首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calmodulin-like activity in the soluble fraction of Escherichia coli   总被引:8,自引:0,他引:8  
A heat-stable factor with properties similar to those of calmodulin was found in the fraction containing Ca2+-dependent cyclic AMP phosphodiesterase of Escherichiacoli. The factor activated such enzymes as cyclic nucleotide phosphodiesterase of bovine brain, (Ca2+,Mg2+)ATPase of human erythrocyte menbrane and myosin light chain kinase of rabbit myometrium in a Ca2+-dependent fashion with an apparent Ka of 5 × 10?5M. The factor and brain calmodulin had no effect on the phosphodiesterase of E.coli. It may be concluded that calmodulin or a calmodulin-like protein occurs in prokaryotes.  相似文献   

2.
The calmodulin activation of the (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in human erythrocyte membranes was studied in the range of 1 nM to 40 μM of purified calmodulin. The apparent calmodulin-affinity of the ATPase was strongly dependent on Ca2+ and decreased approx. 1000-times when the Ca2+ concentration was reduced from 112 to 0.5 μM. The data of calmodulin (Z) activation were analyzed by the aid of a kinetic enzyme model which suggests that 1 molecule of calmodulin binds per ATPase unit and that the affinities of the calcium-calmodulin complexes (CaiZ) decreases in the order of Ca3Z >Ca4Z >Ca2Z ? CaZ. Furthermore, calmodulin dissociates from the calmodulin-saturated Ca2+-ATPase in the range of 10?7–10?6 M Ca2+, even at a calmodulin concentration of 5 μM. The apparent concentration of calmodulin in the erythrocyte cytosol was determined to be 3 to 5 μM, corresponding to 50–80-times the cellular concentration of Ca2+-ATPase, estimated to be approx. 10 nmol/g membrane protein. We therefore conclude that most of the calmodulin id dissociated from the Ca2+-transport ATPase in erythrocytes at the prevailing Ca2+ concentration (probably 10?7 – 10?8 M) in vivo, and that the calmodulin-binding and subsequent activation of the Ca2+-ATPase requires that the Ca2+ concentration rises to 10?6 – 10?5 M.  相似文献   

3.
The enzyme lyso-platelet-activating factor:acetyl-CoA acetyltransferase (EC 2.3.1.67) was assayed in microsomal fractions from rat spleens. The addition of micromolar Ca2+ rapidly enhanced acetyltransferase activity and this activation was reversed by the addition of EGTA in excess of Ca2+. The effect of Ca2+ was on the apparent Km of the enzyme for the substrate acetyl-CoA without showing any significant effect on the Vmax of the acetylation reaction. When microsomes were isolated in the presence of 5 mM EGTA, to remove endogenous calmodulin, the same enhancing effect of Ca2+ on the acetylation reaction was observed. The addition of exogenous calmodulin to this preparation had no effect on the enzyme activity. Preincubation of spleen microsomes with the calmodulin inhibitor trifluoperazine decreased acetyltransferase in both the presence and the absence of Ca2+, indicating an effect of this drug independently of calmodulin. The addition of Mg-ATP to the assay mixture also had no effect on the acetylation reaction. These data suggest that Ca2+ modulates acetyltransferase activity from rat spleen microsomes by a mechanism that seems to be independent of calmodulin or protein phosphorylation.  相似文献   

4.
Compound 4880, a condensation product of N-methyl-p-methoxyphenethylamine with formaldehyde, is composed of a family of cationic amphiphiles differing in the degree of polymerization. Compound 4880 was found to be a potent inhibitor of the calmodulin-activated fraction of brain phosphodiesterase and red blood cell Ca2+-transport ATPase, with IC50 values of 0.3 and 0.85 μg/ml, respectively. However, the basal activity of both enzymes is not at all suppressed by the drug at concentrations up to 300 μg/ml. Inhibition of Ca2+ transport into inside-out red blood cell vesicles by compound 4880 follows a similar pattern in that basal, calmodulin-independent, transport is also not affected by the drug. Kinetic analysis revealed that the stimulation of Ca2+-transport ATPase induced by calmodulin is inhibited by compound 4880 according to a competitive mechanism. It was demonstrated that the inhibitory constituents of compound 4880 bind to calmodulin in a Ca2+-dependent fashion. Comparison of the specificity of several anti-calmodulin drugs showed that compound 4880 is the most specific inhibitor of the calmodulin-dependent fraction of red blood cell Ca2+-transport ATPase that has been described hitherto. In addition, compound 4880 was found to be a rather specific inhibitor of the calmodulin-induced activation of Ca2+-transport ATPase when compared with the stimulation induced by an anionic amphiphile or by limited proteolysis. Half-maximal inhibition of the activity stimulated by oleic acid or mild tryptic digestion required 8- and 32-times higher concentrations of compound 4880, respectively, compared with the calmodulin-dependent fraction of the ATPase activity. Moreover, calmodulin-independent systems as rabbit skeletal muscle sarcoplasmic reticulum Ca2+-transport ATPase or calf cardiac sarcolemma (Na+ + K+)-transport ATPase are far less influenced by compound 4880 as compared with trifluoperazine and calmidazolium. Because of its high specificity compound 4880 is proposed to be a promising tool for studying calmodulin-dependent processes.  相似文献   

