首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecdysteroids play an important role in the larval moulting process of insects. Ecdysone-induced stimulation causes specific puffs in polytene chromosomes of salivary gland cells resulting in nuclear swelling. During this process, changes of intracellular ion composition are thought to act as an early regulatory mechanism of gene activation. By use of video-imaging analysis and electrophysiological techniques, we examined ecdysone-induced nuclear swelling in Drosophila salivary glands in situ and its dependence on pH and calcium. Isolated glands of the third larval stage were superfused with a solution mimicking the haemolymph. Addition of 5×10–6 mol/l 20-OH-ecdysone led, after a lag period of 50 min, to a sustained Ca2+-dependent increase of nuclear volume by 23.0±2.3%. Amiloride, a blocker of plasma membrane Na+/H+ exchange, prevented 20-OH-ecdysone-induced nuclear swelling. Decreasing pH in the superfusate from 7.15 to 6.8 led to nuclear shrinkage by 16.9±3.9%. Measurments of pH in salivary gland cells with ion-sensitive microelectrodes disclosed an alkalinization of 0.23±0.05 pH units after stimulation with 20-OH-ecdysone. We postulate that 20-OH-ecdysone activates the amilorde-sensitive plasma membrane Na+/H+ exchanger. This leads to intracellular alkalinization and concomitant decondensation of the nuclear chromatin visible as nuclear swelling. Thus, cell alkalinization could be a potentially important stimulatory mechanism in mediating ecdysteroid-induced activation of the cell nucleus.  相似文献   

2.
3.
The small RNA of hnRNP1 were studied in HeLa cells infected with adenovirus-2. At 15 h post-infection, when 50–60 % of the hnRNA was of viral origin, all the small nuclear RNA of hnRNP from non-infected cells were present in hnRNP from infected cells. The small, virus-encoded VA RNA could not be detected by staining like the snRNA but only after labeling. It represented less than 1 % of the small nuclear RNA in hnRNP. The low level of VA RNA in hnRNP as compared to that of the small nuclear RNA does not favor the hypothesis of a similar function for these 2 classes of small RNA.  相似文献   

4.
Most cellular organelles are positioned through active transport by motor proteins. The authors discuss the evidence that dynein has important cell cycle-regulated functions in this context at the nuclear envelope.Most cellular organelles are positioned through active transport by motor proteins. This is especially important during cell division, a time when the organelles and genetic content need to be divided equally between the two daughter cells. Although individual proteins can attain their correct location by diffusion, larger structures are usually positioned through active transport by motor proteins. The main motor that transports cargoes to the minus ends of the microtubules is dynein. In nondividing cells, dynein probably transports or positions the nucleus inside the cells by binding to the nuclear envelope (NE; Burke & Roux, 2009). However, it appears that dynein also has important cell-cycle-regulated functions at the NE, as it is recruited to the NE every cell cycle just before cells enter mitosis (Salina et al, 2002; Splinter et al, 2010). Here, we discuss why dynein might be recruited to the NE for a brief period before mitosis.During late G2 or prophase the centrosomes separate to opposite sides of the nucleus, but remain closely associated with the NE during separation. This close association is probably mediated through NE-bound dynein, which ‘walks'' towards the minus ends of centrosomal microtubules, thereby pulling centrosomes towards the NE (Splinter et al, 2010; Gonczy et al, 1999; Robinson et al, 1999). We speculate that close association of centrosomes to the NE might have several functions. First, if centrosomes are not mechanically coupled to the NE, centrosome movement during separation will occur in random directions and chromosomes will not end up between the two separated centrosomes. In this scenario, individual kinetochores might attach more frequently to microtubules coming from both centrosomes (merotelic attachments), a defect that can result in aneuploidy, a characteristic