首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The properties of the Mg2+-dependent sphingomyelinase, whose pH optimum is between 7 and 8, were investigated using post-mortem infantile brain. The enzyme could be extracted with 0.2% Triton X-100 and remained soluble when centrifuged at 170,000 X g. Subsequent removal of the detergent with SM2-Biobeads resulted in resedimentation of the enzyme at 80,000 X g. A detergent was needed for assaying enzymatic activity; either Triton X-100 or bile salts could be used. With increasing concentrations of detergent, the rates of hydrolysis of sphinomyelin increased, reached an optimum and then decreased, suggesting inhibition of the enzyme. The concentrations of detergent which resulted in optimal reaction rates were directly related to the protein concentration of the enzymatic preparation. A heat-stable factor which counteracts inhibition by the above detergents is present in brain as well as several other tissues. A lipid extract of the enzymatic preparation, or several purified lipids could not mimic the effect of the heat-stable factor. The interrelationship between enzyme, detergent and the heat-stable factor was investigated.  相似文献   

2.
We have studied the effect of Triton-X-100 on glutamate decarboxylase (GAD) activity in brain and retina from chick embryos of 12 and 16 days' incubation and from chicks 4–6 weeks old. GAD activity was measured in five different homogenization media. Triton-X-100 inhibited the enzyme by about 60% in both brain and retina of 12-day embryos and by about 50% in 16-day embryos, independently of the homogenization medium. In chicks only about 20% inhibition by the detergent was observed in brain whereas no effect was found in retina. These results indicate that the evaluation of the experimental conditions of enzyme assays at different ages is essential for developmental studies of GAD activity in nervous tissue.  相似文献   

3.
The cholesterol side chain cleavage activity of highly purified adrenal cytochrome P-450scc was enhanced 6-fold by the addition of Triton X-100 in the assay solution in final concentrations of 0.03 to 0.05%, while the same detergent was much less effective in the higher concentrations and Tween 80 was not stimulative to the enzyme in various concentrations. It was shown by gel-filtration chromatography of the P-450 with 0.05% Triton X-100 that the detergent was bound to the P-450 in an amount greater than 0.5 mg per mg of protein. By the addition of the detergent, 415-nm light absorption of the P-450 was intensified and the isoelectric point was shifted to the alkaline side. Furthermore, the P-450 showed a sedimentation coefficient of 5.1 S in the presence of 0.05% Triton X-100, whereas it showed a sedimentation coefficient of 8.2S in the absence of the detergent. These results suggest that the observed enhancement of the enzyme activity is largely due to the direct effect of the detergent to the P-450 molecule itself. During these experiments, it was also noted that the P-450 was not resolved into more than one species.  相似文献   

4.
—Some properties of glutamate decarboxylase (GAD) were studied in the brain of the carp (Carassius auratus), the pigeon (Columbia livia) and the mouse (Mus musculus). The optimum pH for GAD in the three species was 6·3-6·5. In the three species studied, GAD activity of brain homogenates in water was higher than that of homogenates in buffer. The supernatant from homogenates in Triton-X-100 gave an enzyme preparation which showed greater activation by pyridoxal phosphate than those obtained from complete water or buffer homogenates or from the supernatant of Water homogenates. In the absence of pyridoxal phosphate, the activity of carp GAD was considerably lower than that of mouse or pigeon GAD. The addition of pyridoxal phosphate resulted in a much greater activation of carp GAD than that of pigeon or mouse GAD. Pyridoxal phosphate content was also measured in brains of the species studied. The difference between coenzyme levels in carp and mouse was very small in comparison to the difference in GAD activity in the absence of exogenous coenzyme. The pyridoxal phosphate content of pigeon brain was higher than that of the other two species.  相似文献   

5.
The solubilization and partial purification of beta-hydroxyacyl-CoA dehydrase from rat liver microsomes has been accomplished through deoxycholate solubilization, ammonium sulfate fractionation, and ion exchange chromatography. A purification of about 90-fold based on total soluble activity was achieved, with an overall yield of 40%. However, the initial solubilization is accompanied by the loss of the secondary portion of the v/s curve observed with intact microsomes. The enzyme requires detergent during the purification procedure to remain "soluble," and is strongly activated by the inclusion of Triton-X-100 at concentrations above its critical micelle concentration in the assay mixture. In addition a preference for micelles has been inferred based on discontinuities in the v/s curves relative to the measured critical micelle concentration of the substrates in the absence of Triton X-100. Kinetic parameters calculated on the basis of micelle-specific activity indicated that beta-hydroxyacyl-CoA substrates possessing even-numbered alkyl chains from 14 to 20 carbon atoms differed little in Vm', but had progressively larger Km' as the chain length increased. The partially purified preparation was also active with beta-hydroxy-8,11-eicosadienoyl-CoA; and with 2-trans-enoyl-CoA substrates in a reverse (hydration) reaction.  相似文献   

