首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The covalently bound FAD in native monomeric sarcosine oxidase (MSOX) is attached to the protein by a thioether bond between the 8alpha-methyl group of the flavin and Cys315. Large amounts of soluble apoenzyme are produced by controlled expression in a riboflavin-dependent Escherichia coli strain. A time-dependent increase in catalytic activity is observed upon incubation of apoMSOX with FAD, accompanied by the covalent incorporation of FAD to approximately 80% of the level observed with the native enzyme. The spectral and catalytic properties of the reconstituted enzyme are otherwise indistinguishable from those of native MSOX. The reconstitution reaction exhibits apparent second-order kinetics (k = 139 M(-)(1) min(-)(1) at 23 degrees C) and is accompanied by the formation of a stoichiometric amount of hydrogen peroxide. A time-dependent reduction of FAD is observed when the reconstitution reaction is conducted under anaerobic conditions. The results provide definitive evidence for autoflavinylation in a reaction that proceeds via a reduced flavin intermediate and requires only apoMSOX and FAD. Flavinylation of apoMSOX is not observed with 5-deazaFAD or 1-deazaFAD, an outcome attributed to a decrease in the acidity of the 8alpha-methyl group protons. Covalent flavin attachment is observed with 8-nor-8-chloroFAD in an aromatic nucleophilic displacement reaction that proceeds via a quininoid intermediate but not a reduced flavin intermediate. The reconstituted enzyme contains a modified cysteine-flavin linkage (8-nor-8-S-cysteinyl) as compared with native MSOX (8alpha-S-cysteinyl), a difference that may account for its approximately 10-fold lower catalytic activity.  相似文献   

2.
Prenylated proteins contain either a 15-carbon farnesyl or a 20-carbon geranylgeranyl isoprenoid covalently attached via a thioether bond to a cysteine residue at or near their C terminus. As prenylated proteins comprise up to 2% of the total protein in eukaryotic cells, and the thioether bond is a stable modification, their degradation raises a metabolic challenge to cells. A lysosomal enzyme termed prenylcysteine lyase has been identified that cleaves prenylcysteines to cysteine and an unidentified isoprenoid product. Here we show that the isoprenoid product of prenylcysteine lyase is the C-1 aldehyde of the isoprenoid moiety (farnesal in the case of C-15). The enzyme requires molecular oxygen as a cosubstrate and utilizes a noncovalently bound flavin cofactor in an NAD(P)H-independent manner. Additionally, a stoichiometric amount of hydrogen peroxide is produced during the reaction. These surprising findings indicate that prenylcysteine lyase utilizes a novel oxidative mechanism to cleave thioether bonds and provide insight into the unique role this enzyme plays in the cellular metabolism of prenylcysteines.  相似文献   

3.
The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe–2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na+-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na+-NQR contains approximately 1.7 mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na+-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na+-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

4.
Synthesis of an estrogen affinity adsorbent containing a disulfide linkage between the steroid and stationary matrix permitted facile purification of high affinity estrogen binding proteins. Following affinity chromatography of either antibody directed against estrone 17-carboxymethyloxime — bovine serum albumin or immature calf uterine cytoplasmic estrogen receptor proteins, the specifically bound protein was recovered by incubating the adsorbent with 2-mercaptoethanol. Crude antibody and uterine cytosol was prepared for affinity chromatography in buffer containing 10?3 to 10?2M cystamine (S-S) to block SH-containing proteins, in order to protect the adsorbent against protein-mediated S-S ag SH exchange. Cystamine was found to markedly stabilize crude cytosol receptor protein by 200–300% compared with preparations obtained under ordinary conditions. Disulfide affinity adsorbents are versatile in that they can be used either under conventional conditions of specific protein recovery, or with 2-mercaptoethanol which removes the ligand and bound protein from the stationary matrix quantitatively.  相似文献   

5.
The mechanism of action of the monoamine oxidase inhibitor pargyline   总被引:1,自引:0,他引:1  
L Oreland  H Kinemuchi  B Y Yoo 《Life sciences》1973,13(11):1533-1541
Purified pig liver monoamine oxidase, which has been shown to contain one mole of covalently bound FAD per mole of enzyme, was inhibited by [14C] Pargyline (N-methyl-N-2-(propynyl)-benzylamine) and then extensively degraded by pronase. The Pargyline-containing fragment was purified by gel filtration and ion-exchange chromatography. The equimolar ratio between Pargyline and flavin was retained after the purification. Thin-layer chromatography in several systems showed that Pargyline was bound to the flavo-peptide. Amino acid analyses of the peptide yielded cysteic acid, aspartic acid, serine and glycine in a molar ratio of 1:1:1:2.  相似文献   