of cancer. Second, centrosome-nuclear attachment also keeps centrosomes in close proximity to chromosomes, which might facilitate rapid capture of chromosomes by microtubules nucleated by the centrosomes after NE breakdown. This might not be absolutely essential, as chromosome alignment can occur in the absence of centrosomes. However, the spatial proximity of centrosomes and chromosomes at NE breakdown might improve the fidelity of kinetochore capture and chromosome alignment.In addition, dynein has also been suggested to promote centrosome separation in prophase in some systems (Gonczy et al, 1999; Robinson et al, 1999; Vaisberg et al, 1993), although not in others (Tanenbaum et al, 2008). Perhaps dynein, anchored at the NE just before mitosis, could exert force on microtubules emanating from both centrosomes, thereby pulling centrosomes apart. However, this force could also be produced by cortical dynein and specific inhibition of NE-associated or cortical dynein will be required to test which pool is responsible.Dynein has also been implicated in the process of NE breakdown itself, by promoting mechanical shearing of the NE. Two elegant studies showed that microtubules can tear the NE as cells enter mitosis (Salina et al, 2002; Beaudouin et al, 2002). One possibility is that microtubules growing into the NE mechanically disrupt it. Alternatively, NE-associated dynein might ‘walk'' along centrosomal microtubules and thereby pull on the NE, tearing it apart. However, testing the exact role of dynein in NE breakdown is complicated by the fact that centrosomes detach from the NE on inactivation of dynein and centrosomal microtubules stop growing efficiently into the NE. Thus, selective inhibition of dynein function will also be required to test this idea.Specific recruitment of dynein to the NE just before mitosis clearly suggests a role for dynein at the NE in preparing cells for mitosis. A major role of NE-associated dynein is to maintain close association of centrosomes with the NE during centrosome separation, which might be needed for efficient capture and alignment of chromosomes after NE breakdown, but additionally, NE-associated dynein could facilitate breakdown and contribute to centrosome separation in some systems.  相似文献   

5.
6.
OUR previous studies on the X-linked testicular feminization (Tfm) mutation1 of the mouse2–4 showed that the so-called cytosol and nuclear 5αx-dihydrotestosterone (DHT) receptor protein5–7 might be a regulatory protein specified by the Tfm locus. The dual role of being a translational repressor in the cytoplasma and a mediator of hypertrophy in the nucleus was envisaged8. We found, however, another class of androgen-receptor in the polysome fraction of kidney proximal tubule cells which seems better qualified to be a translational regulator. Since a single gene locus specifies only one kind of polypeptide chain, we re-examined whether the cytosol and nuclear DHT-receptor protein underwent a true mutational change in Tfm/Y individuals.  相似文献   

7.
Nonhistone nuclear proteins were isolated from 3–5 day old neonatal as well as 3 month-old adult myocardium. The nuclear proteins were separated and analyzed by two-dimensional polyacrylamide gel electrophoresis. Using a blot transfer technique equilibrated with65Zn2+, at least four polypeptides exhibited Zn2+-binding activity over the spectrum of nonhistone nuclear proteins. A protein with a molecular weight of 68kDa pI7.8, which has been characterized for its involvement in nucleosome structure, consistently binds Zn2+ in both the neonatal and adult myocardium. This nuclear protein has now been further characterized by partial amino acid microsequencing. It was found that this novel polypeptide is distinct from the pore-complex lamina proteins. Three other polypeptides with M90kDa, pI7.8, M68kDa, pI6.5 and M35 kDa, pI7.5 exhibited increased Zn2+-binding activity in neonatal myocardium as compared to adult myocardium. Together with results from our previous studies, this study provides the first evidence implicating Zn++-binding nuclear proteins in the processes of growth and differentiation of myocardial development. (Mol Cell Biochem121: 175–179, 1993)  相似文献   

8.
