首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maleylation of lysine residues, nitration of tyrosine residues or modification with 2,3-butanedione or 1,2-cyclohexanedione of arginine residues on actin resulted in a loss of polymerizability of the modified actin. However, only lysine modification produced a complete loss of the deoxyribunuclease I inhibitory ability of actin at low degrees of modification. By the level of one modified lysine per actin monomer, the samples completely lost polymerizability and lost 65% of their inhibitory power against deoxyribonuclease I-catalysed hydrolysis of DNA. By two lysines modified per actin, all inhibitory activity was lost. One lysine residue on actin apparently overlaps both an actin action contact site and an actin-deoxyribnuclease 1 contact site, offering a suggestion as to how deoxyribonuclease I blocks actin polymerization.  相似文献   

2.
The interaction of troponin-I with the N-terminal region of actin   总被引:5,自引:0,他引:5  
The interaction between troponin-I and actin that underlies thin-filament regulation in striated muscle has been studied using proton magnetic resonance spectroscopy. A restricted portion of skeletal muscle troponin-I (residues 96-116) has previously been shown to be capable of inhibiting the MgATPase activity of actomyosin in a manner enhanced by tropomyosin [Syska et al. (1976) Biochem. J. 153, 375-387]. On the basis of homologous spectral effects for signals of specific groups observed in different complexes formed using the native proteins and a variety of defined peptides, it is concluded that the segment of troponin-I which has inhibitory activity interacts with the N-terminal region of actin. The surface of contact of the inhibitory segment of troponin-I with actin involves two regions of the N-terminal of actin. These are located between residues 1-7 and 19-44. The data are discussed in the context of a structural mechanism for the inhibition of myosin ATPase activation.  相似文献   

3.
Rat pancreas actin: purification and characterization   总被引:1,自引:0,他引:1  
Isolation of rat pancreas actin was performed with three different technics: polymerization-depolymerization method, affinity chromatography on DNase I-Sepharose 4B or ion exchange chromatography on DEAE-cellulose. Inhibition of DNase I activity, localization by SDS polyacrylamide slab gel electrophoresis and presence of microfilaments allowed its identification. Affinity process led us to obtain actin which kept inhibitory activity (30,000 U per mg) on DNase I when using vacuum dialysis. Actin eluted from DEAE-cellulose associated reversibly in 50-70 A microfilaments in the presence of phalloidin, was pure at 95% and had a satisfactory inhibitor activity (77,000 U per mg).  相似文献   

4.
Gelsolin, a calcium and inositol phospholipid-sensitive protein, regulates actin filament length. Its activity is complex (capping, severing, etc.) and is supported by several functional domains. The N-terminal domain alone (S1), in particular, is able to impede actin polymerization. Our investigations were attempted to precise this inhibitory process by using synthetic peptides as models mimicking gelsolin S1 activity. Three peptides issued from S1 and located in gelsolin—actin interfaces were synthesized. The peptides (15–28, 42–55, and 96–114 sequences) were tested for their conformational and actin binding properties. Although the three peptides interact well with actin, only peptide 42–55 affects actin polymerization. A detailed kinetic study shows that the latter peptide essentially inhibits the nucleation step during actin polymerization. In conclusion, the present work shows that the binding of a synthetic peptide to a small sequence located outside the actin—actin interface is essential in the actin polymerization process. © 1997 John Wiley & Sons, Inc. Biopoly 41: 647–655, 1997  相似文献   

5.
We purified 47,000-dalton proteins from both thrombin-stimulated and unstimulated human platelets. The purity of the protein was almost 80% on SDS-polyacrylamide gel electrophoresis. The protein obtained from unstimulated platelets strongly inhibited actin gelation when its molar ratio to actin was 1:200 or higher. The protein obtained from thrombin-stimulated platelets had no inhibitory activity. The results suggest that the 47,000-dalton protein modulates actin polymerization through phosphorylation.  相似文献   

