首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hemin XIII 4, hemin III 5, and iron 1,4-di(β-hydroxyethyl)porphyrin6 were enzymatically oxidized by a microsomal heme oxygenase preparation from rat liver. These are all better substrates of the oxygenase than the natural substrate, hemin IX 1. The enzymatic oxidation was selective for the α-methine bridge and in every case only the α-biliverdins were obtained. The latter were readily reduced by biliverdin reductase to the corresponding α-bilirubins. The absence of isomers in addition to the α-bilirubins was established by preparing the derived azopigments and by using [α-14C]6 and [α-14C]4 as substrates. The chemical oxidation of 4, 5, and 6 gave the expected mixture of biliverdins. It is concluded that heme oxygenase is not specific for hemin IX. On the other hand, the enzyme is highly selective for the α-methine bridge, defined as the methine opposed to that flanked by the 6,7-propionic acid residues.  相似文献   

2.
Hemin IX was perfused through rat liver of a normal, untreated animal. Its degradation products, collected in the bile fluid over a period of 90 min, were found to consist of the bilirubin IX-α diglucuronide (56%), the mixture of bilirubin IX-α monoglucuronides (42%), and free bilirubin IX-α (2%). When the synthetic hemin XIII 2 was perfused with the same technique, it was found to be degraded in the same way. The bile fluid contained the diglucuronide of bilirubin XIII-α 10 (55%), the monoglucuronide of bilirubin XIII-α 9 (43%) and the free bilirubin XIII-α 8 (2%). Similar results were obtained when the iron 1,4-di(β-hydroxyethyl)-2,3,5,8-tetramethyl-6,7-di(β-carboxyethyl) porphyrin 3 was perfused; the diglucuronide of the α-bilirubin 11 comprised 65% of the excreted bile bilirubins, the monoglucuronide was 25% of the total and the free α-bilirubin 11 10% of the total. Perfusion of hematohemin gave 58% of the diglucuronide of α-hematobilirubin, as well as 40% of the monoglucuronides, and 2% of the free α-hematobilirubin. The simultaneous perfusion of hematohemin and of hemin IX produced an inhibition of the degradation of the hemin IX, while hematohemin was degraded as described above. It was concluded that the normal rat liver is prepared to dispose of exogenously added hemins by their oxidation to α-biliverdins, reduction of the latter to the corresponding α-bilirubin and excretion of their conjugated derivatives through the bile duct.  相似文献   

3.
The mechanism of inhibition by hemin of the mutagenic activities of food pyrolysate aminoazaarenes, particularly that of Trp-P-2 (3-amino-1-methyl-5H-pyrido[4,3-b]indole), was investigated. Hemin efficiently inhibited the metabolic activation by S9 of Trp-P-2, as demonstrated by high-performance liquid chromatographic analysis of the reaction mixtures in which Trp-P-2 had been treated with S9 in the presence or absence of hemin. N-Hydroxy-Trp-P-2, an activated form of Trp-P-2 having direct mutagenicity on Salmonella typhimurium TA98, undergoes spontaneous oxidative degradation in its aqueous solution, and the presence of hemin in the solution accelerated the degradation significantly. The presence of excess hemin with N-hydroxy-Trp-P-2 completely abolished the mutagenic activity of this mutagen towards Salmonella. A UV-visible spectroscopic study has suggested the formation of a complex between hemin and N-hydroxy-Trp-P-2/Trp-P-2. In support of this view, the fluorescence spectrum of a Trp-P-2 solution was quenched efficiently by the addition of hemin. These observations indicate that this complex formation plays a role in the observed multiple actions of hemin. Similar inhibitory actions of hemin on several other direct-acting aminoazaarene mutagens are also described, as well as the inhibition activities of protoporphyrin, chlorophyllin, biliverdin and bilirubin.  相似文献   