5.
Metabolism and uptake of L-[1-14C]pipecolate was studied in the rat through tail vein injection at low (30 μg/kg) and high (30 mg/kg) doses. No radioactive compound other than L-pipecolate was detected in the brain or heart samples 0.5 to 60 min after injection. The contents of L-pipecolate in the brain dropped rapidly to reach a plateau value 2 min after injection both in the low and high dose experiments (from 0.06 to 0.05 and from 86 to 55 nmole/g brain, respectively). Similar results were observed for the heart except that the heart had L-pipecolate contents 2–3 fold higher than the brain at every time interval. The influx of L-pipecolate to the brain, as measured by the plasma/brain ratio of its contents, was 3 fold lower than the heart at each sampling point throughout the course of measurement for both dosages. The influx of L-pipecolate from the plasma to the heart reached an equilibrium, i.e., plasma/heart = 1, 60 min after injection for both dosages; the plasma to brain ratio was 3 at 60 min. These results indicate that there is a blood-brain transport barrier for L-pipecolate in the rat, which may account for the differences in neuronal effects of L-pipecolate when administered intracerebrally or intraperitoneally.  相似文献   

6.
The calcium-dependent binding of phenothiazine drugs to calmodulin (Levin, R. M. and Weiss, B. (1977) Mol. Pharmacol. 13, 690–697) has been utilized to develop a rapid purification procedure for calmodulin based on fluphenazine-Sepharose affinity chromatography. Calmodulin from plant, a fungus, porcine brain and the coelenterate, Renillareniformis, were easily purified by the calcium-dependent binding of calmodulin to fluphenazine-Sepharose.  相似文献   

7.
Several characteristics of calmodulin association with brain synaptic and coated vesicles were analyzed and compared. Radioimmunoassay revealed that both classes of vesicles contain approx. 1 μg of calmodulin per mg of vesicle protein. Discontinuous sucrose gradients revealed that coated and synaptic vesicles preparations were homogeneous and had different sedimentation properties. Binding of 125I-labeled calmodulin to synaptic and coated vesicles was Ca2+ dependent and displaced by unlabeled calmodulin but not by troponin-C. Scatchard analysis revealed the presence of two binding sites. In both vesicle types there was one high-affinity, low-binding-capacity site (Kd = 1–39 nM and Bmax = 4–16 pmol/mg) and one low-affinity, high-binding-capacity site (Kd = 102–177 nM and Bmax = 151–202 pmol/mg). (Ca2+ + Mg2+)-ATPase activity was stimulated in both synaptic and coated vesicles by calmodulin. Thus synaptic and coated vesicles may possess similar calmodulin binding sites.  相似文献   

8.
Extracts from various rat tissues were incubated with [3H]methylated DNA or chromatin in order to compare their abilities to catalyze the removal of labeled O6-methylguanine from acid precipitable DNA. Liver extracts had the greatest activity. Kidney extracts had about 35% of the activity in liver and extracts from lung, colon, small intestine and brain were much less active. The enzyme responsible for this reaction does not appear to be an N-glycosidase because no labeled O6-methylguanine could be detected in the supernatant fraction even though more than 50% of this base was lost from the DNA. The released radioactivity was present as methanol which is consistent with the possibility that the reaction may involve a demethylase action on either the DNA substrate or an oligonucleotide derived from it.  相似文献   

