首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hereditary methemoglobinemia with generalized deficiency of NADH-cytochrome b5 reductase (b5R) (type II) is a rare disease characterized by severe developmental abnormalities, which often lead to premature death. Although the molecular relationship between the symptoms of this condition and the enzyme deficit are not understood, it is thought that an important cause is the loss of the lipid metabolizing activities of the endoplasmic reticulum-located reductase. However, the functions of the form located on outer mitochondrial membranes have not been considered previously. In this study, we have analyzed the gene of an Italian patient and identified a novel G-->T transversion at the splice-acceptor site of the 9th exon, which results in the complete absence of immunologically detectable b5R in blood cells and skin fibroblasts. In cultured fibroblasts of the patient, NADH-dependent cytochrome c reductase, ferricyanide reductase, and semidehydroascorbate reductase activities were severely reduced. The latter activity is known to be due to b5R located on outer mitochondrial membranes. Thus, our results demonstrate that the reductase in its two membrane locations, endoplasmic reticulum and outer mitochondrial membranes, is the product of the same gene and suggest that a defect in ascorbate regeneration may contribute to the phenotype of hereditary methemoglobinemia of the generalized type.  相似文献   

2.
Some types of secretory vesicles, such as the chromaffin vesicles of the adrenal medulla, have cytochrome b561 which is believed to mediate the transfer of electrons across the vesicle membrane. To characterize the kinetics of this process, we have examined the rate of electron transfer from ascorbate trapped within chromaffin vesicle ghosts to external ferricyanide. The rate of ferricyanide reduction saturates at high ferricyanide concentrations. The reciprocal of the rate is linearly related to the reciprocal of the ferricyanide concentration. The internal ascorbate concentration affects the y intercept of this double-reciprocal plot but not the slope. These observations and theoretical considerations indicate that the slope is associated with a rate constant k1 for the oxidation of cytochrome b561 by ferricyanide. The intercept is associated with a rate constant k0 for the reduction of cytochrome b561 by internal ascorbate. From k0 and standard reduction potentials, the rate constant k-0 for the reduction of internal semidehydroascorbate by cytochrome b561 can be calculated. Under conditions prevailing in vivo, this rate of semidehydroascorbate reduction appears to be much faster than the expected rate of semidehydroascorbate disproportionation. This supports the hypothesis that cytochrome b561 functions in vivo to reduce intravesicular semidehydroascorbate thereby maintaining intravesicular ascorbic acid.  相似文献   

3.
Summary

We have previously reported that NADH ferricyanide reductase in human erythrocytes is stimulated by insulin. Hormone-stimulated activities are attenuated in the presence of glycolytic inhibitors like vanadate, indicating the involvement of glycolysis in the mechanism by which insulin stimulates ferricyanide reduction. Activation of erythrocyte metabolism in response to insulin could be a result of hormone binding to its receptor, inducing phosphorylation of band 3 (at a site for reversible association of glycolytic enzymes) and/or other membrane proteins like the Na+/H+ antiport. Activation of the antiporter protein by insulin can stimulate glycolysis by an increase in intracellular pH, an effect which is prevented by amiloride. Evidence for a role for tyrosine phosphorylation in triggering the reductase activation came from studies with protein kinase inhibitors. Genistein, sphingosine and acridine orange have been shown to prevent insulin-stimulated ferricyanide reduction, implicating tyrosine phosphorylation as an important signal for activation of the enzyme by insulin. To evaluate activation of the enzyme by insulin stimulated phosphorylation, a comparative study was done using erythrocytes from healthy and diabetic humans. We measured ferricyanide reductase activities in basal and insulin stimulated states. Basal activities were lower in diabetics than in normal humans. Nevertheless, hormone stimulated activities were similar, despite earlier reports of decreased receptor phosphorylation of exogenous substrates in type 2 diabetics. These observations, together with previous ones, suggest that insulin-receptor kinase interaction may mediate the action of insulin on human erythrocytes by phosphorylation of cellular proteins like band 3 and/or the Na+/H+ antiport.  相似文献   