4.
Metabolism and uptake of L-[1-14C]pipecolate was studied in the rat through tail vein injection at low (30 μg/kg) and high (30 mg/kg) doses. No radioactive compound other than L-pipecolate was detected in the brain or heart samples 0.5 to 60 min after injection. The contents of L-pipecolate in the brain dropped rapidly to reach a plateau value 2 min after injection both in the low and high dose experiments (from 0.06 to 0.05 and from 86 to 55 nmole/g brain, respectively). Similar results were observed for the heart except that the heart had L-pipecolate contents 2–3 fold higher than the brain at every time interval. The influx of L-pipecolate to the brain, as measured by the plasma/brain ratio of its contents, was 3 fold lower than the heart at each sampling point throughout the course of measurement for both dosages. The influx of L-pipecolate from the plasma to the heart reached an equilibrium, i.e., plasma/heart = 1, 60 min after injection for both dosages; the plasma to brain ratio was 3 at 60 min. These results indicate that there is a blood-brain transport barrier for L-pipecolate in the rat, which may account for the differences in neuronal effects of L-pipecolate when administered intracerebrally or intraperitoneally.  相似文献   

5.
The accumulation of α- and β-globin mRNA sequences in murine erythroleukemia cells (MELC) treated with various inducers has been studied using specific α- and β-globin complementary DNAs (cDNAs). In cells cultured with dimethylsulfoxide (Me2SO), hexamethylene bisacetamide (HMBA) or butyric acid, accumulation of α-globin mRNA is detectable after 16, 12 and 8 hr of culture, respectively. An increase in β-globin mRNA sequences is not detected until 20–24 hr after culture. In cells exposed to hemin, both α- and β-globin mRNAs are detectable by 6 hr of culture, and a constant ratio of αβ-mRNA is maintained during induction. In maximally induced cells, the αβ-globin mRNA ratios are approximately 1 in cells induced by Me2SO and HMBA, and 0.66 and 0.3–0.50 in cells induced by butyric acid and hemin, respectively. Thus different inducers of erythroid differentiation in MELC lead to different times of onset of the expression of α- and β-like genes. In addition, the relative accumulation of α- and β-globin mRNAs in induced cells differs with various types of inducers.  相似文献   

6.
7.
Octopine [N2-(D-1-carboxyethyl)-L-arginine] was detected in all tobacco and sunflower crown gall tumors incited by Agrobacterium tumefaciens (E. F. Sm. and Town.) Conn strain B6 at levels between 1 and 2.5 μmoles/20 g fresh weight. Most tissue cultures derived from plant tumors contained octopine at levels between 0.3 and 1 μmole/20 g fresh wt. Normal plant tissues and tissue cultures derived from normal tissues contained no detectable octopine when assayed by a [3H] arginine incorporation technique designed to detect low levels of octopine (less than 0.5 nmole/20 g fresh wt).  相似文献   

8.
The ole2, 3 and 4 mutants of yeast require an unsaturated fatty acid and methionine for growth and do not synthesise ergosterol. They have very similar sterol compositions and all accumulate lanosterol. The mutants lack cytochrome pigments and have negligible respiratory activity. Porphyrin intermediates alleviate the lipid requirement of ole2 and ole3 and restore respiratory competence. It is concluded that the primary defects in these mutants are lesions in porphyrin biosynthesis.  相似文献   

9.
10.
(±)-7β,8α-Dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BP 7,8-diol-9,10-epoxide) is a suspected metabolite of benzo[a]pyrene that is highly mutagenic and toxic in several strains of Salmonellatyphimurium and in cultured Chinese hamster V79 cells. BP 7,8-diol-9,10-epoxide was approximately 5, 10 and 40 times more mutagenic than benzo[a]pyrene 4,5-oxide (BP 4,5-oxide) in strains TA 98 and TA 100 of S.typhimurium and in V79 cells, respectively. Both compounds were equally mutagenic to strain TA 1538 and non-mutagenic to strain TA 1535 of S.typhimurium. The diol epoxide was toxic to the four bacterial strains at 0.5–2.0 nmole/plate, whereas BP 4,5-oxide was nontoxic at these concentrations. In V79 cells, the diol epoxide was about 60-fold more cytotoxic than BP 4,5-oxide.  相似文献   