6.
During embryogenesis of the rat the enzymes tryosine hydroxylase (TH) and dopamine-β-hydroxylase (DBH) are first detected by immunocytochemistry or biochemical assay on the 16th day of gestation (E 16). It is not until E 18 that the enzyme phenylethanolamine-N-methyltransferase (PNMT), which is required for biosynthesis of adrenaline, can be detected cytochemically or biochemically. In this study we sought to determine whether the delayed appearance of PNMT is consequent to invasion of the adrenal medulla by E 18 of cells destined to express PNMT, cues provided by the ingrowing splachnic nerves or the action of corticosterone (CS) secreted by the adrenal cortical anlage, a hormone which regulates PNMT in adult rats. When adrenal glands are removed on E 16 and placed in culture, PNMT cannot be detected cyto- or biochemically until 2 days later (E 16 + 2). While CS levels increase 100-fold in vivo between E 16 and E 18, the surge of CS is not necessary for expression of PNMT since (a) adrenals removed on E 16 and cultured in the absence of exogenous ACTH fail to increase CS yet still express PNMT and (b) addition of CS (10?5M) to the cultures on E 16 does not alter the time of appearance of the enzyme. CS, on the other hand, increases the amount of PNMT protein and activity 3-fold with respect to control at all time points, without any effect on TH. We conclude that (a) it is the cells already present in the adrenal medulla at E 16 which differentiate to express PNMT; (b) the initial expression of PNMT is not controlled by nerves nor by corticosteroids; and (c) corticosteroids have a selective action on regulating the amount of PNMT, once it is expressed, but not TH enzyme protein. It remains to be determined whether the differentiation of PNMT is elicited by genetic or epigenetic signals.  相似文献   

7.
Rat brain microsomal phosphatidylinositol kinase activity was maximally activated in the presence of either 3 mM sodium deoxycholate, 2% Triton-X-100, or 30–40 mM octylglucoside. Among these detergents, 1% Triton-X-100 was most effective in solubilizing the enzyme, and after treatment with, this agent, 100% of the activity was recovered in the high speed supernatant. Octylglucoside solubilized 40% of the enzyme at concentrations below its critical micelle concentration of 25 mM and up to 80% at higher levels. Solubilized phosphatidylinositol kinase failed to adsorb to adenosine nucleotide affinity resins. However, when the Triton-X-100 extract was chromatographed on an uncharged hydrophobic resin, consisting of dodecyl chains attached to Sepharose 4B by ether bonds, nearly all the enzyme activity was retained, and from 44–85% could be eluted with 8 mM sodium deoxycholate. Solubilization followed by hydrophobic chromatography resulted in several-fold purification of phosphatidylinositol kinase and may have disrupted interactions of the enzyme with other hydrophobic proteins sufficiently to allow its substantial purification by conventional or affinity chromatography techniques.The abbreviations used are phosphatidylinositol 1,2-diacyl-sn-glycero-3-phosphoryl-1-l-myo-inositol - phosphatidylinositolphosphate 1,2-diacyl-sn-glycero-3-phosphoryl-1-l-myo-inositol-4-monophosphate - phosphatidylinositolbisphosphate 1,2-diacyl-sn-glycerol-3-phosphoryl-1-l-myo-inositol-4,5-bisphosphate - octylglucoside 1-0-n-octyl-d-glucopyranoside  相似文献   

