and enhancement of actin polymerization. Within isolated native thin filaments, actin and CeTM were detected as major components, whereas UNC-60B was present at a trace amount. Purified UNC-60B was unable to interact with the native thin filaments unless CeTM and other associated proteins were removed by high-salt extraction. Purified CeTM was sufficient to restore the resistance of the salt-extracted filaments from UNC-60B. In muscle cells, CeTM and UNC-60B were localized in different patterns. Suppression of CeTM by RNA interference resulted in disorganized actin filaments and paralyzed worms in wild-type background. However, in an ADF/cofilin mutant background, suppression of CeTM did not worsen actin organization and worm motility. These results suggest that tropomyosin is a physiological inhibitor of ADF/cofilin-dependent actin dynamics.  相似文献   

3.
To bridge the gap between the contractile system in muscle and in vitro motility assay, we have devised an A-band motility assay system. A glycerinated skeletal myofibril was treated with gelsolin to selectively remove the thin filaments and expose a single A-band. A single bead-tailed actin filament trapped by optical tweezers was made to interact with the inside or the outer surface of the A-band, and the displacement of the bead-tailed filament was measured in a physiological ionic condition by phase-contrast and fluorescence microscopy. We observed large back-and-forth displacement of the filament accompanied by a large change in developed force. Despite this large tension fluctuation, we found that the average force was proportional to the overlap inside and outside the A-band up to approximately 150 nm and 300 nm from the end of the A-band, respectively. Consistent with the difference in the density of myosin molecules, the average force per unit length of the overlap inside the A-band (the time-averaged force/myosin head was approximately 1 pN) was approximately twice as large as that outside. Thus, we conclude that the A-band motility assay system described here is suitable for studying force generation on a single actin filament, and its sliding movement within a regular three-dimensional thick filament lattice.  相似文献   

4.
Actin polymerization in cells occurs via filament elongation at the barbed end. Proteins that cap the barbed end terminate this elongation. Heterodimeric capping protein (CP) is an abundant and ubiquitous protein that caps the barbed end. We find that the mouse homolog of the adaptor protein CARMIL (mCARMIL) binds CP with high affinity and decreases its affinity for the barbed end. Addition of mCARMIL to cell extracts increases the rate and extent of Arp2/3 or spectrin-actin seed-induced polymerization. In cells, GFP-mCARMIL concentrates in lamellipodia and increases the fraction of cells with large lamellipodia. Decreasing mCARMIL levels by siRNA transfection lowers the F-actin level and slows cell migration through a mechanism that includes decreased lamellipodia protrusion. This phenotype is reversed by full-length mCARMIL but not mCARMIL lacking the domain that binds CP. Thus, mCARMIL is a key regulator of CP and has profound effects on cell behavior.  相似文献   

5.
Cytochalasin inhibits the rate of elongation of actin filament fragments   总被引:41,自引:22,他引:19  
Submicromolar concentrations of cytochalasin inhibit the rate of assembly of highly purified dictyostelium discoideum actin, using a cytochalasin concentration range in which the final extent of assembly is minimally affected. Cytochalasin D is a more effective inhibitor than cytochalasin B, which is in keeping with the effects that have been reported on cell motility and with binding to a class of high-affinity binding sites from human erythrocyte membranes (Lin and Lin. 1978. J. Biol. CHem. 253:1415; Lin and Lin. 1979. Proc. Natl. Acad. Sci. U.S.A. 76:2345); 5x10(-7) M cytochalasin B lowers it to 70 percent of the control value, whereas 10(-7) M cytochalasin B lowers the rate to 25 percent. Fragments of F-actin were used to increase the rate of assembly fivefold by providing more filament ends on to which monomers could add. Under these conditions, cytochalasin has an even more dramatic effect on the assembly rate; the concentrations of cytochalasin B and cytochalasin D required for half-maximal inhibition are 2x10(-7) M and 10(-8) M, respectively. The assembly rate is most sensitive to cytochalasin when actin assembly is carried out in the absence of ATP (with 3 mM ADP present to stabilize the actin). In this case, the concentrations of cytochalasin B and cytochalasin D required for half-maximal inhibition are 4x10(-8) M and 1x10(-9) M, respectively. A scatchard plot has been obtained using [(3)H]cytochalasin B binding to F-actin in the absence of ATP. The K(d) from this plot (approximately 4x10(-8) M) agrees well with the concentration of cytochalasin B required for half-maximal inhibition of the rate of assembly under these conditions. The number of cytochalasin binding sites is roughly one per F-actin filament, suggesting that cytochalasin has a specific action on actin filament ends.  相似文献   

