首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Actinomycin D caused the production of hypomethylated DNA in cultured Friend erythroleukemia cells at cell culture concentrations of 1-4 ng per ml. Inhibition of DNA methyltransferase in cell-free assays was kinetically complex, with mixed-type inhibition. Cornish-Bowden graphical analysis was used to derive a Ki of about 35 nmol Act D per mg DNA. Although nuclei from drug-treated cells were found to contain hypomethylated DNA and DNA methyltransferase could be extracted from the nuclei, the methyl-accepting ability of DNA in whole nuclei themselves was not elevated. We conclude that the low level of Act D bound to DNA in the nuclei is sufficient to prevent the remethylation of hypomethylated sites.  相似文献   

2.
Regulation of erythroid differentiation by vitamin D3 derivatives was examined in Friend erythroleukemia cells. After Friend cells were cultured for 5 days with 1.5% dimethyl sulfoxide (DMSO), as much as 70% of the cells became benzidine-positive and the hemoglobin content increased in parallel with the increase of benzidine-positive cells. The DMSO-induced erythroid differentiation was markedly inhibited by concurrent addition of the active form of vitamin D3, 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3]. Of the vitamin D3 derivatives tested, 1 alpha,25(OH)2D3 was the most potent in inhibiting DMSO-induced erythroid differentiation. 1 alpha,25(OH)2D3 alone was totally ineffective in both cell growth and erythroid differentiation. These results together with our previous reports indicate that 1 alpha,25(OH)2D3 is somehow involved not only in myeloid differentiation, but also in erythroid differentiation.  相似文献   

3.
Interleukin12(IL12)isaheterodimericcytokineproducedbymacrophage,mitogenstimulatedorEBVtransformedBlymphocytes,anddendriticcells,withimportantimmunoregulatoryfunctionsinvitroandinvivo.IL12enhancestheproliferationanddifferentiationofTh1cells.IL4improvestheres…  相似文献   

4.
5.
Summary The synthetic nucleoside, ribavirin (1--D-ribofuranosyl-1,2,4-triazole-3-carboxamide), a broad spectrum antiviral agent currently being tested in clinical studies with AIDS patients; and mycophenolic acid, a non-nucleoside inhibitor of inosinate (IMP) dehydrogenase, are effective inducers of terminal differentiation of Friend virus transformed murine erythroleukemia cells. The inhibition of cell division and the induced maturation produced by these agents appears to be a consequence of inhibition of IMP dehydrogenase, since growth inhibition is reversed and differentiation is prevented by the simultaneous exposure of cells treated with the agents to exogenous guanine or guanosine, which circumvents the effects of blockage of IMP dehydrogenase. However, while the effects mycophenolic acid, a pure IMP dehydrogenase inhibitor with no other biochemical effects, were completely reversed by guanine salvage supplies, cells exposed to ribavirin responded in a different manner. At levels of guanine salvage supplies below 50 M, growth inhibition and cell differentiation were partially reversed. At salvage supply concentrations greater than 50 M, while differentiation was completely blocked, the toxicity of ribavirin was increased and cell division was greatly diminished. These results indicate additional biochemical effects for ribavirin unrelated to the inhibition of IMP dehydrogenase, which may be related to its antiviral properties.  相似文献   

6.
Apoptosis is shown to occur in erythroleukemia cells after incubation with oligomycin, which specifically inactivates mitochondrial ATPsynthase. Energy charge and ATP content decline very early during the treatment. Mitochondrial respiration is dramatically decreased while lactate production results not modified. DNA fragmentation progressively increases starting one hour following oligomycin removal, while loss of plasma membrane integrity occurs with a much slower time-course. Similar effects are also shown in differentiation-induced erythroleukemia cells exposed to H(2)O(2). In this case, evidence is provided for the involvement of (*)OH generated by iron-catalyzed reactions in the mechanism by which H(2)O(2) impairs energy charge and induces apoptosis. We hypothesize a possible role played by interference with mitochondrial bioenergy through inactivation of mitochondrial ATPsynthase in the apoptosis triggered by oxidative stress under conditions in which cells undergo an iron overload-like status, as occurs in differentiation-induced erythroleukemia cells. These results point to the impairment of mitochondrial ATP synthesis and of energy charge as common early events critical for the execution of apoptosis, independently by the stimuli used for its induction: the specific inhibitor of mitochondrial ATPsynthase or H(2)O(2) exposure combined with the iron-enhancing differentiating treatment.  相似文献   