4.
Summary We have previously reported that ferricyanide reductase activity in human erythrocytes depended on glycolysis and could be modulated by several compounds including oxidants and hormones like insulin. Insulin could activate glycolysis, probably as a consequence of tyrosine phosphorylation of protein band 3, implicating phosphorylation reactions as an important signal for activation of the reductase by insulin. Reversible phosphorylation of cellular proteins is also believed to play a key role in the action of insulin. Cytosolic acid phosphatase activity has been found in human erythrocytes. To further extend initial reports, we studied the effect of modulators on the cytosolic erythrocyte acid phosphatase. Mild oxidants like ferricyanide (1 mM), vanadate (1 mM), Mn2+ (0.5 and 1 mM), and phenylarsine oxide (10 and 100 M) inhibited the phosphatase activity. Similarly, insulin at concentrations that stimulate ferricyanide reduction (500, 1000 IU/ml) inhibited the activity of the phosphatase enzyme. The overall results indicated that oxidants are able to inhibit the acid phosphatase and stimulate the redox enzyme. In addition, a significant negative correlation (r = –0.400; P = 0.006) was observed between phosphatase and reductase activities. The observations discussed here, together with previous ones, emphasize that a close association between reductase and phosphatase enzymes may exist and also suggest a role for redox reactions in tyrosine phosphorylation/dephosphorylation-mediated signal transduction pathways.  相似文献   

5.
Summary The orientation of membrane vesicles prepared fromEscherichia coli by either French press, sonication or ethylenediamine tetraacetate (EDTA)-lysozyme was examined. The following procedures were used to determine orientation: (1) accessibility of the impermeable ferricyanide ion to the respiratory chain; (2) inhibition of membranal ATPase by specific antiserum; (3) binding of ATPase to the membrane. Data with spheroplasts indicated that ATPase, ATPase binding sites and ferricyanide reductase activities were localized on the inner part of the cytoplasmic membrane. Thus, there was no demonstrable NADH-ferricyanide reductase activity, low ATPase activity, no inhibition of ATPase by antiserum and no binding of purified ATPase by spheroplasts. In the case of membrane vesicles prepared by French press or sonication, the ATPase activity, the ATPase binding site and the site where ferricyanide takes electrons from the respiratory chain all appeared to be on the outside of the vesicles, suggesting that they are inverted. In the case of EDTA-lysozyme vesicles, which are widely used for transport studies, about half of the ATPase binding sites and ferricyanide reactive sites were exposed to the outside. Sixty percent of the ATPase activity was sensitive to antiserum. The two most probable explanations for these data are: (1) partial inversion of EDTA-lysozyme vesicles in the course of preparation; (2) movement of marker enzymes within the membrane vesicles during their isolation.  相似文献   

6.
Glyoxysomes isolated from castor bean (Ricinus communis L., var Hale) endosperm had NADH:ferricyanide reductase and NADH:cytochrome c reductase activities averaging 720 and 140 nanomole electrons/per minute per milligram glyoxysomal protein, respectively. These redox activities were greater than could be attributed to contamination of the glyoxysomal fractions in which 1.4% of the protein was mitochondrial and 5% endoplasmic reticulum. The NADH:ferricyanide reductase activity in the glyoxysomes was greater than the palmitoyl-coenzyme A (CoA) oxidation activity which generated NADH at a rate of 340 nanomole electrons per minute per milligram glyoxysomal protein. Palmitoyl-CoA oxidation could be coupled to ferricyanide or cytochrome c reduction. Complete oxidation of palmitoyl-CoA, yielding 14 nanomole electrons/per nanomole palmitoyl-CoA, was demonstrated with the acceptors, NAL, cytochrome c, and ferricyanide. Malate was also oxidized by glyoxysomes, if acetyl-CoA, ferricyanide, or cytochrome c was present. Glyoxysomal NADH:ferricyanide reductase activity has the capacity to support the combined rates of NADH generation by β-oxidation and the glyoxylate cycle.  相似文献   