6.
Tropomodulin is a tropomyosin-binding protein, originally isolated from human erythrocytes. Tropomodulin is currently regarded as the sole actin pointed-end capping protein [Weber, A., Pennise, C.R., Babcock, G.G. & Fowler, V.M. (1994) J. Cell Biol. 127, 1627-1635]. This work first describes a procedure for the purification of tropomodulin from rabbit skeletal muscle. Tropomodulin almost completely inhibited filament formation of actin in the presence of tropomyosin and troponin. For the maximal inhibition of actin polymerization, approximately 0.10, 0.12 and 0.003 mol of tropomyosin, troponin and tropomodulin per mol of actin were required, respectively. Fluorescence-intensity measurements, electron-microscopy and sedimentation experiments revealed that only very short fragments and amorphous aggregates, but not filaments, were formed when actin was copolymerized with tropomyosin, troponin and tropomodulin by the addition of 50 mM KCl at pH 8.0. The effects of tropomyosin, troponin and tropomodulin were more remarkable on Ca-actin than on Mg-actin. It appears that tropomodulin caps both the pointed and barbed ends of tropomyosin- and troponin-bound actin filaments.  相似文献   

7.
In striated muscle, regulation of actin-myosin interactions depends on a series of conformational changes within the thin filament that result in a shifting of the tropomyosin-troponin complex between distinct locations on actin. The major factors activating the filament are Ca2+ and strongly bound myosin heads. Many lines of evidence also point to an active role of actin in the regulation. Involvement of the actin C-terminus in binding of tropomyosin-troponin in different activation states and the regulation of actin-myosin interactions were examined using actin modified by proteolytic removal of three C-terminal amino acids. Actin C-terminal modification has no effect on the binding of tropomyosin or tropomyosin-troponin + Ca2+, but it reduces tropomyosin-troponin affinity in the absence of Ca2+. In contrast, myosin S1 induces binding of tropomyosin to truncated actin more readily than to native actin. The rate of actin-activated myosin S1 ATPase activity is reduced by actin truncation both in the absence and presence of tropomyosin. The Ca2+-dependent regulation of the ATPase activity is preserved. Without Ca2+ the ATPase activity is fully inhibited, but in the presence of Ca2+ the activation does not reach the level observed for native actin. The results suggest that through long-range allosteric interactions the actin C-terminus participates in the thin filament regulation.  相似文献   

8.
A major component on sodium dodecyl sulfate-containing gels of solubilized isolated Z-discs, purified from honeybee flight muscle, migrates with an apparent molecular weight of 360,000. Antibodies to this high molecular weight polypeptide have been prepared by injecting rabbits with homogenized gel slices containing the protein band. With indirect immunofluorescence microscopy these antibodies are localized to a region extending from the edge of the Z-band to the A-band in shortened or stretched sarcomeres. Similarly, glycerinated flight muscle treated with antiserum and prepared for electron microscopy shows enhanced density from the ends of the thick filaments to the I-Z junction regardless of sarcomere length. Evidence indicates that antiserum is directed toward a structural protein of connecting filaments, which link thick filaments to the Z-band in insect fibrillar muscle, rather than to a thin filament component. In Ouchterlony double-diffusion experiments a single precipitin band is formed when antiserum is diffused against solubilized Z-discs; no reaction occurs between antiserum and proteins from native thin filaments prepared from honeybee flight muscle. Further, antibody stains the I-band in flight muscle fibrils from which thin filaments are removed. Finally, honeybee leg muscle myofibrils, in which connecting filaments have not been observed, are not labelled with antibody. Since antibody binds to the short projections which extend from the flat surfaces of isolated Z-discs, these projections are assumed to be remnants of connecting filaments and the source of the 360,000 Mr protein.The amino acid composition of this high molecular weight material, purified by Sepharose chromatography, is presented. The protein has been named “projectin”.  相似文献   

9.
Tropomodulin (E-Tmod) is an actin filament pointed end capping protein that maintains the length of the sarcomeric actin filaments in striated muscle. Here, we describe the identification and characterization of a novel tropomodulin isoform, skeletal tropomodulin (Sk-Tmod) from chickens. Sk-Tmod is 62% identical in amino acid sequence to the previously described chicken E-Tmod and is the product of a different gene. Sk-Tmod isoform sequences are highly conserved across vertebrates and constitute an independent group in the tropomodulin family. In vitro, chicken Sk-Tmod caps actin and tropomyosin-actin filament pointed ends to the same extent as does chicken E-Tmod. However, E- and Sk-Tmods differ in their tissue distribution; Sk-Tmod predominates in fast skeletal muscle fibers, lens, and erythrocytes, while E-Tmod is found in heart and slow skeletal muscle fibers. Additionally, their expression is developmentally regulated during chicken breast muscle differentiation with Sk-Tmod replacing E-Tmod after hatching. Finally, in skeletal muscle fibers that coexpress both Sk- and E-Tmod, they are recruited to different actin filament-containing cytoskeletal structures within the cell: myofibrils and costameres, respectively. All together, these observations support the hypothesis that vertebrates have acquired different tropomodulin isoforms that play distinct roles in vivo.  相似文献   