7.
Three cell lines of mouse erythroleukemia transformed by Friend virus (FLC), namely 745, F4-1, and 3BM-78, were grown for six days in the absence or in the presence of 1.5% (v/v) dimethylsulfoxide (DMSO) and compared cytochemically for naphtol-AS D-chloroacetate esterase (E), alkalinephosphatase (AP), myeloperoxidase (MP) and periodic acid Schiff (PAS) reaction activity. In the absence of inducer only 1–2% of slightly E positive cells could be found. E positivity greatly increased in 3BM-78 and F4-1 but poorly in 745 cells, after treatment with DMSO. Unlike E reaction, AP and MP reactions were positive in about 5% 3BM-78 and F4-1 cells without DMSO, but there were no positive cells after DMSO treatment. All three lines were always PAS negative. Hemoglobin synthesis (benzidine staining) was intensively induced by DMSO in all three lines. Morphologically after DMSO treatment, FLC matured displaying characteristics of basophilic megaloblastoid cells. The emergence of specific esterase activity, a marker of granulocytes, in FLC differentiating along the erythroid pathway, suggests that in these leukemia cells the genetic determinants for leukopoietic differentiation are retained and capable of being expressed phenotypically.  相似文献   

8.
Dimethylsulfoxide-stimulated Friend leukemia cell erythrodifferentiation was inhibited by choline analogues such as N-monomethylethanolamine and N,N-dimethylethanolamine. Phosphatidyl-N-monomethylethanolamine and phosphatidyl-N,N-dimethylethanolamine were then accumulated in the cell membranes. N-Monomethylethanolamine also inhibited Friend leukemia cell erythrodifferentiation stimulated by hexamethylene bisacetamide and N-methylacetamide, but did not inhibit differentiation induced by sodium butyrate. This inhibitory effect of N-monomethylethanolamine was partially abrogated by spermine.  相似文献   

9.
Nuclear matrix isolated from murine erythroleukemia cells (Friend cells) has been phosphorylated with gamma 32P-ATP and purified protein kinase C in order to identify specific nuclear substrates for the enzyme. HMBA has been employed to induce the cell to differentiate and to compare the changes of phosphorylation profile after erythroid differentiation. Lamin B has been found to be hyperphosphorylated by rat brain PK-C in nuclear matrix purified from uninduced cells. This difference characterizes the cells from 14 to 72 hrs of HMBA treatment and indicates that the ability of lamin B to be phosphorylated by PK-C is linked to the differentiated state. The involvement of PK-C in lamin phosphorylation might represent an early step of the signalling pathway utilized by erythroid differentiating agents to target the cell nucleus.  相似文献   

10.
Strikingly increased expression of notch-1 has been demonstrated in several human malignancies and pre-neoplastic lesions. However, the functional consequences of notch-1 overexpression in transformed cells remain unclear. We investigated whether endogenously expressed notch-1 controls cell fate determination in mouse erythroleukemia (MEL) cells during pharmacologically induced differentiation. We found that notch-1 expression is modulated during MEL cell differentiation. Premature downregulation of notch-1 during differentiation, by antisense S-oligonucleotides or by enforced expression of antisense notch-1 mRNA, causes MEL cells to abort the differentiation program and undergo apoptosis. Downregulation of notch-1 expression in the absence of differentiation inducer increases the likelihood of spontaneous apoptosis. We conclude that in MEL cells, endogenous notch-1 expression controls the apoptotic threshold during differentiation and growth. In these cells, notch-1 allows differentiation by preventing apoptosis of pre-committed cells. This novel function of notch-1 may play a role in regulating apoptosis susceptibility in notch-1 expressing tumor cells.  相似文献   