7.
The immediate product of ascorbate oxidation coupled to dopamine-beta-hydroxylation is not dehydroascorbate, as previously thought, but rather semidehydroascorbate. For this reason, the possible participation of the enzyme semidehydroascorbate reductase (SDR) in cofactor regeneration was investigated. In the adrenal medulla, the primary subcellular localization of this reductase was shown to be in the mitochondria. Submitochondrial fractionation studies indicated that SDR is an outer membrane protein. Thus, although dopamine-beta-hydroxylase and SDR have different subcellular localizations, a physiological role for SDR in beta-hydroxylation still appears plausible through reduction of cytosolic semidehydroascorbate. The specific activities of SDR in various rat and guinea pig tissues appear to parallel their ascorbate contents, suggesting a similar participation of SDR in ascorbate metabolism in other tissues.  相似文献   

8.
Plasma membranes isolated from rat liver by two-phase partition exhibited dehydrogenase activities for ascorbate free radical (AFR) and ferricyanide reduction in a ratio of specific activities of 1 : 40. NADH-AFR reductase could not be solubilized by detergents from plasma membrane fractions. NADH-AFR reductase was inhibited in both clathrin-depleted membrane and membranes incubated with anti-clathrin antiserum. This activity was reconstituted in plasma membranes in proportion to the amount of clathrin-enriched supernatant added. NADH ferricyanide reductase was unaffected by both clathrin-depletion and antibody incubation and was fully solubilized by detergents. Also, wheat germ agglutinin only inhibited NADH-AFR reductase. The findings suggest that NADH-AFR reductase and NADH-ferricyanide reductase activities of plasma membrane represent different levels of the electron transport chain. The inability of the NADH-AFR reductase to survive detergent solubilization might indicate the involvement of more than one protein in the electron transport from NADH to the AFR but not to ferricyanide.  相似文献   

9.
Retinoic acid inhibition of transplasmalemma diferric transferrin reductase   总被引:1,自引:0,他引:1  
All trans retinoic acid inhibited diferric transferrin reduction by HeLa cells. The NADH diferric transferrin reductase activity of isolated liver plasma membranes was also inhibited by retinoic acid. Retinol and retinyl acetate had very little effect. Transplasma membrane ferricyanide reduction by HeLa cells and NADH ferricyanide reductase of liver plasma membrane was also inhibited by retinoic acid, therefore the inhibition was in the electron transport system and not at the transferrin receptor. Since the transmembrane electron transport has been shown to stimulate cell growth, the growth inhibition by retinoic acid thus may be based on inhibition of the NADH diferric transferrin reductase.  相似文献   

10.
Intact glyoxysomes were isolated from castor bean endosperm on isometric Percoll gradients. The matrix enzyme, malate dehydrogenase, was 80% latent in the intact glyoxysomes. NADH:ferricyanide and NADH:cytochrome c reductase activities were measured in intact and deliberately broken organelles. The latencies of these redox activities were found to be about half the malate dehydrogenase latency. Incubation of intact organelles with trypsin eliminated NADH:cytochrome c reductase activity, but did not affect NADH:ferricyanide reductase activity. NADH oxidase and transhydrogenase activities were negligible in isolated glyoxysomes. Mersalyl and Cibacron blue 3GA were potent inhibitors of NADH:cytochrome c reductase. Quinacrine, Ca2+ and Mg2+ stimulated NADH:cytochrome c reductase activity in intact glyoxysomes. The data suggest that some electron donor sites are on the matrix side and some electron acceptor sites are on the cytosolic side of the membrane.  相似文献   