6.
Branched actin filament networks in cells are assembled through the combined activities of Arp2/3 complex and different WASP/WAVE proteins. Here we used TIRF and electron microscopy to directly compare for the first time the assembly kinetics and architectures of actin filament networks produced by Arp2/3 complex and dimerized VCA regions of WAVE1, WAVE2, or N-WASP. WAVE1 produced strikingly different networks from WAVE2 or N-WASP, which comprised unexpectedly short filaments. Further analysis showed that the WAVE1-specific activity stemmed from an inhibitory effect on filament elongation both in the presence and absence of Arp2/3 complex, which was observed even at low stoichiometries of WAVE1 to actin monomers, precluding an effect from monomer sequestration. Using a series of VCA chimeras, we mapped the elongation inhibitory effects of WAVE1 to its WH2 (“V”) domain. Further, mutating a single conserved lysine residue potently disrupted WAVE1''s inhibitory effects. Taken together, our results show that WAVE1 has unique activities independent of Arp2/3 complex that can govern both the growth rates and architectures of actin filament networks. Such activities may underlie previously observed differences between the cellular functions of WAVE1 and WAVE2.  相似文献   

7.
The interaction of caldesmon with the COOH terminus of actin   总被引:1,自引:0,他引:1  
Caldesmon interacts with the NH2-terminal region of actin. It is now shown in airfuge centrifugation experiments that modification of the penultimate cysteine residue of actin significantly weakens its binding to caldesmon both in the presence and absence of tropomyosin. Furthermore, as revealed by fluorescence measurements, caldesmon increases the exposure of the COOH-terminal region of actin to the solvent. This effect of caldesmon, like its inhibitory effect on actomyosin ATPase activity, is enhanced in the presence of tropomyosin. Proteolytic removal of the last three COOH-terminal residues of actin, containing the modified cysteine residue, restores the normal binding between caldesmon and actin. These results establish a correlation between the binding of caldesmon to actin and the conformation of the COOH-terminal region of actin and suggest an indirect rather than direct interaction between caldesmon and this part of actin.  相似文献   

8.
Ca uptake by isolated SR membranes is inhibited by a cytosolic factor derived from heart cells. The inhibitory activity resides in the fraction of soluble proteins which precipitates in 30% saturated (NH4)2SO4 [Narayanan et al. (1982) Biochem. Biophys. Res. Commun. 108, 1158-1164]. In the present study, the mechanism of inhibition and the properties of the inhibitor have been analysed. The cytosolic inhibitor activates a Ca-release pathway, thereby uncoupling Ca loading and Ca-dependent ATPase activity of SR vesicles. Analysis of some general physiochemical characteristics of the endogenous inhibitor (e.g. thermolability, protein profile, solubility properties, interaction with ion-exchange resins) showed it to be distinct from free fatty acids which might contaminate the cytosolic fraction. Rather, it indicated that the inhibitor is related to myofibrillar or cytoskeletal structures. By means of an affinity-chromatography procedure using muscle albumin coupled to Sepharose 4B, a protein component was obtained from the inhibitor fraction. The characteristics of this protein closely resembled those of the endogenous inhibitor. A protein with similar characteristics was also obtained using a DNase-I-affinity chromatography column. The isolated protein was identified as actin. Inhibition of Ca uptake by the isolated inhibitor protein was reversed by muscle albumin and by stoichiometric amounts of DNase I. The potency of inhibition of various actin preparations was found to be highly variable and dependent on the tissue source. Our results indicate that particular minor actin isoforms present in heart cytosol display the greatest inhibitory activity (IC50 15-20 micrograms/ml).  相似文献   

9.
Human germinal center associated lymphoma (HGAL) is a germinal center-specific gene whose expression correlates with a favorable prognosis in patients with diffuse large B-cell and classic Hodgkin lymphomas. HGAL is involved in negative regulation of lymphocyte motility. The movement of lymphocytes is directly driven by actin polymerization and actin-myosin interactions. We demonstrate that HGAL interacts directly and independently with both actin and myosin and delineate the HGAL and myosin domains responsible for the interaction. Furthermore, we show that HGAL increases the binding of myosin to F-actin and inhibits the ability of myosin to translocate actin by reducing the maximal velocity of myosin head/actin movement. No effects of HGAL on actomyosin ATPase activity and the rate of actin polymerization from G-actin to F-actin were observed. These findings reveal a new mechanism underlying the inhibitory effects of germinal center-specific HGAL protein on lymphocyte and lymphoma cell motility.  相似文献   