The properties and function of rapidly-labelled nuclear RNA   总被引:1,自引:1,他引:0  
Donald Grierson  Simon Covey 《Planta》1976,130(3):317-321
Summary Nuclei were isolated from cultured cells of Acer pseudoplatanus L. previously pulse-labelled with [5-3H]uridine or [32P]phosphate and the properties of the rapidly-labelled RNA were studied. Polyacrylamide gel electrophoresis showed ribosomal RNA precursors and processing intermediates with molecular weights of 3.4, 2.5, 1.4 and 1×106 daltons, together with polydisperse RNA. The relative proportions of ribosomal RNA precursors and polydisperse RNA varied according to the length of the labelling period, but after 30 min approximately 90% of the radioactive RNA was polydisperse. The relationship between this polydisperse RNA and messenger RNA was investigated. The percentage of total nuclear RNA retained by chromatography on oligodeoxythymidylic acid-cellulose columns varied from 6% to 16% depending on the length of the labelling period. This RNA fraction, which has an adenylic acid content of approximately 45%, is assumed to represent RNA with polyadenylic acid sequences attached. A larger proportion of the nuclear polydisperse RNA lacked polyadenylic acid. Both types of polydisperse RNA were similar in size and during polyacrylamide gel electrophoresis migrated as broad peaks with an average molecular weight of approximately 106 daltons. The polydisperse nuclear RNA that lacks polyadenylic acid was found to be similar in nucleotide composition to ribosomal RNA and is assumed to represent growing chains of ribosomal precursor RNA. After short labelling times the majority of the radioactivity incorporated into nuclear RNA is present in molecules of this type. This suggests that the designation of pulse-labelled polydisperse RNA as messenger RNA or precursor to messenger RNA solely on the basis of rapid labelling and size heterogeneity is unsound. The average molecular weight of the polyadenylic acid-containing messenger RNA from the cytoplasm was less than that of the corresponding nuclear RNA (6 and 9×105 daltons respectively). This suggest either that the majority of the nuclear polyadenylic acid-containing RNA does not enter the cytoplasm, or if it does, that it first undergoes a reduction in size.Abbreviations rRNA ribosomal RNA - mRNA messenger - RNA poly(A), polyadenylic acid, poly(A) and poly(A) - RNA RNA with and without poly(A) sequences attached - poly(U) polyuridylic acid - oligo (dT)-cellulose cellulose with oligo deoxythymidylic acid covalently attached - C cytidylic acid - A adenylic acid - G guanylic acid - U uridylic acid  相似文献   

9.
10.
A favored hypothesis to explain the pathology underlying nuclear envelopathies is that mutations in nuclear envelope proteins alter genome/chromatin organization and thus gene expression. To identify nuclear envelope proteins that play roles in genome organization, we analyzed nuclear envelopes from resting and phytohemagglutinin-activated leukocytes because leukocytes have a particularly high density of peripheral chromatin that undergoes significant reorganization upon such activation. Thus, nuclear envelopes were isolated from leukocytes in the two states and analyzed by multidimensional protein identification technology using an approach that used expected contaminating membranes as subtractive fractions. A total of 3351 proteins were identified between both nuclear envelope data sets among which were 87 putative nuclear envelope transmembrane proteins (NETs) that were not identified in a previous proteomics analysis of liver nuclear envelopes. Nuclear envelope localization was confirmed for 11 new NETs using tagged fusion proteins and antibodies on spleen cryosections. 27% of the new proteins identified were unique to one or the other of the two leukocyte states. Differences in expression between activated and resting leukocytes were confirmed for some NETs by RT-PCR, and most of these proteins appear to only be expressed in certain types of blood cells. Several known proteins identified in both data sets have functions in chromatin organization and gene regulation. To test whether the novel NETs identified might include those that also regulate chromatin, nine were run through two screens for different chromatin effects. One screen found two NETs that can recruit a specific gene locus to the nuclear periphery, and the second found a different NET that promotes chromatin condensation. The variation in the protein milieu with pharmacological activation of the same cell population and consequences for gene regulation suggest that the nuclear envelope is a complex regulatory system with significant influences on genome organization.The nuclear envelope (NE)1 is a double membrane system consisting of the intermediate filament nuclear lamin polymer and associated proteins attached to the inner nuclear membrane (INM) (1), nuclear pore complexes (NPCs) that direct transport of soluble macromolecules in and out of the nucleus (2), and the outer nuclear membrane (ONM) and associated