11.
Early work from our laboratory has shown that the mutagenicity of heterocyclic amines in Salmonella can be inhibited by hemin and chlorophyllins. We have speculated that the inhibition is a result of complex formation between heterocyclic amines and the pigments, and the speculation has been given a line of experimental evidence. We have now found that ferric-chlorophyllin (Fe-chlorophyllin) can modify the mutagenicity of 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2(NHOH)), a metabolically activated form of 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2). The mutagenicity of Trp-P-2(NHOH)) in Salmonella typhimurium TA 98 (without S9) was strongly inhibited by an addition of an equimolar Fe-chlorophyllin in the pre-incubation mixture. Fe-chlorophyllin also inhibited the mutagenicity of 2-hydroxyamino-6-methyldipyrido[1,2-a:3′,2′-d] imidazole (Glu-P-1(NHOH)). A rapid change in the UV spectrum of a mixture of Trp-P-2(NHOH) and Fe-chlorophyllin was observed. Analysis by high performance liquid chromatography showed that Trp-P-2(NHOH) was converted into 3-nitroso-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2(NO)), the mutagenic potency of which is a quarter of that of Trp-P-2(NHOH). Furthermore, the mutagenicity of Trp-P-2(NO), in turn, was inhibited by Fe-chlorophyllin. We conclude that the suppression of the mutagenicity of Trp-P-2(NHOH) is ascribable to the oxidative function of Fe-chlorophyllin, coupled with its ability to form complex formation with the planar surface of the heterocyclic amine molecules.  相似文献   

12.
13.
3H-Benzene metabolism in rabbit bone marrow   总被引:1,自引:0,他引:1  
An assay for benzene metabolism using 3H-benzene and high pressure liquid chromatography was developed. 3H-Benzene metabolism (2 pmoles benzene equivalents/mg protein/min) required the presence of a TPNH generating system and was inhibited 80% in the presence of a CO:O2 (9:1) atmosphere. The products of 3H-benzene rabbit bone marrow microsomal metabolism were phenol and an unidentified metabolite. Cytochrome P-450 (26–51 pmoles/mg microsomal protein) and cytochrome c reductase activity (7.8–21.0 nmole/mg microsomal protein/min) were detected in rabbit bone marrow.  相似文献   

14.
Apomyoglobin and 57Fe-enriched (86%) hemin have been reconstituted and the product crystallized. Subsequent reaction with 15NO (98% enriched) gave 57Mb15NO. Epr of the monoclinic crystals shows a 5.2 ± 0.3 splitting within ± 20° of the a1-axis which is attributable to 57Fe (I = 12) splitting. The result suggests a 45% spin density at the iron nucleus in MbNO.  相似文献   

15.
Human embryonic, fetal, and adult globin chains (ζ, ε, Aγ, Gγ, β, α) can be separated by electrophoresis on Triton Acid urea gels. K562, a human leukemia cell line, was induced with hemin, labelled with [3H]-leucine, and globin synthesis analyzed. All globins except β were produced. ε > ζ; Gγ:Aγ=70:30; non-α:α=>2:1. Thus, hemin-induced K562 synthesized embryonic and fetal globin chains, and had globin synthetic imbalance, with “α-thalassemia.”  相似文献   

16.
Effect of hemin, mild periodate oxidation and concanavalin A (Con A) on in vitro biosynthesis of membrane proteins and hemoglobin, in the rabbit reticulocyte, was examined. Whereas addition of hemin to the incubation medium stimulates synthesis of both hemoglobin and membrane proteins, addition of Con A, at concentrations which agglutinate cells, selectively stimulates membrane protein biosynthesis. Mild periodate treatment of cells inhibits synthesis of hemoglobin and membrane proteins; this inhibition is not related to oxidation of a membrane component since hemoglobin synthesis in a cell free lysate of treated cells is similarily inhibited.  相似文献   