11.
S Sassa  S Wolpe  A Cerami 《Blood cells》1987,13(1-2):161-169
Conditioned media from established murine macrophage cell lines (RAW264.7, P388D1, and WEHI-3) incubated with endotoxin in a serum-free medium contain an erythroid inhibitory activity (EIA) that inhibited dimethylsulfoxide-induced erythroid differentiation of mouse Friend virus-transformed erythroleukemia cells. Endotoxin itself has no EIA activity. Partial purification of EIA demonstrated that it is distinct from other macrophage products such as IL-1, TGF beta, ECGF, FGF, G-CSF, hepatocyte stimulating factor, interferon, PDGF, and cachectin/TNF. These findings indicate that EIA is a macrophage product distinct from other monokines.  相似文献   

12.
Exponentially growing human erythroleukemia K562 cells were permeabilized and the dose dependent decrease of DNA synthesis rate was measured after ultraviolet (UV B, 290 nm) irradiation. Cells were able to overcome 2 and 5 J/m2 UV doses, partial recovery was observed at 15 J/m2, while at high (25 J/m2) UV dose replicative DNA synthesis remained suppressed. K562 cells were subjected to synchronization prior to and after UV irradiation (24 J/m2) and 18 fractions were collected by centrifugal elutriation. Cell cycle analysis by flow cytometry did not show early apoptotic cells after UV irradiation. The gradual increase in DNA content typical for non-irradiated cells was contrasted by an early S phase block between 2.2 and 2.4 C-values after UV irradiation. Cell cycle dependent chromatin changes after ultraviolet irradiation were seen as a fine fibrillary network covering the mainly fibrous chromatin structures and incompletely folded primitive chromosomes. Based on observations after UV irradiation and on earlier results with cadmium treatment and gamma irradiation, we confirm that typical chromatin changes characteristic to genotoxic agents can be recognized and classified.  相似文献   

13.
The role of CRP as a mediator in atherosclerosis and inflammation is being investigated worldwide. In the present study, the effect of CRP on matrix metalloproteinases (MMP)-1, 2, 9, and their tissue inhibitor (TIMP-1) gene expression in THP-1 monocytic cell line was investigated. Specific mitogen activated protein (MAP) kinase (ERK, p38, and JNK) inhibitors were used to elucidate the signaling pathways involved. Effect of atorvastatin was determined in the presence of CRP on the expression of genes. Time and dose-dependent experiments were performed in the presence of CRP. The results showed that the treatment of THP-1 cells with 100 μg of CRP/ml/106 cells for 24 h enhanced the expression of MMPs and TIMP-1 genes significantly. CRP upregulated the expression of these genes via FcγRII and utilized ERK signaling pathway to transduce signals. Atorvastatin was able to significantly attenuate CRP-induced MMPs expression and augmented TIMP-1 gene expression significantly. In conclusion, CRP is not only a risk marker for vascular events, but also directly involved in the mechanisms leading to remodeling and destabilization of atherosclerotic plaque. Also, atorvastatin serves as potential therapeutic modality to curb these harmful events.  相似文献   

14.
15.
The coordination of transferrin receptor (TfR) expression and heme synthesis was investigated in mouse erythroleukemia (MEL) cells of line 707 treated with heme synthesis inhibitors or in a variant line Fw genetically deficient in heme synthesis. Cells of line 707 were induced for differentiation by 5 mM hexamethylene bisacetamide (HMBA). TfR expression increased in the course of induction, as judged by increased TfR mRNA synthesis, increased cytoplasmic TfR mRNA level, and by the increased number of cellular 125I-Tf binding sites. Addition of 0.1 mM succinylacetone (SA) decreased cellular TfR to the level comparable with the uninduced cells. The decrease was reverted by the iron chelator desferrioxamine (DFO) but not by exogenous hemin. In short-term (1-2 hours) incubation, SA inhibited 59Fe incorporation from transferrin into heme, whereas total cellular 59Fe uptake was increased. A decrease in TfR mRNA synthesis was apparent after 2 hours of SA treatment. Conversely, glutathione peroxidase mRNA synthesis, previously shown to be inducible by iron, was increased by SA treatment. Cells of heme deficient line Fw did not increase the number of Tf binding sites after the induction of differentiation by 5 mM sodium butyrate. SA had no effect on TfR expression in Fw cells. The results suggest that the depletion of cellular non-heme iron due to the increase in heme synthesis maintains a high level of transferrin receptor expression in differentiating erythroid cells even after the cessation of cell division.  相似文献   