proteins. Structurally, the ONM is continuous with the endoplasmic reticulum (ER) and is studded with ribosomes (3), yet it also contains unique proteins, many of which connect the cytoskeleton to the NE (4). On the other side, lamins and many INM proteins directly connect chromatin to the NE. Lamins and an increasing number of nuclear envelope transmembrane proteins (NETs) have been linked to a similarly increasing number of diseases ranging from muscular dystrophy to neuropathy, dermopathy, lipodystrophy, bone disorders, and progeroid aging syndromes (5, 6).A favored hypothesis to explain how different NE proteins can produce such a wide range of disease pathologies is that chromatin-NE connections are disrupted with NE protein mutations, yielding changes in gene regulation. This hypothesis is supported by observations that the distribution of dense peripheral chromatin is affected in fibroblasts from patients with NE-linked muscular dystrophy, cardiomyopathy, mandibuloacral dysplasia, and progeria (710). Furthermore, many binding partners have been identified for NETs that are either chromatin proteins, enzymes that modify chromatin proteins, or regulators of gene expression (1, 11). These include markers of silent chromatin such as heterochromatin protein 1 (12) and proteins that modify chromatin to a silent conformation such as histone deacetylase 3 (13). The importance of the NE to global genome organization has been underscored by several recent studies that showed that affinity-based recruitment of a specific chromosome locus by the NE both pulled entire chromosomes to the periphery and affected gene regulation in complex ways (1416).To identify NE proteins likely to be involved in genome organization, we turned to lymphocytes as a model system. Lymphocytes in the resting state tend to have massive amounts of dense peripheral chromatin as determined by electron microscopy studies. Upon activation with phytohemagglutinin, this dense chromatin largely dissipates as the cells actively express genes (1720). Thus, to identify proteins that might be involved in tethering heterochromatin to the NE or in changing its organization, we analyzed the NE proteomes of leukocyte populations (∼70% lymphocytes) in both the resting and phytohemagglutinin (PHA)-activated states. The previously validated subtractive approach was applied (21) using microsomes and mitochondria, the principal membrane contaminants expected, as subtractive fractions.Many new NE proteins were identified that had not been identified in previous NE proteomics investigations using liver and neuroblastoma cells (21, 22). NE residence was confirmed for 12 novel NETs by expression of epitope-tagged versions and using antibodies on tissue cryosections.Roughly one-quarter of the proteins identified varied between the resting and activated states. Some NET differences between the two data sets were confirmed by RT-PCR. Among the known proteins identified were several that suggest that changes in NE composition associated with PHA activation contribute to gene regulation. Novel NETs identified also appear to play significant roles in genome organization/regulation as we found that several can either recruit a specific locus to the nuclear periphery or promote chromatin condensation. As several studies have implicated misregulation of chromatin organization in NE diseases (7, 8), these newly identified NETs may contribute to the diverse pathologies associated with NE diseases.  相似文献   

11.
The alteration of calcium content, Ca2+-ATPase activity, DNA content and DNA fragmentation in the nuclei of regenerating rat liver was investigated. Liver was surgically removed about 70% of that of sham-operated rats. the reduced liver weight by partial hepatectomy was completely restored at 3 days after the surgery. Regenerating liver significantly increased Ca2+-ATPase activity and DNA content in the nuclei between 1 and 5 days after hepatectomy. The nuclear calcium content was clearly increased from 2 days after hepatectomy. The increase of Ca2+-ATPase activity in regenerating liver was clearly inhibited by the presence of trifluoperazine (10 M), staurosporine (2.5 M) and dibucaine (10 M), which are inhibitors of calmodulin and protein kinase, in the enzyme reaction mixture. However, the nuclear enzyme activity in normal rat liver was not significantly altered by these inhibitors. Meanwhile, the increase of nuclear DNA content in regenerating liver was completely blocked by the administration of trifluoperazine (2.5 mg/100 g body weight), suggesting an involvement of calmodulin. Now, the nuclear DNA fragmentation was significantly decreased in regenerating liver, suggesting that this decrease is partly contributed to the increase in nuclear DNA content. The present study clearly demonstrates that regenerating liver enhances nuclear Ca2+-ATPase activity and induces a corresponding elevation of nuclear calcium content. This Ca2+-signaling system may be involved in the regulation of nuclear DNA functions in regenerating rat liver.  相似文献   

12.