17.
Axenic cultures of the green algae Dunaliellaprimolecta and red algae Porphyridiumcruentum were grown in the presence of sublethal quantities of selenite. All purified lipids from both algae were found to contain bound selenium, except for saturated hydrocarbons. Of the lipids which contain selenium, carotenoid pigments contain the greatest concentrations. Lipid-associated selenium is not metabolically incorporated. The selenium is probably non-covalently bound to the lipids.  相似文献   

18.
Cyclic AMP-dependent protein kinases I and II, partially purified from rat liver cytosol, were inhibited 50% by 40 μM hemin and 100 μM hemin, respectively. With the purified catalytic subunit of cyclic AMP-dependent protein kinase, hemin caused non-competitive inhibition with respect to the peptide substrate and mixed inhibition with respect to ATP. Hemin also inhibited purified phosphorylase b kinase, indicating that hemin concentrations above 10 μM markedly inhibit multiple protein kinases. In isolated intact hepatocytes, hemin inhibited the glucagon-dependent activation of cyclic AMP-dependent protein kinases and the activation of glycogen phosphorylase. For both effects, high heme concentrations (40–60 μM) were required for 50% inhibition. Similar high levels of exogenous hemin inhibited total hepatocyte protein synthesis. By contrast, 5 μM hemin or less was sufficient to raise intracellular heme levels, as indicated by the relative heme-saturation of tryptophan oxygenase in hepatocytes. Hemin, 5 μM, completely repressed induction of 5-aminolevulinate synthase by dexamethasone in hepatocyte primary cultures. Such repression is unlikely to be mediated by inhibition of protein kinases.  相似文献   

19.
The antibacterial activity of hemin onStaphylococcus aureus is described. Hemin binding to bacteria was a rapid process, and each cell accumulated 5×105 to 1×106 molecules within 5 min. Bacterial growth was stopped completely after 30 min from addition of low concentration of hemin (3–10 g/ml). Cell viability was reduced by 99.9% in 1 h of exposure, and the effect was consistent at any stage of the growth curve whenever hemin was added. Glucose utilization was arrested immediately after hemin addition, and no CO2 was produced. The survivors of hemin treatment regrow in a time-related kinetics depending on the dose of hemin to which the cells were exposed. The recovered bacteria were again sensitive to hemin, similar to an untreated culture. We suggested that the recovery phenomenon is a result of an on-off mechanism regulating sensitivity to hemin, rather than a selection mechanism giving rise to hemin-resistant mutants.  相似文献   

20.
The effect of adding hemin to anaerobically grown cells of a strain of Staphylococcus epidermidis, which was heme-deficient due to anaerobic growth, has been examined. Cells grown anaerobically in media containing hemin exhibited a marked increase in several oxidative activities as compared with cells grown anaerobically without hemin. The respiratory activity of whole cells and a cyamide-sensitive reduced nicotinamide adenine dinucleotide oxidase activity of cell-free extracts were increased fourfold. The content of enzymatically reducible pigments which exhibit difference spectra similar to cytochromes b(1) and o was also markedly increased. These pigments are mostly sedimented at 100,000 x g (1 hr). Hemin also caused a marked increase in respiratory activity when added directly to the anaerobic culture after the period of growth, but did not cause a similar increase in respiration when added to washed, resting-cell suspensions. Under the latter conditions, heme pigments were formed which exhibited difference spectra similar to, but not identical with, the spectra of pigments found in anaerobic cells grown in the presence of hemin. When resting suspensions of cells grown anaerobically without hemin were exposed to air, a rapid fourfold increase in respiratory activity and a limited increase in cytochrome-like pigments occurred. The presence of the heme precursor Delta-aminolevulinic acid during this aeration resulted in a rapid and marked increase in heme pigments, but only a slight stimulation of respiratory activity. The possible implications of these results for the roles which heme and oxygen play in the development of the respiratory system of this organism are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号