10.
The movement of reconstituted thin filaments over an immobilized surface of thiophosphorylated smooth muscle myosin was examined using an in vitro motility assay. Reconstituted thin filaments contained actin, tropomyosin, and either purified chicken gizzard caldesmon or the purified COOH-terminal actin-binding fragment of caldesmon. Control actin-tropomyosin filaments moved at a velocity of 2.3 +/- 0.5 microns/s. Neither intact caldesmon nor the COOH-terminal fragment, when maintained in the monomeric form by treatment with 10 mM dithiothreitol, had any effect on filament velocity; and yet both were potent inhibitors of actin-activated myosin ATPase activity, indicating that caldesmon primarily inhibits myosin binding as reported by Chalovich et al. (Chalovich, J. M., Hemric, M. E., and Velaz, L. (1990) Ann. N. Y. Acad. Sci. 599, 85-99). Inhibition of filament motion was, however, observed under conditions where cross-linking of caldesmon via disulfide bridges was present. To determine if monomeric caldesmon could "tether" actin filaments to the myosin surface by forming an actin-caldesmon-myosin complex as suggested by Chalovich et al., we looked for caldesmon-dependent filament binding and motility under conditions (80 mM KCl) where filament binding to myosin is weak and motility is not normally seen. At caldesmon concentrations > or = 0.26 microM, actin filament binding was increased and filament motion (2.6 +/- 0.6 microns/s) was observed. The enhanced motility seen with intact caldesmon was not observed with the addition of up to 26 microM COOH-terminal fragment. Moreover, a molar excess of the COOH-terminal fragment competitively reversed the enhanced binding seen with intact caldesmon. These results show that tethering of actin filaments to myosin by the formation of an actin-caldesmon-myosin complex enhanced productive acto-myosin interaction without placing a significant mechanical load on the moving filaments.  相似文献   

11.
Although it is generally believed that phosphorylation of the regulatory light chain of myosin is required before smooth muscle can develop force, it is not known if the overall degree of phosphorylation can also modulate the rate at which cross-bridges cycle. To address this question, an in vitro motility assay was used to observe the motion of single actin filaments interacting with smooth muscle myosin copolymers composed of varying ratios of phosphorylated and unphosphorylated myosin. The results suggest that unphosphorylated myosin acts as a load to slow down the rate at which actin is moved by the faster cycling phosphorylated cross-bridges. Myosin that was chemically modified to generate a noncycling analogue of the "weakly" bound conformation was similarly able to slow down phosphorylated myosin. The observed modulation of actin velocity as a function of copolymer composition can be accounted for by a model based on mechanical interactions between cross-bridges.  相似文献   

12.
A metabolite of a common soil fungus, Penicillium urticae, which inhibits conidia germination and growth of Beauveria bassiana, was identified. The production, extraction from the culture, and purification of the metabolite is described. Two-dimension thin-layer chromatography, reverse-phase chromatography, mass spectrophotometer and bioassay data indicate that the metabolite is patulin. The implication of patulin inhibition of B. bassiana and its subsequent effect on the potential role of B. bassiana as a control agent of soil-inhabiting insects is discussed.  相似文献   

13.
14.
15.
The polymerization of pyrene-labelled skeletal muscle actin has been monitored in the presence of chromatographically purified spectrin dimers and tetramers. A small but consistent effect of spectrin binding on the critical concentration was observed for actin polymerized in the presence of 1 mM MgCl2. These data were analysed using the principle of linked functions. Spectrin binds exclusively to the filamentous form of actin, and thereby stabilizes F-actin with respect to the G-form. The decrease in the critical concentration for actin polymerization, in the presence of spectrin, has been shown to be consistent with an equilibrium constant for the binding of spectrin to individual promoters within F-actin of approximately 8 X 10(5) M-1 at 23 degrees C, and an ionic strength of 7 mM.  相似文献   