6.
M S Jorns 《Biochemistry》1985,24(13):3189-3194
Sarcosine oxidase from Corynebacterium sp. U-96 contains 1 mol of noncovalently bound flavin and 1 mol of covalently bound flavin per mole of enzyme. Anaerobic titrations of the enzyme with either sarcosine or dithionite show that both flavins are reducible and that two electrons per flavin are required for complete reduction. Absorption increases in the 510-650-nm region, attributed to the formation of a blue neutral flavin radical, are observed during titration of the enzyme with dithionite or substrate, during photochemical reduction of the enzyme, and during reoxidation of substrate-reduced enzyme. Fifty percent of the enzyme flavin forms a reversible, covalent complex with sulfite (Kd = 1.1 X 10(-4) M), accompanied by a complete loss of catalytic activity. Sulfite does not prevent reduction of the sulfite-unreactive flavin by sarcosine but does interfere with the reoxidation of reduced enzyme by oxygen. The stability of the sulfite complex is unaffected by excess acetate (an inhibitor competitive with sarcosine) or by removal of the noncovalent flavin to form a semiapoprotein preparation where 75% of the flavin reacts with sulfite (Kd = 9.4 X 10(-5) M) while only 3% remains reducible with sarcosine. The results indicate that oxygen and sulfite react with the covalently bound flavin and suggest that sarcosine is oxidized by the noncovalently bound flavin.  相似文献   

7.
The modification of Escherichia coli citrate synthase (citrate oxaloacetatelyase(pro-3S-CH2.COO- leads to acetyl-CoA, EC 4.1.3.7) with 5,5'-dithiobis-(2-nitrobenzoic acid) has been investigated. (1) In low ionic strength (20 mM Tris.HCl, pH 8.0): (A) Eight thiol groups per tetramer of the native enzyme reacted with Nbs2. (b) Two of the eight accessible thiols were modified rapidly with the loss of 26% enzyme activity but with no change in the NADH inhibition. The remaining six were modified more slowly, resulting in a further 60% loss of activity and complete densensitization to NADH. (c) The 2nd-order rate constant for the modification of the rapidly reacting thiols is 2.5.10(4) M-1.min-1. At the reagent concentrations used (0.1 to 0.2 mM) the modification of the six thiols in the slow kinetic set appeared to be 1st-order; at 0.1 mM dithionitrobenzoic acid their rate of modification was approximately 30 times slower than the thiols in the fast kinetic set. (2) In high ionic strength (20 mM Tris.HCl, pH 8.0, 0.1 M KCl): (a) Four thiol groups were modified in a single kinetic set and it appeared that these thiols are four of the six slowly modified in the absence of KCl. (b) The modification resulted in 70% loss of enzyme activity and complete loss of NADH inhibition. (3) From the kinetic analysis it is proposed that the four thiol groups accessible to dithionitrobenzoic acid in the absence and presence of 0.1 M KCl are those involved in the response of NADH. Modification of any one of these four groups produced no reduction in the inhibition; instead, loss of NADH sensitivity was coincident with the appearance of tetrameric protein possessing three substituted thiols, whereas enzyme with one or two modified groups was still fully inhibited by NADH.  相似文献   

8.
Lipoate acetyltransferase [acetyl-CoA: dihydrolipoate S-acetyl-transferase, EC 2.3.1.12], the core enzyme of the pyruvate dehydrogenase complex, has been highly purified by gel chromatography on Sepharose 6B and sucrose density gradient centrifugation in the presence of potassium iodide. The native enzyme has a sedimentation coefficient (S020,W) of 26.7S and a diffusion coefficient (D020,W) of 1.25 x 10(-7) cm2.-sec-1. The weight-average molecular weight was estimated to be 1.8 million from the sedimentation equilibrium data. The content of right-handed alpha helix in the enzyme molecule was estimated to be about 25% by optical rotatory dispersion and about 22% from the circular dichroism spectra. The enzyme was found to contain about 23 moles of protein-bound lipoic acid per mole of enzyme; some other properties are also reported. Lipoate acetyltransferase dissociated to yield a single subunit with a molecular weight of 74,000 as estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate and by gel filtration on Bio-Gel in 6 M guanidine-HCl. The molecular weight was also estimated to be 74,000 from sedimentation equilibrium data in 6 M guanidine-HCl] containing 0.1 M 2-mercaptoethanol. Evidence is presented that 1 molecule of lipoate acetyltransferase apparently consists of 24 very similar subunits, each of which contains NH2-terminal alanine. Each subunit contains 1 molecule of covalently bound lipoic acid.  相似文献   