9.
(1) A quantitative study has been made of the binding of ouabain to the (Na+ + K+)-ATPase in homogenates prepared from brain tissue of the hawk moth, Manduca sexta. The results have been compared to those obtained in bovine brain microsomes. (2) The insect brain (Na+ + K+)-ATPase will bind ouabain either in the presence of Mg2+ and Pi, (‘Mg2+, Pi’ conditions) or in the presence of Na+, Mg2+, and an adenine nucleotide (‘nucleotide’ conditions) as is the case for the bovine brain (Na+ + K+)-ATPase. The binding conditions did not alter the total number of receptor sites measured at high ouabain concentrations in either tissue. (3) Potassium ion decreases the affinity (increases the KD) of ouabain to the M. sexta brain (Na+ + K+)-ATPase under both binding conditions. However, ouabain binding is more sensitive to K+ inhibition under the nucleotide conditions. In bovine brain ouabain binding is equally sensitive to K+ inhibition under the both conditions. (4) The enzyme-ouabain complex has a rate of dissociation that is 10-fold faster in the M. sexta preparation than in the bovine brain preparation. Because of this, the M. sexta (Na+ + K+)-ATPase has a higher KD for ouabain binding and is less sensitive to inhibition by ouabain than the bovine brain enzyme. (5) This data supports the hypothesis that two different conformational states of the M. sexta (Na+ + K+)-ATPase can bind ouabain.  相似文献   

10.
The binding of the gamma labeled neuroleptic, 77Br-p-bromosprioperidol, in the rat brain was examined in vivo. This binding parallels the binding of 3H-spiroperidol, in that binding is especially high in dopaminergically innervated areas, is saturable, and is displaced by high doses of unlabeled spiroperidol (1–5). Thus, 77Br-p-bromospiroperidol is a suitable ligand for use in gamma ray imaging techniques for in vivo monitoring of receptor binding.  相似文献   

11.
Nuclei isolated from the developing sea urchin embryo Paracentrotus lividus and incubated in the presence of [3H-methyl] S-adenosylmethionine methylate their own DNA. Addition of small amounts of trypsin produces a 20-fold increase in DNA methylation. The time kinetics and the specificity of the trypsin activation of DNA methylation are described. The only products of the reaction are 5-methylcytosine and thymine. DNA adenine, guanine and cytosine are not labeled. The distribution of the counts between 5-methyl-cytosine and thymine is variable. While 5-methylcytosine originates by enzymatic methylation of DNA cytosines, the origin of the labeled thymine cannot be inferred with certainty.  相似文献   

12.
The ATP/ADP exchange is shown to be a partial reaction of the (H+ + K+)-ATPase by the absence of measurable nucleoside diphosphokinase activity and the insensitivity of the reaction to P1, P5 -di(adenosine-5′) pentaphosphate, a myokinase inhibitor. The exchange demonstrates an absolute requirement for Mg2+ and is optimal at an ADP/ATP ratio of 2. The high ATP concentration (K0.5 = 116 μM) required for maximal exchange is interpreted as evidence for the involvement of a low affinity form of nucleotide site. The ATP/ADP exchange is regarded as evidence for an ADP-sensitive form of the phosphoenzyme. In native enzyme, pre-steady state kinetics show that the formation of the phosphoenzyme is partially sensitive to ADP while modification of the enzyme by pretreatment with 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) in the absence of Mg2+ results in a steady-state phosphoenzyme population, a component of which is ADP sensitive. The ATP/ADP exchange reaction can be either stimulated or inhibited by the presence of K+ as a function of pH and Mg2+.  相似文献   