11.
Membranes purified from castor bean endosperm glyoxysomes by washing with sodium carbonate exhibited integral NADH:ferricyanide and NADH:cytochrome c reductase activities. The enzyme activities could not be attributed to contamination by other endomembranes. Purified endoplasmic reticulum membranes also contained the redox activities; and marker enzyme analysis indicated minimum cross contamination between glyoxysomal and endoplasmic reticulum fractions. The glyoxysomal redox activities were optimally solubilized at detergent to protein ratios (weight to weight) of 10 (Triton X-100), 50 (3-[3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate), and 100 (octylglucoside). Detergent in excess of the solubilization optimum was stimulatory to NADH:ferricyanide reductase and inhibitory to NADH:cytochrome c reductase. Endoplasmic reticulum redox activity solubilization profiles were similar to those obtained for glyoxysomal enzymes using Triton X-100. Purification of the glyoxysomal and endoplasmic reticulum NADH:ferricyanide reductases was accomplished using dye-ligand affinity chromatography on Cibacron blue 3GA agarose. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of NADH:ferricyanide reductase preparations purified by rate-zonal density gradient centrifugation, affinity chromatography, and nondenaturing electrophoresis of detergent-solubilized glyoxysomal and endoplasmic reticulum membranes consistently displayed 32- and 33-kDa silver-stained polypeptide bands, respectively.  相似文献   

12.
Summary In the present study nitrate uptake by maize (Zea mays L.) roots was investigated in the presence or absence of ferricyanide (hexacyanoferrate III) or dicumarol. Nitrate uptake caused an alkalization of the medium. Nitrate uptake of intact maize seedlings was inhibited by ferricyanide while the effect of dicumarol was not very pronounced. Nitrite was not detected in the incubation medium, neither with dicumarol-treated nor with control plants after application of 100 M nitrate to the incubation solution. In a second set of experiments interactions between nitrate and ferricyanide were investigated in vivo and in vitro. Nitrate (1 or 3 mM) did neither influence ferricyanide reductase activity of intact maize roots nor NADH-ferricyanide oxidoreductase activity of isolated plasma membranes. Nitrate reductase activity of plasma-membrane-enriched fractions was slightly stimulated by 25 M dicumarol but was not altered by 100 M dicumarol, while NADH-ferricyanide oxidoreductase activity was inhibited in the presence of dicumarol. These data suggest that plasma-membrane-bound standard-ferricyanide reductase and nitrate reductase activities of maize roots may be different. A possible regulation of nitrate uptake by plasmalemma redox activity, as proposed by other groups, is discussed.Abbreviations ADH alcohol dehydrogenase - HCF III hexacyanoferrate III (ferricyanide) - ME NADP-dependent malic enzyme - NR nitrate reductase - PM plasma membrane - PM NR nitrate reductase copurifying with plasma membranes  相似文献   

13.
The involvement of cytochrome b561, an integral membrane protein, in electron transfer across chromaffin-vesicle membranes is confirmed by changes in its redox state observed as changes in the absorption spectrum occurring during electron transfer. In ascorbate-loaded chromaffin-vesicle ghosts, cytochrome b561 is nearly completely reduced and exhibits an absorption maximum at 561 nm. When ferricyanide is added to a suspension of these ghosts, the cytochrome becomes oxidized as indicated by the disappearance of the 561 nm absorption. If a small amount of ferricyanide is added, it becomes completely reduced by electron transfer from intravesicular ascorbate. When this happens, cytochrome b561 returns to its reduced state. If an excess of ferricyanide is added, the intravesicular ascorbate becomes exhausted and the cytochrome b561 remains oxidized. The spectrum of these absorbance changes correlates with the difference spectrum (reduced-oxidized) of cytochrome b561. Cytochrome b561 becomes transiently oxidized when ascorbate oxidase is added to a suspension of ascorbate-loaded ghosts. Since dehydroascorbate does not oxidize cytochrome b561, it is likely that oxidation is caused by semidehydroascorbate generated by ascorbate oxidase acting on free ascorbate. This suggests that cytochrome b561 can reduce semidehydroascorbate and supports the hypothesis that the function of cytochrome b561 in vivo is to transfer electrons into chromaffin vesicles to reduce internal semidehydroascorbate to ascorbate.  相似文献   