9.
Three different radioactively labeled N-(1-methylcyclopropyl)benzylamines [N-(1-Me)CBA] were synthesized and used to show which atoms of the inactivator remain bound to monoamine oxidase (MAO) after inactivation. Organic chemical reactions were employed to elucidate the structure of the enzyme adduct and clarify the mechanism of inactivation. Following inactivation and dialysis, the benzyl substituent is lost, but the methyl group and cyclopropyl carbons remain attached to the enzyme even after further dialysis against solutions containing 1 mM benzylamine or 8 M urea. Treatment of inactivated enzyme with sodium cyanoborohydride prior to dialysis results in the retention of the benzyl group, suggesting an imine linkage. One hydride from sodium boro[3H]hydride is incorporated into the dialyzed inactivated enzyme consistent with a ketone functional group. When Pronase-digested N-(1-Me)CBA-inactivated MAO is treated with basic potassium triiodide, iodoform is isolated, indicating the presence of a methyl ketone. During inactivation, the optical spectrum of the covalently bound active site flavin changes from that of oxidized to reduced flavin. After urea denaturation, the flavin remains reduced, suggesting covalent linkage of the inactivator to the cofactor. On the basis of previous results [Silverman, R. B., Hoffman, S. J., & Catus, W. B., III (1980) J. Am. Chem. Soc. 102, 7126-7128], it is proposed that the mechanism of inactivation involves transfer of one electron from N-(1-Me)CBA to the flavin, resulting in an amine radical cation and a flavin radical. Then, either the cyclopropyl ring is attacked by the flavin radical or the cyclopropyl ring opens, and the radical generated is captured by the flavin radical. The product of this mechanism is the imine of benzylamine and 4-flavinyl-2-butanone, the proposed enzyme-inactivator adduct.  相似文献   

10.
NAD(+)-coupled formate dehydrogenase has been purified to near-homogeneity from the obligate methanotroph Methylosinus trichosporium OB3b. The inclusion of stabilizing reagents in the purification buffers has resulted in a 3-fold increase in specific activity (98 microM/min/mg; turnover number 600 s-1) and as much as a 25-fold increase in yield over previously reported purification protocols. The enzyme, (molecular weight 400,000 +/- 20,000) is composed of four subunit types (alpha, 98,000; beta, 56,000; gamma, 20,000; delta, 11,500) apparently associated as 2 alpha beta gamma delta protomers. The holoenzyme contains flavin (1.8 +/- 0.2), iron (46 +/- 6), inorganic sulfide (38 +/- 4), and molybdenum (1.5 +/- 0.1). The flavin is optically similar to the common flavin cofactors, but it is chromatographically distinct. Anaerobic incubation of the enzyme with formate, NADH, or sodium dithionite, resulted in approximately 50% reduction of the iron and elicited an electron paramagnetic resonance (EPR) spectrum (approximately 2.5 spins/protomer) from which the spectra of five distinct EPR-active centers could be resolved in the g = 1.94 region. Four of these spectra were characteristic of [Fe-S]x clusters. The fifth (gave = 1.99; approximately 0.1 spins/protomer) was similar to that observed for the molybdenum cofactor of xanthine oxidase, and it exhibited the expected hyperfine splitting when the enzyme was enriched with 95Mo (I = 5/2). M?ssbauer spectroscopy showed that all of the iron in the enzyme became reduced upon the addition of a redox mediator, proflavin, to the dithionite reduced enzyme at pH 8.0. Nevertheless, a decrease in the EPR-active spin concentration in the g = 1.94 region of the spectrum occurred and was attributed to the reduction of the molybdenum center to the EPR-silent Mo(IV) state (S = 1). The fully reduced enzyme also exhibited a new species with an S = 3/2 ground state (1-2 spins/protomer). Addition of 50% ethylene glycol to the fully reduced enzyme revealed no new species, but caused an increase in the EPR-detectable spin quantitation to 5-6 spins/protomer. This suggests that cluster spin-spin interactions may occur in both the partially and fully reduced native enzyme.  相似文献   