13.
The activity of calcium-stimulated and magnesium-dependent adenosinetriphosphatase which possesses a high affinity for free calcium (high-affinity (Ca2+ + Mg2+)-ATPase, EC 3.6.1.3) has been detected in rat ascites hepatoma AH109A cell plasma membranes. The high-affinity (Ca2+ + Mg2+)-ATPase had an apparent half saturation constant of 77 ± 31 nM for free calcium, a maximum reaction velocity of 9.9 ± 3.5 nmol ATP hydrolyzed/mg protein per min, and a Hill number of 0.8. Maximum activity was obtained at 0.2 μM free calcium. The high-affinity (Ca2+ + Mg2+)-ATPase was absolutely dependent on 3–10 mM magnesium and the pH optimum was within physiological range (pH 7.2–7.5). Among the nucleoside trisphosphates tested, ATP was the best substrate, with an apparent Km of 30 μM. The distribution pattern of this enzyme in the subcellular fractions of the ascites hepatoma cell homogenate (as shown by the linear sucrose density gradient ultracentrifugation method) was similar to that of the known plasma membrane marker enzyme alkaline phosphatase (EC 3.1.3.1), indicating that the ATPase was located in the plasma membrane. Various agents, such as K+, Na+, ouabain, KCN, dicyclohexylcarbodiimide and NaN3, had no significant effect on the activity of high-affinity (Ca2+ + Mg2+)-ATPase. Orthovanadate inhibited this enzyme activity with an apparent half-maximal inhibition constant of 40 μM. The high-affinity (Ca2+ + Mg2+)-ATPase was neither inhibited by trifluoperazine, a calmodulin-antagonist, nor stimulated by bovine brain calmodulin, whether the plasma membranes were prepared with or without ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid. Since the kinetic properties of the high-affinity (Ca2+ + Mg2+)-ATPase showed a close resemblance to those of erythrocyte plasma membrane (Ca2+ + Mg2+)-ATPase, the high-affinity (Ca2+ + Mg2+)-ATPase of rat ascites hepatoma cell plasma membrane is proposed to be a calcium-pumping ATPase of these cells.  相似文献   

14.
The effects of copper on the activity of erythrocyte (Ca2+ + Mg2+)-ATPase have been tested on membranes stripped of endogenous calmodulin or recombined with purified calmodulin. The interactions of copper with Ca2+, calmodulin and (Mg-ATP)2? were determined by kinetic studies. The most striking result is the potent competitive inhibition exerted by (Cu-ATP)2? against (Mg-ATP)2?Ki = 2.8 μM), while free copper gives no characteristic inhibition. Our results also demonstrate that copper does not compete with calcium either on the enzyme or on calmodulin. The fixation of calmodulin on the enzyme is not altered in the presence of copper as shown by the fact that the dissociation constant remains unaffected. It may be speculated that (Cu-ATP)2? is the active form of copper, which could plausibly be at the origin of some of the pathological features of erythrocytes observed in conditions associated with excess copper.  相似文献   

15.
In vivo receptor binding was examined using 3H-spiperone and 3H-pimozide for dopamine receptors and 3H-LSD for serotonin receptors. Two strategies for improving total: nonspecific binding ratios were tested. The first was to deplete endogenous ligands by various pharmacological treatments prior to 3H-ligand administration in an attempt to increase specific receptor binding; the second was to perfuse the brain with ice-cold saline after 3H-ligand administration in an attempt to reduce nonspecific binding. Alteration of dopamine and serotonin by administering d-amphetamine, reserpine, alpha-methyl-paratyrosine or parachlorophenylalanine did not significantly elevate striatal: cerebellar or cortical: cerebellar (measures of total: nonspecific) bonding ratios. However, perfusion with ice-cold saline significantly improved the ratios for both dopamine and serotonin receptors. Thus, cold saline perfusion may be of value in reducing blank values in autoradiographic and other studies requiring invivo labelling of receptors.  相似文献   

16.
[35S] labeled extracts of the fungus Aspergillus nidulans were copolymerized with purified porcine brain tubulin. The [35S] A. nidulans protein which copurified with porcine microtubules was found to be similar to [3H] chick tubulin when the two were coelectrophoresed on several polyacrylamide gel electrophoresis systems. These results strongly suggest the presence in A. nidulans of a tubulin-like protein.  相似文献   

17.
Penicilliumcharlesii incorporates 3H or 14C from 3H- or 14C-labeled ethanolamine into an -alkali soluble, alcohol -insoluble fraction obtained from cell walls. Dansyl ethanolamine was isolated from this alcohol-insoluble fraction following dansylation and hydrolysis. The alcohol-insoluble material was non-dialyzable and contained galactofuranosyl, glucosyl, phosphoryl, amino acyl and variable quantities of uronosyl residues. The lack of detectable quantities of mannosyl residues in this material suggests that the galactofuranosyl-containing cell wall polymer is distinct from the peptidophosphogalactomannan which is obtained from culture filtrates of P. charlesii (Gander etal., (1974) J. Biol. Chem. 249, 2063).  相似文献   