Rapidly phosphorylated nuclear proteins were investigated in explanted salivary gland cells of Chironomus tentans after labeling with 32Pi. After sonication nuclei were fractionated by centrifugation at 18,000 g into sedimentable (80% of 32P) and not sedimentable (supernatant) material. About 90% of 32P in the supernatant fraction was sedimentable at 100,000 g (disperse chromatin). The disperse chromatin contained 20%–40% of the total nuclear DNA but only 5%–20% of 32P. The 32P-labeled phosphoproteins in the material pelleted at 20,000 g were further fractionated by differential solubility in lysis buffer. Electrophoretic analyses on SDS polyacrylamide gels resolved the 32P-labeled nuclear proteins into 12 major bands in the Mr range of 12,000–120,000. The incorporation of 32P into most bands reached a steady-state within 5–10 min of incubation with 32Pi and was not measurably influenced by cycloheximide, an inhibitor of protein synthesis. The phosphate groups are linked to polypeptide chains by bonds vulnerable to pronase and alkaline phosphatase. All major bands in the pelleted chromatin were also present in the disperse chromatin except for an Mr 95,000 phosphoprotein. Two of the fastest moving 32P-bands comigrated with the core histones H2A and H4. Both possessed a high pI value and were insoluble in 0.35 M NaCl. The H2A-like protein was partially soluble in lysis buffer while the H4-like one was not. The two fast moving 32P-labeled bands with rapidly turned over phosphates may be fractions or variants of the core histones H2A and H4.  相似文献   

13.
We have successfully expressed enzymatically active plant topoisomerase II in Escherichia coli for the first time, which has enabled its biochemical characterization. Using a PCR-based strategy, we obtained a full-length cDNA and the corresponding genomic clone of tobacco topoisomerase II. The genomic clone has 18 exons interrupted by 17 introns. Most of the 5 and 3 splice junctions follow the typical canonical consensus dinucleotide sequence GU-AG present in other plant introns. The position of introns and phasing with respect to primary amino acid sequence in tobacco TopII and Arabidopsis TopII are highly conserved, suggesting that the two genes are evolved from the common ancestral type II topoisomerase gene. The cDNA encodes a polypeptide of 1482 amino acids. The primary amino acid sequence shows a striking sequence similarity, preserving all the structural domains that are conserved among eukaryotic type II topoisomerases in an identical spatial order. We have expressed the full-length polypeptide in E. coli and purified the recombinant protein to homogeneity. The full-length polypeptide relaxed supercoiled DNA and decatenated the catenated DNA in a Mg2+- and ATP-dependent manner, and this activity was inhibited by 4-(9-acridinylamino)-3-methoxymethanesulfonanilide (m-AMSA). The immunofluorescence and confocal microscopic studies, with antibodies developed against the N-terminal region of tobacco recombinant topoisomerase II, established the nuclear localization of topoisomerase II in tobacco BY2 cells. The regulated expression of tobacco topoisomerase II gene under the GAL1 promoter functionally complemented a temperature-sensitive TopII ts yeast mutant.  相似文献   

14.
A recent study shows that a short isoform of a mammalian nuclear lamin is important for homologous chromosome interactions during meiotic prophase in mice.Meiosis is the specialized cell division process required for sexual reproduction. As cells enter meiotic prophase, a relatively long period preceding the two chromosome divisions, nuclei and chromosomes undergo remodeling to promote interactions between homologous chromosomes. Each chromosome must find and identify its unique partner within the volume of the nucleus, a process that obviously involves large-scale chromosome movements.Over 100 years ago, cytological analysis of meiotic cells revealed a unique chromosome configuration termed the meiotic ''bouquet'', in which chromosome ends seem to be attached to the nuclear periphery, frequently in a tight cluster. The presence of the bouquet was found to coincide with the stage during which homologous chromosomes undergo pairing and synapsis. This was the first indication that interactions between the chromosomes and the nuclear envelope might be important for meiotic pairing. More recent analysis in diverse model systems has revealed that the bouquet is a consequence of interactions between chromosomes and cytoskeletal elements - microtubules or actin cables - via a protein bridge that spans the nuclear envelope. A study recently published in PLOS Genetics [1] has shed further light on the role of the nuclear lamina in meiotic progression by studying the role of a meiosis-specific isoform of a nuclear lamin protein.In metazoans the nuclear envelope is fortified by the nuclear lamina, a meshwork of intermediate filament proteins (lamins) and associated proteins that underlies the inner nuclear membrane. The lamina confers structural rigidity to nuclei and also interacts with a wide variety of