10.
The activity and the membrane expression of EAAT3 glutamate transporter are stimulated upon PKC activation by phorbol esters in C6 rat glioma cells. To investigate the role of cytoskeleton in these effects, we have employed actin-perturbing toxins and found that the perturbation of actin cytoskeleton inhibits basal but not phorbol-stimulated EAAT3 activity and membrane trafficking. In the absence of phorbols, latrunculin A, a toxin that disassembles actin cytoskeleton, produced a rapid inhibition of EAAT3 activity, due to a decrease in transport V(max). The inhibitory effect was fully reversible and was not detected for other sodium dependent transport systems for amino acids. However, latrunculin did not prevent the increase in transport caused by phorbol esters and, moreover, cells pre-treated with phorbols were resistant to the inhibitory effect of the toxin on EAAT3 activity. Biotinylation experiments indicated that the inhibitory effect of latrunculin was attributable to a decreased expression of the carrier on the membrane, while the toxin did not suppress the PKC-dependent increase in EAAT3 membrane abundance. Latrunculin A effects on EAAT3 were shared by cytochalasin D, a toxin that disorganizes actin filaments with a distinct mechanism of action. On the contrary, a small, but significant, increase of EAAT3 activity was observed upon incubation with jasplakinolide, a drug that stabilizes actin microfilaments. Also jasplakinolide, however, did not hinder phorbol-dependent stimulation of aspartate transport. Colchicine, a toxin that disrupts microtubules, also lowered EAAT3 activity without preventing transport stimulation by phorbols, while microtubule stabilization by paclitaxel led to an increase in aspartate transport. It is concluded that, in C6 cells, the PKC-mediated stimulatory effects on EAAT3 are cytoskeleton-independent, while in the absence of phorbols, the transporter is partially inhibited by the disorganization of either actin microfilaments or microtubules. These results suggest that EAAT3 trafficking in C6 cells involves different pools of transporters.  相似文献   

11.
Diphtheria toxin (DT) and its N-terminal fragment A (FA) catalyse the transfer of the ADP-ribose moiety of nicotinamide adenine dinucleotide (NAD) into a covalent linkage with eukaryotic elongation factor 2 (eEF2). DT-induced cytotoxicity is versatile, and it includes DNA cleavage and the depolymerisation of actin filaments. The inhibition of the ADP-ribosyltransferase (ADPrT) activity of FA did not affect the deoxyribonuclease activity of FA or its interaction with actin. The toxin entry rate into cells (HUVEC) was determined by measuring the ADP-ribosyltransferase activity. DT uptake was nearly 80% after 30 min. The efficiency was determined as Km = 2.2 nM; Vmax = 0.25 pmol.min−1. The nuclease activity was tested with hyperchromicity experiments, and it was concluded that G-actin has an inhibitory effect on DT nuclease activity. In thepresence of DT and mutant of diphtheria toxin (CRM197), F-actin depolymerisation was determined with gel filtration, WB and fluorescence techniques. In the presence of DT and CRM197, 60–65% F-actin depolymerisation was observed. An in vitro FA-actin interaction and F-actin depolymerisation were reported in our previous paper. The present study thus confirms the depolymerisation of actin cytoskeleton in vivo.  相似文献   

12.
Preparation and characterization of bovine aortic actin.   总被引:4,自引:4,他引:0       下载免费PDF全文
A functional vascular smooth-muscle actin from bovine aorta was purified to homogeneity by an original method and was able to polymerize. Aortic actin is composed of two major isoforms and at least two minor ones. This actin was not phosphorylated by either cyclic AMP-dependent protein kinase or C kinase. The physical properties of aortic actin were found to be very similar to those of skeletal-muscle actin, except for amino acid composition (three tryptophan residues instead of four). The aortic actin and skeletal-muscle actin differ in the extent of activation of the Mg-dependent ATPase of skeletal-muscle myosin.  相似文献   