18.
Jan M. Anderson 《BBA》1983,724(3):370-380
Eight chlorophyll-protein complexes were isolated from thylakoid membranes of a Codium species, a marine green alga, by mild SDS-polyacrylamide gel electrophoresis. CP 1a1, CP 1a2, CP 1a3 and CP 1a4 were partially dissociated Photosystem (PS) I complexes, which in addition to the core reaction centre complex, CP 1, possessed PS I light-harvesting complexes containing chlorophyll (Chl) a, Chl b and siphonaxanthin. LHCP1 and LHCP3 are orange-brown green chlorophyll ab-proteins (Chl aChl b ratios of 0.66) that contain siphonaxanthin and its esterified form, siphonein. CP a and CP 1, the core reaction centre complexes of PS II and PS I, respectively, had similar spectral properties to those isolated from other algae or higher plants. These P-680- or P-700-Chl a-proteins are universally distributed among algae and terrestrial plants; they appear to be highly conserved and have undergone little evolutionary adaptation. Siphonaxanthin and siphonein which are present in the Codium light-harvesting complexes of PS II and PS I are responsible for enhanced absorption in the green region (518 and 538 nm). Efficient energy transfer from both xanthophylls and Chl b to only Chl a in Codium light-harvesting complexes, which have identical fluorescence emission spectra at 77 K to those of the lutein-Chl ab-proteins (Chl aChl b ratios of 1.2) of most green algae and all higher plants, proved that the molecular arrangement of these light-harvesting pigments was maintained in the isolated Codium complexes. The siphonaxanthin-Chl ab-proteins allow enhanced absorption of blue-green and green light, the predominant light available in deep ocean waters or shaded subtidal marine habitats. Since there is a variable distribution of lutein, siphonaxanthin and siphonein in marine green algae and siphonaxanthin is found in very ancient algae, these novel siphonein-siphonaxanthin-Chl ab-proteins may be ancient light-harvesting complexes which were evolved in deep water algae.  相似文献   

19.
We have investigated the catabolism of [3H] histamine (HA), after intraventricular (i.vt.) administration, in brains of the audiogenic seizure susceptible (SS) and resistant (SR) deermouse Peromyscus. Brains of SS mice had lower endogenous HA levels and contained less [3H]-HA 20, 60 and 300 sec after i.vt. [3H]-HA than did brains of SR deermice. Twenty sec after [3H]-HA, brain [3H] methylhistamine (MeHA) levels and the resulting MeHA conversion index were found to be increased in the SS animals while later, at 60 and 300 sec, these parameters were found to be decreased. There were no SS-SR differences in the levels of brain [3H] methylimidazoleacetic acid. The data indicate that SS deermice catabolize exogenous HA, at least initially, more rapidly than their SR counterparts, confirming a like result noted immediately prior to seizure activity elicited by the administration of L-methionine-dl-sulfoximine in Mus.  相似文献   

20.
(Na+ + K+)-dependent ATPase preparations from rat brain, dog kidney, and human red blood cells also catalyze a K+-dependent phosphatase reaction. K+ activation and Na+ inhibition of this reaction are described quantitatively by a model featuring isomerization between E1 and E2 enzyme conformations with activity proportional to E2K concentration:
Differences between the three preparations in K0.5 for K+ activation can then be accounted for by differences in equilibria between E1K and E2K with dissociation constants identical. Similarly, reductions in K0.5 produced by dimethyl sulfoxide are attributable to shifts in equilibria toward E2 conformations. Na+ stimulation of K+-dependent phosphatase activity of brain and red blood cell preparations, demonstrable with KCl under 1 mM, can be accounted for by including a supplementary pathway proportional to E1Na but dependent also on K+ activation through high-affinity sites. With inside-out red blood cell vesicles, K+ activation in the absence of Na+ is mediated through sites oriented toward the cytoplasm, while in the presence of Na+ high-affinity K+-sites are oriented extracellularly, as are those of the (Na+ + K+)-dependent ATPase reaction. Dimethyl sulfoxide accentuated Na+-stimulated K+-dependent phosphatase activity in all three preparations, attributable to shifts from the E1P to E2P conformation, with the latter bearing the high-affinity, extracellularly oriented K+-sites of the Na+-stimulated pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号