nucleoplasmic, transmembrane and chromosome-associated proteins. The composition of the lamina in metazoans shows tissue-specific variability and developmental regulation. Most differentiated mammalian cells express both A-type lamins (lamins A and C, which are generated by alternative splicing of the LMNA gene) and B-type lamins (encoded by two different genes), whereas some invertebrates express only a single lamin protein. Stem cells typically lack A-type lamins, which are also dispensable for early development in mice.Among the nuclear envelope components that interact with lamins are LINC (linker of nucleoskeleton and cytoskeleton) complexes. These versatile networks involve a pair of SUN/KASH proteins that bridge both membranes of the nuclear envelope. SUN domain proteins traverse the inner membrane, with their amino termini projecting into the nucleus and their SUN domains in the lumen between the two membranes. Their partners have membrane-spanning regions adjacent to their carboxy-terminal KASH domains, short peptides that bind to the SUN domains. Using a variety of interaction modules, LINC complexes create connections between nuclear structures such as the lamina or chromosomes and cytoskeletal elements such as actin filaments or microtubules. Throughout the eukaryotes, they have essential roles in diverse processes, including the positioning and migration of nuclei within cells and anchorage of centrosomes to the nuclear envelope. During meiosis, specific LINC complexes are recruited to interact with chromosomes through the expression of meiosis-specific proteins that bind to telomeres or, less frequently, to other specialized loci [2]. These connections, probably in conjunction with meiosis-specific modifications to the cytoskeleton and motor proteins, lead to large-scale chromosome motions that facilitate homologous chromosome pairing. These movements involve dramatic motion of the LINC proteins within the nuclear membrane, sometimes involving movements of up to several micrometers that occur within a few seconds [3]. This stands in sharp contrast to the behavior of some of the same protein complexes in somatic or premeiotic cells, in which they show highly constrained motion and minimal turnover [3].In the new PLOS Genetics study [1], groups led by Manfred Alsheimer and Ricardo Benavente, both of the University of Würzburg, have now engineered a disruption of an exon in the mouse LMNA gene that is specific to the meiotic isoform lamin C2 to generate C2-deficient mice (C2-/- mice). These collaborators have previously provided important insights into the regulation and functions of cell-type specific lamin isoforms, particularly during meiosis. Using antibodies, they characterized the lamin isoforms present in rat spermatocytes [4]. Immunolocalization revealed that a truncated isoform of lamin C (lamin C2) was localized in a patchy pattern along the nuclear envelope, along with a short B-type lamin (lamin B3) [4]. Because these short isoforms lack domains implicated in interactions between lamin subunits, they and others proposed that these proteins might form a more flexible network. This idea was supported by experiments in which meiosis-specific lamin C2 was ectopically expressed in fibroblasts and found to be more mobile within the nuclear envelope than full-length lamin C [5]. Expression of lamin C2 also resulted in aberrant localization of Sun1 in these cells. The collaborators also demonstrated that spermatogenesis was disrupted in Lmna-/- mice, although oocyte meiosis was not obviously perturbed [6]. Although defects in meiosis-specific processes were observed in the knockout mice, it was not possible to rule out an indirect effect of lamin depletion in somatic cells on meiosis in spermatocytes, prior to the new study.An important feature of the new research [1] is that the C2-/- mice show normal expression of all other A-type lamins. The C2-/- males recapitulate the meiotic failure seen in Lmna-/- mice. Nevertheless, their chromosomes frequently fail to synapse and they engage in heterologous associations or show aberrant telomere-telomere interactions; all of these defects are rare in wild-type spermatocytes. As a result of extensive apoptosis and failure of sperm maturation, the males are completely infertile. However, females are fertile, despite some evidence for pairing defects in C2-/- oocytes.These sex-specific differences in the effects of lamin C2 loss are somewhat surprising. They could in part reflect differential implementation of meiotic checkpoints, which cull defective spermatocytes more ruthlessly than oocytes [7]. However, analysis of homologous pairing and synapsis in the C2-/- mutant mice also revealed more severe defects in males. Both male and female mice lacking Sun1 protein are completely sterile and show synaptic failure during meiotic prophase [8]. This suggests that LINC-mediated chromosome dynamics are essential for homolog interactions during meiosis in both sexes. The milder defects caused by loss of lamin C2 in both male and female meiosis suggest that it has a less