16.
Previous studies have demonstrated that conventional actin preparations contain a potent factor which reduces the low shear viscosity of actin filaments. In this paper we demonstrate that Cap Z(36/32), a recently described protein from skeletal muscle that caps the barbed end of actin filaments and localizes to the Z-line of skeletal muscle, is the major factor affecting the low shear viscosity of actin prepared from muscle as described by Spudich and Watt.  相似文献   

17.
Integrin-induced cell adhesion results in transmission of signals that induce cytoskeletal reorganizations and resulting changes in cell behavior. The cytoskeletal reorganizations are regulated by transient activation and inactivation of Rho GTPases. Previously, we identified mu-calpain as an enzyme that is activated by signaling across beta1 and beta3 integrins. We showed that it mediates cytoskeletal reorganizations in bovine aortic endothelial (BAE) and Chinese hamster ovary (CHO) cells and does so by acting upstream of Rac1 activation. Here we show that mu-calpain is also involved in inactivating RhoA during integrin-induced signaling. Cleavage of RhoA was detectable in BAE cells plated on an integrin substrate; it did not occur in cells plated on poly-l-lysine. Cleavage was inhibited by calpain inhibitors. In vitro, mu-calpain cleaved RhoA generating a fragment of the same size as in intact cells. The cleavage site was identified, an HA-tagged construct expressing calpain-cleaved RhoA generated, and the construct expressed in BAE and CHO cells. Calpain-cleaved RhoA inhibited integrin-induced stress fiber assembly and decreased cell spreading. Together, our data show that calpain cleaves RhoA and generates a form that inhibits integrin-induced stress fiber assembly and cell spreading.  相似文献   

18.
《Biophysical journal》2021,120(20):4399-4417
We used computational methods to analyze the mechanism of actin filament nucleation. We assumed a pathway where monomers form dimers, trimers, and tetramers that then elongate to form filaments but also considered other pathways. We aimed to identify the rate constants for these reactions that best fit experimental measurements of polymerization time courses. The analysis showed that the formation of dimers and trimers is unfavorable because the association reactions are orders of magnitude slower than estimated in previous work rather than because of rapid dissociation of dimers and trimers. The 95% confidence intervals calculated for the four rate constants spanned no more than one order of magnitude. Slow nucleation reactions are consistent with published high-resolution structures of actin filaments and molecular dynamics simulations of filament ends. One explanation for slow dimer formation, which we support with computational analysis, is that actin monomers are in a conformational equilibrium with a dominant conformation that cannot participate in the nucleation steps.  相似文献   

19.
Regulated disassembly of actin filaments is involved in several cellular processes that require dynamic rearrangement of the actin cytoskeleton. Actin-interacting protein (AIP) 1 specifically enhances disassembly of actin-depolymerizing factor (ADF)/cofilin-bound actin filaments. In vitro, AIP1 actively disassembles filaments, caps barbed ends, and binds to the side of filaments. However, how AIP1 functions in the cellular actin cytoskeletal dynamics is not understood. We compared biochemical and in vivo activities of mutant UNC-78 proteins and found that impaired activity of mutant UNC-78 proteins to enhance disassembly of ADF/cofilin-bound actin filaments is associated with inability to regulate striated organization of actin filaments in muscle cells. Six functionally important residues are present in the N-terminal beta-propeller, whereas one residue is located in the C-terminal beta-propeller, suggesting the presence of two separate sites for interaction with ADF/cofilin and actin. In vitro, these mutant UNC-78 proteins exhibited variable alterations in actin disassembly and/or barbed end-capping activities, suggesting that both activities are important for its in vivo function. These results indicate that the actin-regulating activity of AIP1 in cooperation with ADF/cofilin is essential for its in vivo function to regulate actin filament organization in muscle cells.  相似文献   

20.
Actin filament dynamics are critical in cell motility. The structure of actin filament changes spontaneously and can also be regulated by actin-binding proteins, allowing actin to readily function in response to external stimuli. The interaction with the motor protein myosin changes the dynamic nature of actin filaments. However, the molecular bases for the dynamic processes of actin filaments are not well understood. Here, we observed the dynamics of rabbit skeletal-muscle actin conformation by monitoring individual molecules in the actin filaments using single-molecule fluorescence resonance energy transfer (FRET) imaging with total internal reflection fluorescence microscopy (TIRFM). The time trajectories of FRET show that actin switches between low- and high-FRET efficiency states on a timescale of seconds. If actin filaments are chemically cross-linked, a state that inhibits myosin motility, the equilibrium shifts to the low-FRET conformation, whereas when the actin filament is interacting with myosin, the high-FRET conformation is favored. This dynamic equilibrium suggests that actin can switch between active and inactive conformations in response to external signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号