11.
The Ca2+-dependent ATPase activity of sarcoplasmic reticulum was inhibited when membrane vesicles were incubated at 0°C in presence of thiols. 2-mercaptoethanol was the most effective inhibitor from the thiols tested. The effect of 2-mercaptoethanol on the ATPase activity was biphasic; enzyme inhibition originally increased and then decreased with increasing thiol concentration. The inhibitory action of this thiol was significantly higher at low membrane concentrations and the rate of inactivation at 22°C was considerably lower than that at 0°C. Ca2+-ATPase previously inhibited by 2-mercaptoethanol was partially reactivated by incubation with periodate.  相似文献   

12.
The biochemical properties of the enzyme responsible for nematode "activated L-serine sulphydrase" activity (L-cysteine + R-SH----cysteine thioether + H2S) have been investigated using primarily the gastro-intestinal nematodes Nippostrongylus brasiliensis and Haemonchus contortus. The activated L-serine sulphydrase enzyme was found to be cytosolic in origin and exhibited maximal activity at pH 9.0. Enzyme activity was widely distributed amongst the major tissues of adult female Ascaris suum but was particularly abundant in longitudinal muscle. The enzyme appeared to have a rigid specificity for L-cysteine as the primary thiol substrate, but was capable of utilising a number of sulphur amino acids (and derivatives) and nonphysiological thiols as second substrates. The best second thiol substrates were nonphysiological, hydroxyl-containing thiols that showed some structural similarity to the standard second substrate, 2-mercaptoethanol. Kinetic analyses revealed that the enzyme operates by a sequential catalytic mechanism, and the absolute Michaelis constants were: KL-cysteine = 0.21 +/- 0.02 mM and K2-mercaptoethanol = 5.58 +/- 0.59 mM. The enzyme was relatively insensitive to inhibition by a variety of substrate analogues and known inhibitors of pyridoxal 5'-phosphate dependent enzymes, whilst plant phenols caused significant levels of inhibition. The most potent inhibitors discovered were the anthelmintics bithionol, dichlorophene and hexachlorophene. Further characterisation revealed that hexachlorophene was a parabolic competitive inhibitor of the activated L-serine sulphydrase enzyme.  相似文献   

13.
NADH-cytochrome c oxidoreductase activity specifically expressed during growth on tetrahydrofuran was detected in cell extracts of Pseudonocardia sp. strain K1. The enzyme catalyzing this reaction was purified to apparent homogeneity by a three-step purification procedure. It was characterized as a monomer of apparent molecular mass 40 kDa. Spectroscopic studies indicated that it contains an iron-sulfur cluster and a flavin cofactor. An amount of 1 mol of flavin and 1 mol of iron was determined per mol of homogeneous protein. The N-terminal amino-acid sequence exhibited great similarity to the reductase component of various oxygenases. Cloning and sequencing of the corresponding gene designated as thmD revealed an ORF encoding a protein of 360 amino acids. An overall similarity of up to 38% was obtained to the NAD(P)H-acceptor reductase of several binuclear iron-containing mono-oxygenases. Conserved sequence motifs were identified that were similar to the chloroplast-type ferredoxin 2Fe-2S centre and to nucleotide-binding domains. Studies on the flavin cofactor showed that it could not be removed from the protein by denaturation, indicating a covalent attachment. Spectroscopic studies revealed that the flavin is at the FAD level and covalently bound to the protein via the flavin 8alpha-methyl group. Thus, the isolated reductase component is the first enzyme of this type for which a covalent attachment of the flavin has been observed.  相似文献   

14.
Organomercurial agarose has been used in the purification of various thiol compounds including enzymes (1). Thiol compounds are first adsorbed on a column of organomercurial agarose, and then eluted with a second thiol compound, e.g., 2-mercaptoethanol (2-ME)1 and cysteine. Although this column can be used repeatedly, a usual method for regeneration of the column is to remove the second thiol by HgCl2. It would be desirable to regenerate the column without using HgCl2, since it is biohazardous. In the study of the purification of a thiol-containing enzyme, we found that organomercurial agarose, which had previously been treated with 2-ME, could adsorb the enzyme and that the enzyme was eluted with 2-ME. This finding led us to examine whether the column can be used repeatedly without the regeneration using HgCl2.  相似文献   