14.
Redox activities, NADH:ferricyanide reductase, NAD(P)H:cytochrome reductases, and NADH:ascorbate free-radical reductase, are present in endoplasmic reticulum (ER) and glyoxysomal membranes from the endosperm of germinating castor bean (Ricinus comminus L. var Hale). The development of these functions was followed in glyoxysomes and ER isolated on sucrose gradients from castor bean endosperm daily from 0 through 6 days of germination. On a per seed basis, glyoxysomal and ER protein, glyoxysomal and ER membrane redox enzyme activities, and glyoxylate cycle activities peaked at day 4 as did the ER membrane content of cytochrome P-450. NADH:ferricyanide reductase was present in glyoxysomes and ER isolated from dry seed. This activity increased only about twofold in glyoxysomes and threefold in ER during germination relative to the amount of protein in the respective fractions. The other reductases, NADH:cytochrome reductase and NADH:ascorbate free-radical reductase, increased about 10-fold in the ER relative to protein up to 4 to 5 days, then declined. NADPH:cytochrome reductase reached maximum activity relative to protein at day 2 in both organelles. The increases in redox activities during germination indicate that the membranes of the ER and glyoxysome are being enriched with redox proteins during their development. The development of redox functions in glyoxysomes was found to be coordinated with development of the glyoxylate cycle.  相似文献   

15.
Initial velocity studies of Chlorella nitrate reductase showed that increased ionic strength stimulated NADH:nitrate reductase activity by increasing both Vmax and Km for nitrate. Examination of the effect of ionic strength on the various partial activities of nitrate reductase revealed that while NADH:ferricyanide and reduced methyl viologen:nitrate reductase activities were unaffected by ionic strength, NADH:cytochrome c and reduced flavin:nitrate reductase activities were inhibited and stimulated by increased ionic strength, respectively. Comparison of the rates for the partial activities indicated electron transfer from heme to molybdenum to be the rate-limiting step in enzyme turnover. The pH optimum for NADH:nitrate reductase activity was found to be 7.9 while values for the partial activities ranged from 5.5 to 8.1. Phosphate was found to stimulate both NADH:nitrate and reduced methyl viologen:nitrate reductase activities indicating the molybdenum center as the site of interaction.  相似文献   

16.
Reduction of extracellular ferricyanide by intact cells reflects the activity of an as yet unidentified trans-plasma membrane oxidoreductase. In human erythrocytes, this activity was found to be limited by the ability of the cells to recycle intracellular ascorbic acid, its primary trans-membrane electron donor. Ascorbate-dependent ferricyanide reduction by erythrocytes was partially inhibited by reaction of one or more cell-surface sulfhydryls with p-chloromercuribenzene sulfonic acid, an effect that persisted in resealed ghosts prepared from such treated cells. However, treatment of intact cells with the sulfhydryl reagent had no effect on NADH-dependent ferricyanide or ferricytochrome c reductase activities of open ghosts prepared from treated cells. When cytosol-free ghosts were resealed to contain trypsin or pronase, ascorbate-dependent reduction of extravesicular ferricyanide was doubled, whereas NADH-dependent ferricyanide and ferricytochrome c reduction were decreased by proteolytic digestion. The trans-membrane ascorbate-dependent activity was also found to be inhibited by reaction of sulfhydryls on its cytoplasmic face. These results show that the trans-membrane ferricyanide oxidoreductase is limited by the ability of erythrocytes to recycle intracellular ascorbate, that it does not involve the endofacial NADH-dependent cytochrome b(5) reductase system, and that it is a trans-membrane protein that contains sensitive sulfhydryl groups on both membrane faces.  相似文献   