8.
We have assessed the effect of arginine vasopressin (AVP) on adrenal tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) activities. Both enzymes show marked increases after systemic administration of AVP in the range of 66 and 100 micrograms/day. To determine whether the pituitary gland plays a role in these inductions, the effect of AVP (66 micrograms per day, given divided into 3 doses for 4 days) on the adrenal enzymes was studied in hypophysectomized rats. These animals showed induction of TH but not PNMT. This indicates that a pituitary factor(s) mediates the increase in PNMT caused by AVP. Adrenal TH activity was measured after the injection of AVP (1 or 2 micrograms per rat) into the lateral ventricle: there was a statistically significant increase in TH. TH was not induced in the denervated adrenal gland of rats administered AVP systemically. These findings suggest that AVP may act centrally to induce the enzyme. The continuous s.c. infusion of AVP by osmotic minipump at the rate of 1 microgram/day for 6 days led to a striking increase in adrenal TH activity. However, PNMT did not increase significantly. It can be concluded that different mechanisms are involved in the induction of adrenal TH and PNMT caused by AVP. A neural mechanism is involved in TH induction, whereas PNMT induction requires release of a pituitary factor, presumably ACTH, but innervation of the adrenal is not needed for it. Moreover, the inductions of these two enzymes are differentially sensitive to the concentration of circulating AVP.  相似文献   

9.
Phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28) is the terminal enzyme of the catecholaminergic pathway converting noradrenaline to adrenaline. Although preferentially localized in adrenal medulla, evidence exists that PNMT activity and gene expression are also present in the rat heart, kidney, spleen, lung, skeletal muscle, thymus, retina and different parts of the brain. However, data concerning PNMT gene expression in sympathetic ganglia are still missing. In this study, our effort was focused on identification of PNMT mRNA and/or protein in stellate ganglia and, if present, testing the effect of stress on PNMT mRNA and protein levels in this type of ganglia. We identified both PNMT mRNA and protein in stellate ganglia of rats and mice, although in much smaller amounts compared with adrenal medulla. PNMT gene expression and protein levels were also increased after repeated stress exposure in stellate ganglia of rats and wild-type mice. Similarly to adrenal medulla, the immobilization-induced increase was probably regulated by glucocorticoids, as determined indirectly using corticotropin-releasing hormone knockout mice, where immobilization-induced increase of PNMT mRNA was suppressed. Thus, glucocorticoids might play an important role in regulation of PNMT gene expression in stellate ganglia under stress conditions.  相似文献   

10.
Phospholipase C (phosphatidylcholine cholinephosphohydrolase, EC 3.1.4.3) (Bacillus cereus) activity toward diheptanoylphosphatidylcholine is increased 50-100% by low concentrations of both positively and negatively charged detergents. Zwitterionic and nonionic detergents have no such activating effect. This charged detergent activation requires an interface, since comparable detergent concentrations have no effect on the hydrolysis rate of monomeric dihexanoylphosphatidylcholine. From NMR and diacylglycerol solubility studies it is suggested that activation results from detergent interacting with diacylglycerol to accelerate product release from the enzyme.  相似文献   

11.
Homogenates of bovine adrenal medullae hydrolyzed exogenous sphingomyelin at 4.3 +/- 1.6 nmol X mg-1 X min-1 and 97% of this sphingomyelinase activity was sedimentable at 110,000 g. The sphingomyelinase had a broad pH optimum centered at pH 7. Enzymatic activity was maximal with 80 microM added Mn2+; Mg2+ supported less than half maximal activity and both Ca2+ and EDTA inhibited activity. No activity was detected in the absence of Triton X-100. Response to detergent was biphasic with dose-dependent stimulation from 0.02% to 0.05% Triton X-100 followed by inhibition with increasing concentrations of detergent. Activity in response to detergent was also modulated by protein concentration. Sphingomyelinase activity was associated with a plasma membrane-microsomal fraction. Phosphatidylcholine was not hydrolyzed under optimal conditions for sphingomyelin hydrolysis and a variety of other conditions. Neutral-active sphingomyelinase activity in adrenal medulla was similar in magnitude to that observed in other non-neural bovine tissues. This study demonstrates the presence of a potent neutral-active sphingomyelinase in a plasma membrane-microsomal fraction of bovine adrenal medulla. This enzyme may be involved in membrane fusion and lysis during catecholamine secretion through its ability to alter membrane composition.  相似文献   