15.
A purification scheme is described for the glyoxylate cycle enzyme malate synthase from maize scutella. With our procedure, large amounts of extremely pure enzyme can easily be prepared. Purification involves a heat denaturation step, followed by ammonium sulfate precipitation, and chromatography on DEAE-cellulose and Blue Dextran-Sepharose. Catalase and malate dehydrogenase, which are the most persistent contaminants, are completely removed by this procedure. Maize malate synthase is an octameric protein with a subunit molecular weight of 64 kDa. Purity of the enzyme preparation was demonstrated by SDS-polyacrylamide gel electrophoresis and by isoelectric focusing (pI = 5.0). Pure malate synthase can be stored without appreciable loss of activity at −70°C in 200 mM Hepes buffer containing 6 mM MgCl2 and 2 mM 2-mercaptoethanol, pH7.6. Maize malate synthase contains no covalently linked carbohydrate residues. The enzyme requires Mg2+ ions for activity. From circular dichroism measurements we estimate that the secondary structure of the enzyme consists of 30% α-helical and almost no (5%) β-pleated sheet segments. A 45-kDa polypeptide, which contaminates malate synthase preparations if the purification starts from seedlings older than 2.5 days, is shown to be a degradation product of malate synthase. Together with full-length chains, these 45-kDa polypeptides are able to take part in octameric oligomer formation.  相似文献   

16.
Human β-mannosidase (MANB) was purified to homogeneity directly from lysosomes by using mannosamine conjugated magnetic (Fe3O4) nanoparticles, DE-52 cellulose, and sephadex G-200 chromatography. Fe3O4 nanoparticles were synthesized and utilized ammonia to attach the amino group on the nanoparticles. The particles were covalently attached with D-mannosamine by cross linker glutaraldehyde and confirmed by FTIR spectroscopy. In FTIR analysis, the peaks appeared at 2,356.6 cm−1 for −N = CH linkage and at 3,378.4 cm−1, 3,664.9 cm−1 for −OH groups confirmed the conjugation of D-mannosamine with Fe3O4 nanoparticles. Results showed a single band of 97 kDa of purified MANB in SDS-PAGE. The isoelectric point was 4.5 and the Km and Vmax values were 2.51 mM and 0.315 μM/min/mg, respectively. The purification fold was 329 with 68% yield. The optimal activity was at pH 5.0 and 75% activity was stable in 20% glycerol at 4°C. The enzyme activity was inhibited by Ni2+, Zn2+, Cd2+, Cu2+, Mo2+, Ag+1, iodoacetate, SDS, DMF, DMSO, ethanol, and acetone; slightly reduced by Pb2+, Co2+, EDTA, DTT, and β-mercaptoethanol. The activity was not affected by Mg2+, Mn2+, Sn2+, Ca2+, Fe3+, PMSF, Triton X-100, D-mannosamine, D-mannose, D-mannitol, D-glucose, and D-fructose. The homogeneity of MANB enzyme was further confirmed by 2D-PAGE and immunoblot. This is the first novel report of conjugation of D-mannosamine with Fe3O4 nanoparticles for purification of human MANB enzyme.  相似文献   

17.
A soluble yellow CO dehydrogenase from CO-autotrophically grown cells of Pseudomonas carboxydohydrogena was purified 35-fold in seven steps to better than 95% homogeneity with a yield of 30%. The final specific activity was 180 μmol of acceptor reduced per min per mg of protein as determined by an assay based on the CO-dependent reduction of thionin. Methyl viologen, nicotinamide adenine dinucleotide (phosphate), flavin mononucleotide, and flavin adenine dinucleotide were not reduced by the enzyme, but methylene blue, thionin, and toluylene blue were reduced. The molecular weight of native enzyme was determined to be 4 × 105. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed at least three nonidentical subunits of molecular weights 14,000 (α), 28,000 (β), and 85,000 (γ). The ratio of densities of each subunit after electrophoresis was about 1:2:6 (α/β/γ), suggesting an α3β3γ3 structure for the enzyme. The purified enzyme was free of formate dehydrogenase and nicotinamide adenine dinucleotide-specific hydrogenase activities, but contained particulate hydrogenase-like activity with thionin as electron acceptor. Known metalchelating agents tested had no effect on CO dehydrogenase activity. No divalent cations tested stimulated enzyme activity. The native enzyme does not contain Ni since cells assimilated little 63Ni during growth, and the specific 63Ni content of the enzyme declined during purification. The isoelectric point of the native enzyme was found to be 4.5 to 4.7. The Km for CO was found to be 63 μM. The spectrum of the enzyme and its protein-free extract revealed that it contains bound flavin. The cofactor was flavin adenine dinucleotide based on enzyme digestion and thin-layer chromatography. One mole of native enzyme contains at least 3 mol of noncovalently bound flavin adenine dinucleotide.  相似文献   