17.
Pyridine nucleotide transhydrogenase activities of a highly purified soluble NADH dehydrogenase and particulate NADH-ubiquinone reductase (Complex I) differ in their pH optima (5.0 and 6.0, respectively) and in their sensitivity to inhibition by Mg2+ and ATP. The oxidation of NADPH with ferricyanide as acceptor is very similar in both preparations with a pH optimum around 5.0. It is concluded that Complex I possesses two types of transhydrogenase activity, whereas only one has been found in the soluble dehydrogenase.  相似文献   

18.
Ascorbate free-radical reduction by glyoxysomal membranes   总被引:5,自引:2,他引:3       下载免费PDF全文
Glyoxysomal membranes from germinating castor bean (Ricinus communis L. cv Hale) endosperm contain an NADH dehydrogenase. This enzyme can utilize extraorganellar ascorbate free-radical as a substrate and can oxidize NADH at a rate which can support intraglyoxysomal demand for NAD+. NADH:ascorbate free-radical reductase was found to be membrane-associated, and the activity remained in the membrane fraction after lysis of glyoxysomes by osmotic shock, followed by pelleting of the membranes. In whole glyoxysomes, NADH:ascorbate free-radical reductase, like NADH:ferricyanide reductase and unlike NADH:cytochrome c reductase, was insensitive to trypsin and was not inactivated by Triton X-100 detergent. These results suggest that ascorbate free-radical is reduced by the same component which reduces ferricyanide in the glyoxysomal membrane redox system. NADH:ascorbate free-radical reductase comigrated with NADH:ferricyanide and cytochrome c reductases when glyoxy-somal membranes were solubilized with detergent and subjected to rate-zonal centrifugation. The results suggest that ascorbate free-radical, when reduced to ascorbate by membrane redox system, could serve as a link between glyoxysomal metabolism and other cellular activities.  相似文献   

19.
Initial velocity studies of immunopurified spinach nitrate reductase have been performed under conditions of controlled ionic strength and pH and in the absence of chloride ions. Increased ionic strength stimulated NADH:ferricyanide reductase and reduced flavin:nitrate reductase activities and inhibited NADH:nitrate reductase, NADH:cytochrome c reductase and reduced methyl viologen:nitrate reductase activities. NADH:dichlorophenolindophenol reductase activity was unaffected by changes in ionic strength. All of the partial activities, expressed in terms of micromole 2 electron transferred per minute per nanomole heme, were faster than the overall full, NADH:nitrate reductase activity indicating that none of the partial activities included the rate limiting step in electron transfer from NADH to nitrate. The pH optimum for NADH:nitrate reductase activity was determined to be 7 while values for the various partial activities ranged from 6.5 to 7.5. Chlorate, bromate, and iodate were determined to be alternate electron acceptors for the reduced enzyme. These results indicate that unlike the enzyme from Chlorella vulgaris, intramolecular electron transfer between reduced heme and Mo is not rate limiting for spinach nitrate reductase.  相似文献   

20.
The green alga Chlamydomonas reinhardtii Dangeard CW-15 exhibited very low rates of plasma-membrane Fe(III) reductase activity when grown under Fe-sufficient conditions. After switching the medium to an Fe-free formulation, both ferricyanide reductase and ferric chelate reductase activities rapidly increased, reaching a maximum after 3 d under iron-free conditions. Both of the Fe(III) reductase activities increased in parallel over time, they exhibited similar K m values (approximately 10 μM) with respect to Fe(III), displayed the same pH profile of activity, and both exhibited the same degree of light stimulation which could be inhibited by 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU). Furthermore, ferricyanide competitively inhibited ferric chelate reduction by iron-limited cells. These results indicate that both Fe(III) reductase activities were mediated by the same iron-limitation-induced plasma-membrane reductase. No evidence was found for the presence of Fe(III)-reducing substances in the culture medium, or for the involvement of active oxygen species in the process of Fe(III) reduction. Chlamydomonas reinhardtii appears to respond to iron limitation in a manner similar to Strategy I higher plants. Received: 24 June 1997 / Accepted: 2 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号