12.
A procedure has been developed for the purification of phenylethanolamine-Nmethyl transferase (PNMT) (EC 2.1.1) from adrenal glands of rats. Ninety percent of the enzyme activity was in the 105,000g supernatant fraction. After chromatography on Sephadex G-150 and DEAE-cellulose, the PNMT showed two molecular species but the same specific activity on polyacrylamide gel electrophoresis. The final product was enriched nearly 100-fold. The methylation reaction is linear with increasing enzyme concentration, and the enzyme pH optimum was 8.0. The enzyme is relatively stable at 40 °C, but activity is partially destroyed by incubation at 60 °C. Several substrates were tested: octopamine, norepinephrine, tyramine, phenylethanolamine. Greatest affinity was for octopamine. All these substrates and the methyl group donor, S-adenosylmethionine, were inhibitory at high concentrations. Preincubation of the enzyme with norepinephrine accelerated the initial rate of the methylation reaction, while preincubation with S-adenosylmethionine had no such effect. A specific antibody against this purified enzyme was prepared. This antibody inhibited the enzyme activity and also precipitated it. Various immunological studies using this antibody are described.  相似文献   

13.
Glucocorticoids (GCs) are thought to regulate, in a permissive fashion, the basal activity of adrenal medullary phenylethanolamine N-methyltransferase (PNMT). However, it is unclear whether a large short-term increase in GC release, such as occurs during an acute stress response, may also play a role in PNMT regulation. The present study investigated how the GC influence over PNMT activity varies in relation to dynamic changes in the hormone-receptor signal. Using [3H]dexamethasone (DEX) and [3H]RU 28362 as radioligands, we have confirmed the presence of GC receptors in bovine adrenal medullary cells. A concentration-dependent decline in soluble GC receptor sites and an increase in nuclear uptake of [3H]DEX were found in response to GC levels as low as 5 x 10(-8) M. The loss of soluble sites plateaued between 5 x 10(-8) and 10(-6) M cortisol, with further losses occurring at 10(-5) and at 10(-4) M. The functional consequence of GC receptor binding was confirmed by measuring PNMT activity following 3-day exposure to cortisol. The pattern of PNMT induction was similar to that seen with GC receptor occupancy; at cortisol concentrations between 10(-8) and 10(-5) M, PNMT induction was at a plateau, with a further increase in activity at 10(-4) M. The increase in PNMT activity following 3-day exposure to low (10(-7) M) and high (5 x 10(-5), 10(-5) M) cortisol was blocked by the GC receptor antagonist RU 38486, suggesting a GC receptor-mediated event. Finally, a short (2 h) pulse of GC, which mimics the time course of physiological elevation of GC following acute stress, elevated adrenal medullary PNMT activity measured 3 days later. Therefore, our results provide novel evidence that short-term exposure of adrenal medullary cells to high cortisol levels can elevate PNMT activity.  相似文献   

14.
Sustaining epinephrine‐elicited behavioral and physiological responses during stress requires replenishment of epinephrine stores. Egr‐1 and Sp1 contribute by stimulating the gene encoding the epinephrine‐synthesizing enzyme, phenylethanolamine N‐methyltransferase (PNMT), as shown for immobilization stress in rats in adrenal medulla and for hypoxic stress in adrenal medulla‐derived PC12 cells. Hypoxia (5% O2) also activates hypoxia inducible factor (HIF) 1α, increasing mRNA, nuclear protein and nuclear protein/hypoxia response element binding complex formation. Hypoxia and HIF1α over‐expression also elevate PNMT promoter‐driven luciferase activity in PC12 cells. Hypoxia may be limiting as HIF1α over‐expression increases luciferase expression to no greater extent than oxygen reduction alone. HIF1α inducers CoCl2 or deferoxamine elevate luciferase as well. PC12 cells harboring a HIF1α expression construct show markedly higher levels of Egr‐1 and Sp1 mRNA and nuclear protein and PNMT mRNA and cytoplasmic protein. Inactivation of Egr‐1 and Sp1 binding sites in the proximal ?893 bp of PNMT promoter precludes HIF1α stimulation while a potential hypoxia response element (?282 bp) in the promoter shows weak HIF1α affinity at best. These findings are the first to suggest that hypoxia activates the proximal rat PNMT promoter primarily via HIF1α induction of Egr‐1 and Sp1 rather than by co‐activation by Egr‐1, Sp1 and HIF1α. In addition, the rise in HIF1α protein leading to Egr‐1 and Sp1 stimulation of PNMT appears to include HIF1α gene activation rather than simply prevention of HIF1α proteolytic degradation.  相似文献   