13.
Caldesmon phosphorylation in actin cytoskeletal remodeling   总被引:2,自引:0,他引:2  
Caldesmon is an actin-binding protein that is capable of stabilizing actin filaments against actin-severing proteins, inhibiting actomyosin ATPase activity, and inhibiting Arp2/3-mediated actin polymerization in vitro. Caldesmon is a substrate of cdc2 kinase and Erk1/2 MAPK, and phosphorylation by either of these kinases reverses the inhibitory effects of caldesmon. Cdc2-mediated caldesmon phosphorylation and the resulting dissociation of caldesmon from actin filaments are essential for M-phase progression during mitosis. Cells overexpressing the actin-binding carboxyterminal fragment of caldesmon fail to release the fragment completely from actin filaments during mitosis, resulting in a higher frequency of multinucleated cells. PKC-mediated MEK/Erk/caldesmon phosphorylation is an important signaling cascade in the regulation of smooth muscle contraction. Furthermore, PKC activation has been shown to remodel actin stress fibers into F-actin-enriched podosome columns in cultured vascular smooth muscle cells. Podosomes are cytoskeletal adhesion structures associated with the release of metalloproteases and degradation of extracellular matrix during cell invasion. Interestingly, caldesmon is one of the few actin-binding proteins that is associated with podosomes but excluded from focal adhesions. Caldesmon also inhibits the function of gelsolin and Arp2/3 complex that are essential for the formation of podosomes. Thus, caldesmon appears to be well positioned for playing a modulatory role in the formation of podosomes. Defining the roles of actin filament-stabilizing proteins such as caldesmon and tropomyosin in the formation of podosomes should provide a more complete understanding of molecular systems that regulate the remodeling of the actin cytoskeleton in cell transformation and invasion.  相似文献   

14.
Caldesmon is an inhibitory protein believed to be involved in the regulation of thin filament activity in smooth muscles and is a major cytoplasmic substrate for MAP kinase. NMR spectroscopy shows that the actin binding properties of the minimal inhibitory region of caldesmon, residues 750-779, alter upon MAP kinase phosphorylation of Ser-759, a residue not involved in actin binding. This phosphorylation leads to markedly diminished actin affinity as a result of the loss of interaction at one of the two sites that bind to F-actin. The structural basis for the altered interaction is identified from the observation that phosphorylation destabilises a turn segment linking the two actin binding sites and thereby results in the randomisation of their relative disposition. This modulatory influence of Ser-759 phosphorylation is not merely a function of the bulkiness of the covalent modification since the stability of the turn region is observed to be sensitive to the ionisation state of the phosphate group. The data are discussed in the context of the inhibitory association of the C-terminal domain of caldesmon with F-actin.  相似文献   

15.
The phospholipase A2 inhibitory activity of a 38 kDa K+-sensitive actin gelation factor in a murine leukemia cell line (M1) was examined. A specific antibody against 38 kDa protein was found to cross-react with 37 kDa protein (lipocortin) in rat peritoneal exudates. Although the native 38 kDa protein from M1 cells did not block phospholipase A2 activity, pretreatment with alkaline phosphatase produced a form that did inhibit this enzyme. However, a purified 38 kDa protein from differentiated M1 cells blocked phospholipase A2 activity without pretreatment with alkaline phosphatase. Phospholipase A2 inhibitory activity of the 38 kDa protein was not altered by addition of actin. These findings suggest that the phospholipase A2 inhibitory of our 38 kDa protein was induced during differentiation. We also proposed that our 38 kDa protein has the same epitope as lipocortin.  相似文献   

16.
Evidence is presented for a direct interaction of the intrinsic membrane protein 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) purified from avian smooth muscle (chicken gizzard) and the cytoskeletal component actin. Two different modes of interaction can be discerned: firstly, an immediate inhibitory effect of preferentially filamentous actin (F-actin) on the enzymic (i.e., AMPase) activity of 5'-nucleotidase and a direct binding of this enzyme to immobilized F-actin. Since these effects are suppressed by the addition of myosin subfragment 1, binding of 5'-nucleotidase appears to occur along the F-actin filament axis. Secondly, a time- and 5'-nucleotidase concentration-dependent transformation of also preferentially F-actin into a form unable to inhibit the enzymic activity of deoxyribonuclease I (DNAase I). This desensitization of actin versus DNAase I is not due to a denaturation process and was found to be reversible after addition of ATP. Furthermore, it does not seem to effect the ability of actin to bind to DNAase I. The transformation is accompanied by the hydrolysis of actin-bound nucleotide into adenosine, which remains bound to actin. Therefore, the desensitization of actin versus DNAase I appears to be due to a nucleotide-dependent conformational change of actin. An unidentified contamination of the 5'-nucleotidase preparations to a varying degree with ADPase and ATPase activities appears to be responsible for the desensitization process, although a synergistic role of these activities and 5'-nucleotidase cannot be excluded.  相似文献   