16.
Subcellular distribution of inositol lipids has been studied in Friend Erythroleukemia Cells following induction to erythroid differentiation with hexamethylenebisacetamide, after labelling with [3H]myo-inositol. In situ autoradiography indicated that inositol-derived molecules were present also in the nuclear compartment of uninduced and induced cells. Fractionation studies showed that the nuclear polyphosphoinositides were deeply changed after short induction times, while the whole cell inositol lipids resulted only slightly modified by the inducer. The nuclear recovery of phosphatidylinositol 4,5-bisphosphate was largely increased after 2 hrs of induction, suggesting that inositol lipid metabolism is involved in the early differentiation events occurring at the nuclear level.  相似文献   

17.
18.
Hydrocortisone (10?6 – 10?7M) completely inhibited the production of hemoglobin by DMSO- and DMF-treated Friend erythroleukemia cells (FLC) in vitro without affecting either cell replication or general protein synthesis. Only 11, 17-dihydroxycorticosteroids were effective in inhibiting this expression of differentiation. Addition of hydrocortisone as late as 48 hours after the addition of DMSO (at a time at which cells were committed to differentiation) still resulted in significant inhibition of hemoglobin synthesis. Although the mechanism of this action is unknown, since it was not reversed by the addition of arachidonic acid nor a number of prostaglandins, it appears to be unrelated to the ability of corticosteroids to inhibit endogenous prostaglandin synthesis.  相似文献   

19.
We studied the ability of phorbol 12-myristate 13-acetat to prevent erythroid differentiation and apoptosis in erythroleukemic K562 cells induced by cytidine, thymidine, and guanosine. The exposure of cancer cells to combinations of phorbol 12-myrsitate 13-acetate (100 nM) nucleosides for two days led to a loss of hemoglobin production (marker of erythroid differentiation) in cells and increased expression of monocyte-macrophage lineage associated surface antigen CD14. The treatment of K562 cells with nucleosides only was accompanied by the activation of caspase-3 and caspase-9, rather than caspase-6, increased fluorescence of ethidium bromide and DAPI upon binding to DNA, and apoptosis. Intracellular activation of caspase-6, inhibition of caspase-9, a markedly decreased activity of caspase-3 and of fluorescence of DNA-binding dyes, and inhibition of apoptosis were observed when the cells were treated with phorbol 12-myeristet 13-acetate combined with nucleosides.Translated from Ontogenez, Vol. 36, No. 1, 2005, pp. 18–25.Original Russian Text Copyright © 2005 by Volkova, Malysheva, Nemova.  相似文献   

20.
We studied the ability of phorbol 12-myristate 13-acetat to prevent erythroid differentiation and apoptosis in erythroleukemic K562 cells induced by cytidine, thymidine, and guanosine. The exposure of cancer cells to combinations of phorbol 12-myrsitate 13-acetate (100 nM) nucleosides for two days led to a loss of hemoglobin production (marker of erythroid differentiation) in cells and increased expression of monocyte-macrophage lineage associated surface antigen CD14. The treatment of K562 cells with nucleosides only was accompanied by the activation of caspase-3 and caspase-9, rather than caspase-6, increased fluorescence of ethidium bromide and DAPI upon binding to DNA, and apoptosis. Intracellular activation of caspase-6, inhibition of caspase-9, a markedly decreased activity of caspase-3 and of fluorescence of DNA-binding dyes, and inhibition of apoptosis were observed when the cells were treated with phorbol 12-myeristet 13-acetate combined with nucleosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号