15.
Phenylethanolamine-N-methyltransferase (PNMT, EC 2.1.1.28) was partially purified from rat brain. Brain homogenates were subjected to ultracentrifugation, salt fractionation, and gel filtration on Sephadex G-100. To compare the rat brain PNMT with that of adrenals, the same procedure was carried out with rat adrenal homogenates. The brain enzyme was eluted from Sephadex as a single fraction with a molecular weight of 26,900, while the enzyme from adrenals under the same conditions appeared in two fractions with molecular weights of 38,700 and 108,500. The brain fraction separated on Sephadex G-100 was active on phenylethanolamine substrates and inactive on indoleamine and phenylethylamine substrates. Products of the enzyme reaction were identified by bidimensional thin-layer chromatography asN-methyl derivatives of the corresponding amines. Kinetic studies showed that the type of inhibition of PNMT from rat brain and rat adrenals by SK&F 7698 was the same as described for PNMT from rabbit adrenals. Also, when normetanephrine andS-adenosyl-l-methionine were used as substrates, the apparentK m values found with PNMT from rat adrenals and rat brain were similar.Preliminary reports were presented at XXV Convención Anual AsoVAC, Caracas, Venezuela, October 1975, and at XII Congreso Latinoamericano de Ciencias Fisiológicas, Bogotá, Colombia, November 1975.  相似文献   

16.
Dolichyl phosphate concentrations, a primary factor in regulating the rate of N-glycosidically linked glycoprotein synthesis, are dependent upon a cytidine triphosphate (CTP)-dependent dolichol kinase. This study examines dolichol kinase in rat testicular microsomes and defines assay conditions. As with dolichol kinases from other tissues, addition of 2-mercaptoethanol increased activity 60%. Inclusion of NaF, an inhibitor of testicular dolichyl phosphate phosphatase activity, also resulted in a 38% increase in activity. Triton X-100 was necessary for phosphorylation of both endogenous and exogenous dolichol; however, concentrations of detergent in excess of 0.25-0.35% were inhibitory. A 2- to 5-fold stimulation of kinase activity was obtained by addition of 50-100 microM exogenous dolichol. The high level of nucleoside triphosphatase activity in testicular microsomes mandated the inclusion of high levels of uridine triphosphate (UTP) to protect the [gamma-32 P] CTP. Increasing UTP concentrations up to 50 mM resulted in increased product formation. A clear requirement for divalent cations was observed; 5 mM ethylenediaminetetraacetate (EDTA) abolished activity. The following order of cation effectiveness was observed: Mn greater than or equal to Ca greater than Cd greater than Zn much greater than Mg. Ten mM optima were established for Ca2+ and Mn2+; the presence of UTP, however, results in significantly reduced concentrations of free Ca2+. Ion combination studies demonstrated interactive inhibitory effects between Ca2+ and other stimulatory divalent cations. Addition of 2 microM brain calmodulin, in the presence of 10 mM Ca2+, resulted in a 75-100% stimulation of activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The superoxide-generating respiratory burst oxidase is an integral membrane enzyme found in the plasma membrane of polymorphonuclear leukocytes (neutrophils). NADPH-dependent superoxide generation is seen in isolated plasma membranes and in their detergent extracts following activation of the intact cells with phorbol myristate acetate. We have herein examined the effects of phospholipids on the activity of the solubilized oxidase. Solubilization of plasma membranes with 0.5% each of Tween 20 plus deoxycholate resulted in an approximately 2-fold enhancement of activity. Inclusion of phospholipids in the extraction medium resulted in further activation. At 1.0 mg/ml the order of effectiveness was phosphatidylserine (PS) greater than cardiolipin greater than phosphatidylethanolamine greater than phosphatidylinositol; phosphatidylcholine and phosphorylated inositol lipids were not effective. The concentrations required for half-maximal activation by PS and phosphatidylethanolamine were 85 and 200 micrograms/ml, respectively. When PS was used at a maximally activating concentration (0.5 mg/ml), the activity was enhanced 3-5-fold. Detergent solubilization alone elevated the Km of the oxidase for NADPH from 68 microM in intact plasma membranes to 123 microM, but inclusion of PS with detergent restored the Km to near or below that seen in intact membranes. PS also increased the Vmax by a factor of 2-3, but had no effect on the pH optimum. A plot of the activity versus enzyme concentration was linear when membranes were used, but activity showed a quadratic dependence on concentration in solubilized membrane, with lower than expected activity at lower enzyme concentration. PS restored linearity of the concentration-activity plot. The activation by PS was not influenced by the addition of Ca2+, EGTA, or dioctanoylglycerol, indicating that activation was not dependent on protein kinase C. These results implicate phosphatidylserine as a direct effector of the NADPH-oxidase.  相似文献   