18.
NADPH:2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC), an atypical member of the disulfide oxidoreductase (DSOR) family of enzymes, catalyzes the reductive cleavage and carboxylation of 2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate; 2-KPC] to form acetoacetate and coenzyme M (CoM) in the bacterial pathway of propylene metabolism. Structural studies of 2-KPCC from Xanthobacter autotrophicus strain Py2 have revealed a distinctive active-site architecture that includes a putative catalytic triad consisting of two histidine residues that are hydrogen bonded to an ordered water molecule proposed to stabilize enolacetone formed from dithiol-mediated 2-KPC thioether bond cleavage. Site-directed mutants of 2-KPCC were constructed to test the tenets of the mechanism proposed from studies of the native enzyme. Mutagenesis of the interchange thiol of 2-KPCC (C82A) abolished all redox-dependent reactions of 2-KPCC (2-KPC carboxylation or protonation). The air-oxidized C82A mutant, as well as wild-type 2-KPCC, exhibited the characteristic charge transfer absorbance seen in site-directed variants of other DSOR enzymes but with a pKa value for C87 (8.8) four units higher (i.e., four orders of magnitude less acidic) than that for the flavin thiol of canonical DSOR enzymes. The same higher pKa value was observed in native 2-KPCC when the interchange thiol was alkylated by the CoM analog 2-bromoethanesulfonate. Mutagenesis of the flavin thiol (C87A) also resulted in an inactive enzyme for steady-state redox-dependent reactions, but this variant catalyzed a single-turnover reaction producing a 0.8:1 ratio of product to enzyme. Mutagenesis of the histidine proximal to the ordered water (H137A) led to nearly complete loss of redox-dependent 2-KPCC reactions, while mutagenesis of the distal histidine (H84A) reduced these activities by 58 to 76%. A redox-independent reaction of 2-KPCC (acetoacetate decarboxylation) was not decreased for any of the aforementioned site-directed mutants. We interpreted and rationalized these results in terms of a mechanism of catalysis for 2-KPCC employing a unique hydrophobic active-site architecture promoting thioether bond cleavage and enolacetone formation not seen for other DSOR enzymes.  相似文献   

19.
Incubations of [3H]estradiol and [3H]2-hydroxyestradiol (2-OHE2) with rat liver microsomes and mushroom tyrosinase were carried out in the presence of glutathione and 2-mercaptoethanol. A ratio of about 3.5:1 for the C-4 and C-1 thioether conjugates of 2-OHE2 was observed. Chemical reaction of estradiol-2, 3-O-quinone with various thiols showed that alkyl and phenyl thiols gave about a 1:1 ratio of C-4 to C-1 thioethers. However, reaction of the O-quinone with 4-nitrothiophenol gave a C-4/C-1 ratio of 0.25 while 4-bromothiophenol gave a C-4/C-1 ratio of 4.0. These studies suggest that the regioselectivity of the reaction of thiols with estrogen catechols and O-quinones may be dependent on the nature of the thiol compounds and less on steric hindrance.  相似文献   

20.
A new type-II NADH dehydrogenase (NDH-II) was isolated from the hyperthermoacidophilic archaeon Acidianus ambivalens. This enzyme is a monomer with an apparent molecular mass of 47 kDa, containing a covalently bound flavin, and no iron–sulfur clusters. Upon isolation, NDH-II loses activity, which can, nevertheless, be restored by incubation with phospholipids. Catalytically, it is a proficient NADH:caldariella quinone oxidoreductase (130 mmol NADH oxidized/mg protein-1/min-1) but it can also donate electrons to synthetic quinones, strongly suggesting its involvement in the respiratory chain. The apparent Km for NADH was found to be 6 M, both for the purified and membrane-integrated enzyme, thus showing that detergent solubilization and purification did not affect the substrate binding site. Further, it is the first example of a type-II NADH dehydrogenase that contains the flavin covalently attached, which may be related to the need to stabilize the otherwise labile cofactor in a thermophilic environment. A fully operative minimal version of Acidianus ambivalens respiratory system was successfully reconstituted into artificial liposomes, using three basic components isolated from the organism: the type-II NADH dehydrogenase, caldariella quinone, the organism-specific quinone, and the aa3 type quinol oxidase. This system, which mimics the in vivo chain, is efficiently energized by NADH, driving oxygen consumption by means of the terminal oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号