17.
The actin cytoskeleton has been shown to be involved in the regulation of sodium-selective channels in non-excitable cells. However, the molecular mechanisms underlying the changes in channel function remain to be defined. In the present work, inside-out patch experiments were employed to elucidate the role of submembranous actin dynamics in the control of sodium channels in human myeloid leukemia K562 cells. We found that the application of cytochalasin D to the cytoplasmic surface of membrane fragments resulted in activation of non-voltage-gated sodium channels of 12 picosiemens conductance. Similar effects could be evoked by addition of the actin-severing protein gelsolin to the bath cytosol-like solution containing 1 microm [Ca(2+)](i). The sodium channel activity induced by disassembly of submembranous microfilaments with cytochalasin D or gelsolin could be abolished by intact actin added to the bath cytosol-like solution in the presence of 1 mm MgCl(2) to induce actin polymerization. In the absence of MgCl(2), addition of intact actin did not abolish the channel activity. Moreover, the sodium currents were unaffected by heat-inactivated actin or by actin whose polymerizability was strongly reduced by cleavage with specific Escherichia coli A2 protease ECP32. Thus, the inhibitory effect of actin on channel activity was observed only under conditions promoting rapid polymerization. Taken together, our data show that sodium channels are directly controlled by dynamic assembly and disassembly of submembranous F-actin.  相似文献   

18.
The actin binding sites of actobindin and thymosin beta 4, two small polypeptides that inhibit actin polymerization by interacting with monomeric actin, have been localized using peptide mimetics. Both sites are functionally similar and extend over 20 residues and are located in the NH2-terminus of the polypeptides. They can be dissected into two functional entities: a conserved hexapeptide motif (LKHAET or LKKTET), which forms the major contact site through electrostatic interactions with actin, and a non-conserved NH2-terminal segment preceding the motif, which exerts the inhibitory activity on actin polymerization probably by steric hindrance. The introduction of a glutamic acid at the third position in the motif, creating LKEAET or LKETET sequences, which are similar to those found in some F-actin binding proteins, converts the peptide's inhibitory phenotype into an F-actin stimulatory property. These results allow the proposal of a simple model for G- to F-actin modulation.  相似文献   

19.
A 74-kDa protein (adseverin) derived from adrenal medulla severs actin filaments and nucleates actin polymerization in a Ca2(+)-dependent manner but does not form an EGTA-resistant complex with actin monomers, which is different from the gelsolin-actin interaction. The dissociation of gelsolin-actin complexes by phosphatidylinositol 4,5-bisphosphate (PIP2) and the inhibitory effect on actin filament severing by gelsolin was recently reported. This study shows that the activity of adseverin is inhibited not only by PIP2 but also by some common phospholipids including phosphatidylinositol (PI) and phosphatidylserine (PS). Other phospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE) showed no effect. The addition of PC or PE to PI diminished the inhibitory effect of PI. Triton X-100 and neomycin were also found effective in suppressing the effect of PI, suggesting that the arrangement of polar head groups is important in exerting the inhibitory effect. Ca2(+)-dependent binding of adseverin to PS liposomes but not to PC or PE liposomes was observed by a centrifugation assay.  相似文献   

20.
Subtilisin cleaved actin was shown to retain several properties of intact actin including the binding of heavy meromyosin (HMM), the dissociation from HMM by ATP, and the activation of HMM ATPase activity. Similar Vmax but different Km values were obtained for acto-HMM ATPase with the cleaved and intact actins. The ATPase activity of HMM stimulated by copolymers of intact and cleaved actin showed a linear dependence on the fraction of intact actin in the copolymer. The most important difference between the intact and cleaved actin was observed in an in vitro motility assay for actin sliding movement over an HMM coated surface. Only 30% of the cleaved actin filaments appeared mobile in this assay and moreover, the velocity of the mobile filaments was approximately 30% that of intact actin filaments. These results suggest that the motility of actin filaments can be uncoupled from the activation of myosin ATPase activity and is dependent on the structural integrity of actin and perhaps, dynamic changes in the actin molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号