direct role in mediating chromosome movement than Sun1. This is consistent with the idea that expression of short lamin isoforms during meiosis acts primarily to increase the mobility of proteins within the nuclear envelope, relative to somatic cells. It seems likely that the dynamics of pairing, synapsis and recombination differ dramatically between spermatocytes, which are produced continually during the adult life of the male, and oocytes, which undergo meiotic prophase during fetal development. Such differences might render male meiosis more sensitive to changes in nuclear envelope organization or dynamics.The modifications made to the mouse nuclear envelope during meiosis are likely to be conserved in concept, if not in detail, in other taxa. As mentioned above, the isoforms and expression patterns of lamin proteins have diverged rapidly among the metazoa, as have the structures and functions of LINC complexes. For example, amphibians lack lamin C (and lamin C2), suggesting that its meiotic role in mammals is a recent innovation. Furthermore, the mouse Sun1 protein has a C2H2 zinc finger lacking in primate orthologs, which might suggest that it has evolved a distinct way to connect with meiotic chromosomes. It is thus not currently clear which aspects of meiotic lamina remodeling in mice can be extrapolated to other species.In Caenorhabditis elegans, meiotic chromosome dynamics are probably mediated by post-translational modification of the amino-terminal (nucleoplasmic) domain of sun-1 [9]. It is not yet known how this modification contributes to the function of the meiotic LINC complex. Direct observation has indicated that the motion of LINC complexes within the nuclear envelope becomes much less constrained as cells enter meiosis [3]. Phosphorylation of sun-1 may weaken interactions between the LINC complexes and the lamina to increase their mobility within the nuclear envelope, and/or promote interactions between LINC complexes to create high load-bearing aggregates of these proteins necessary to drive chromosome movement. It is not currently known whether the lamina itself is modified in C. elegans meiotic nuclei, but it is easy to imagine that phosphorylation could also be used to tweak protein-protein interactions within the lamina to optimize its properties during meiosis and other specialized cellular processes. It is likely that metazoans have evolved a wide range of mechanisms to modify their nuclear envelopes to meet the special demands of meiotic prophase.Homologous chromosome pairing remains one of the most mysterious aspects of meiosis. This new work in mice [1] adds an important piece of the puzzle by illuminating how the nuclear lamina can be modified to facilitate meiotic chromosome dynamics. To understand this process will clearly require looking beyond the chromosomes, and even beyond the nucleus, to the cellular networks connected by LINC complexes.  相似文献   

15.
16.
17.
18.
A novel 2D NMR experiment, 2D HE(NE)HGHH, is presented for the assignment ofarginine side chain 1H and 15N resonances inuniformly 15N-labeled proteins. Correlations between1H, 1Hand 1H are established on the basis of3J(15N,1H) heteronuclear scalarcoupling constants, and sequence-specific assignments are obtained by overlapof these fragments with 1H chemical shiftsobtained by assignment procedures starting from the polypeptide backbone.Since guanidino protons exchange quite rapidly with the bulk water, the 2DHE(NE)HGHH pulse scheme has been optimized to avoid saturation and dephasingof the water magnetization during the course of the experiment. As anillustration, arginine side chain assignments are presented for two uniformly15N-labeled proteins of 7 and 23 kDa molecular weight.  相似文献   

19.
20.
Acetylcholine receptor (AcChR) was solubilized and purified from membranes derived from electric organs of the marine fish Torpedo marmorata, Torpedo nobiliana, Narcine brasliensis, and of the freshwater eel, Electrophorus electricus, using techniques originally developed for Torpedo californica (27., 28.Biochem. Biophys. Res. Commun.49, 572–578; 1973, Biochemistry12, 852–856. The conditions used were identical in each case and the goal was to determine the degree of similarity between receptors from each source since conflicting reports have appeared with regard to polypeptide composition. The Torpedo and Narcine preparations were of high specific activity and exhibited four polypeptide components of apparent molecular weights 64, 59, 50, and 40 × 103 upon polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Two components were observed upon gel electrophoresis in sodium cholate or upon sucrose density gradient centrifugation, representing monomeric and dimeric forms. Eel acetylcholine receptor exhibited three major subunits of apparent molecular weights 57, 49, and 40 × 103. The amino acid and neutral sugar composition of the purified receptor preparations have been determined. The results support the contention that the receptor is composed of several types of polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号