18.
The choice of a suitable detergent for solubilization of UDPglucose-ceramide glucosyltransferase from Golgi membranes has been investigated. Among the various classes of detergent, CHAPS, a zwitterionic detergent, was used as it produced a substantial activation of the enzyme activity. 30% of the enzyme activity and 50% of proteins were solubilized in the first attempts. Further experiments were conducted with addition of a second detergent, Zwittergent 3-14 which increased enzyme recovery to 45%. Lastly, reducing the concentrations of buffer and divalent cations Mn2+, Mg2+ and introducing glycerol (20%, v/v) allowed 80% of proteins to be solubilized together with 68% of the ceramide glucosyltransferase activity.  相似文献   

19.
Environmental influence on brain function, particularly spatial learning and memory, has been extensively investigated, but little is known about the influence of environmental conditions on the functions of peripheral organs. In the present study, the effects of different housing conditions on the steady-state levels of mRNAs encoding cholesterol side-chain cleavage enzyme (cytochrome P450scc) and phenylethanolamine N-methyltransferase (PNMT) in adrenal glands was examined to investigate the environmental influence on both adrenocortical and adrenomedullary functions. Behavioral changes of the animals housed in different conditions were first examined to assess the relevance of environmental manipulation used. In consistent with previous findings, housing of the animals in enriched conditions resulted in the significant reduction of spontaneous motor activity (locomotor activity and rearing) in comparison with housing in isolated conditions, thus indicating the relevance of housing conditions used in this work for investigating the environmental influence on adrenal function. Then, the effects of these housing conditions on P450scc and PNMT mRNA levels in adrenal glands were examined using semi-quantitative RT-PCR method. In comparison with the isolated group, the enriched group showed significantly higher levels of P450scc mRNA. In contrast, PNMT mRNA levels in the enriched group were significantly lower than those in the isolated group. These results propose the possibility that the environmental conditions may cause differential alterations in adrenocortical and adrenomedullary functions, although their possible association with behavioral changes still remains to be elucidated.  相似文献   

20.
To study the differentiation of adrenergic (epinephrine-synthesizing) neurons in brain, the initial appearance and ontogeny of phenylethanolamine N-methyltransferase (PNMT), a specific marker of the adrenergic phenotype, were studied with immunocytochemistry and catalytic assay. The appearance of immunoreactivity to dopamine beta-hydroxylase (DBH-IR), an enzyme common to the noradrenergic and adrenergic phenotypes, was also studied. DBH-IR was initially observed on embryonic Day 13 (E13) in cells located on the ventrolateral floor and wall of the rhombencephalon. A day later (E14), PNMT-IR cells and PNMT catalytic activity were observed in the rhombencephalon suggesting that, as in the adrenal gland, noradrenergic expression precedes adrenergic expression. The PNMT-IR cells were presumed to be precursors of C1 neurons since they were located in the ventrolateral medulla oblongata. Cells located in the wall of the medulla which appeared to be migrating ventrally to the C1 group also contained PNMT-IR. On E15, cells which had PNMT-IR processes coursing through the germinal zone were observed dorsally near the fourth ventricle. Although the location of the C1 cell group was apparent when PNMT was initially expressed, the dorsal C2 and C3 adrenergic cell groups were not evident until late in gestation on E19. Even in the term embryo there appeared to be PNMT-IR cells which had not yet reached their final destination. On E14 and E15, PNMT-IR cells were also observed on the floor of the pons just rostral to the pontine flexure. However, these were not observed in older embryos, suggesting that transient expression of PNMT occurs in brain, as well as in the periphery. To determine whether glucocorticoids regulate brain PNMT, we examined the effects of altered glucocorticoid levels. In contrast to PNMT in the sympathetic nervous system, PNMT activity in medulla oblongata was not affected in neonates or adults by the decrease in glucocorticoids following adrenalectomy or hypophysectomy. Conversely, elevation of glucocorticoids by hormonal treatment did not alter PNMT in neonates. Notably, however, treatment of pregnant rats with dexamethasone on E18-E21, but not earlier, increased PNMT activity in the fetal brain stem. These observations suggest that PNMT expression and development is regulated by different factors in cells derived from neural crest and tube. PNMT is expressed earlier in brain than in adrenal and sympathetic ganglia. Further, the development of PNMT in the periphery, but not in the brain, is dependent on maintenance of physiological levels of glucocorticoids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号