首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Since organotin compounds represent an environmental health hazard, we determined the effect of triethyltin bromide (TTB) on red blood cell (RBC) enzyme activity. TTB produced a concentration-dependent inhibition of hexokinase and pyrimidine 5'-nucleotidase for both adult and cord RBC. D-Glucose, but not ATP or MgCl2, prevented the hexokinase inhibition by TTB. Glucose-6-phosphate dehydrogenase, adenylate kinase, and hypoxanthine-guanine phosphoribosyltransferase were also inhibited by TTB. Cord RBC enzymes were more resistant to the effects of TTB than were adult RBC enzymes. Although TTB is a potent inhibitor of hexokinase, physiologic concentrations of glucose appear to protect the RBC during clinical tin intoxication.  相似文献   

2.
Triethyltin bromide activates the cyclic AMP-dependent protein kinases of human red cell membranes and of bovine brain. Additions of 25-500 microM triethyltin to red cell ghosts resulted in enhanced phosphorylation of ghost proteins. When added to partially purified cyclic AMP-dependent protein kinases from red cell ghosts or bovine brain, stimulation of the phosphorylation of calf thymus histone was observed. The enhancement of kinase activity was due to release of catalytic subunits from the intact protein kinase. Brief exposure of the partially purified enzymes to triethyltin, followed by DE52 chromatography, resulted in elution profiles for regulatory and catalytic subunits that were similar to the profile resulting after cyclic AMP activation. Triethyltin interacts with both regulatory and catalytic subunits. When it was added to the partially purified cyclic AMP-dependent protein kinases from human red cell ghosts or bovine brain, noncompetitive inhibition of cyclic AMP binding to the regulatory subunit of the enzyme was observed. It interacted with the catalytic subunit to produce slow inhibition of catalytic activity. The inhibition was non-competitive with respect to both histone and ATP. When intact red cells were subjected to brief exposure with triethyltin, enhanced phosphorylation of certain membrane proteins occurred, suggesting that the activation of the cyclic AMP protein kinases by triethyltin may be physiologically significant.  相似文献   

3.
2-Formylpyridine monothiosemicarbazonato copper II (CuL+) is readily taken up by red cells and is initially bound to glutathione and hemoglobin. Glutathione was depleted within 5 hr of incubation, presumably by oxidation mediated by CuL+ and O2 with concomittant generation of toxic oxygen species. Cupric ion was slowly transferred from CuL+ to hemoglobin within about 7 hr, and hemoglobin was oxidized until the major form prevailing after 10 hr was α2β2+. Little increase in hemolysis due to addition of CuL+ dissolved in the radical scavenger dimethyl sulfoxide was observed with prolonged incubation. Strong inhibition of red cell hexokinase by CuL+ was observed when the enzymes in red cell lysates and hemoglobin-free red cell lysates were examined. CuL+ was also an effective inhibitor of yeast hexokinase. However, the inhibitory effect of CuL + within the red cells was less pronounced. It is suggested that even though intracellular accumulation of CuL + creates an oxidizing environment and is potentially capable of inhibiting thiol enzymes such as hexokinase, protective effects are exerted in the red cell by the presence of hemoglobin, of radical scavengers, and of high levels of enzymes that detoxify toxic oxygen species. Address reprint requests to Dr. W.E. Antholine, Department of Radiology, or Dr. F. Taketa, Department of Bio  相似文献   

4.
Mammalian hexokinase isoenzymes I and II have been shown to differ qualitatively in response to various modifiers. Although both enzymes are inhibited by glucose 6-phosphate, only isoenzyme II exhibits a slow response to the presence of this inhibitor. Pi decreases the affinity of glucose 6-phosphate for Sarcoma 37 hexokinase I, but has no effect on hexokinase II from the same cell. Pi overcomes all of the inhibition of red cell hexokinase by glucose-6-P and hence the two effectors act competitively. At pH 6.5, catecholamines increase the V of isoenzyme I of Sarcoma 37 and brain in the soluble and mitochondrial forms but do not activate these forms of tumor isoenzyme II. Citrate activates brain and tumor isoenzyme I when they are inhibited by tris(hydroxy-methyl)aminomethylethane sulfonate (TES) and ADP; however, tumor isoenzyme II is not activated.  相似文献   

5.
Adult pairs of Schistosoma mansoni convert glucose to lactate rapidly and almost quantitatively under aerobic and anaerobic conditions E. Bueding, 1950, Journal of General Physiology33, 475–495). Glycolysis is the principal source of energy of schistosomes and its inhibition by trivalent organic antimonials, at the phosphofructokinase step [EC 2.7.1.11], may be the basis for the chemotherapeutic effects of these agents E. Bueding and J. M. Mansour, 1957, British Journal of Pharmacology and Chemotherapy12, 159–165). We have developed standardized conditions for the comparison of rates of glucose consumption and lactate production by intact schistosomes in vitro and by centrifuged homogenates of worms. The rates of glycolysis of homogenates prepared from freshly isolated worms, and from worms that have been lyophilized immediately after harvesting and stored for prolonged periods at ?80 C were identical, when measured in media containing appropriate concentrations of glucose, NAD, ATP, MgCl2, KCl, and phosphate. The specific activities of the 11 glycolytic enzymes and of 3 related enzymes (fructose-biphosphatase [EC 3.1.3.11], glycerol-3-phosphate dehydrogenase [EC 1.1.1.8], and malate dehydrogenase [EC 1.1.1.37]) were measured in homogenates under optimal conditions. The profile of the relative activities of glycolytic enzymes of S. mansoni resembles closely that of Ehrlich ascites tumor cells, and differs markedly from that observed in erythrocytes or skeletal muscle. As is the case in many animal tissues, hexokinase [EC 2.7.1.1] was the enzyme of lowest specific activity, and the rate of glycolysis of homogenates was almost the same as the hexokinase activity. Several other lines of evidence support the view that the hexokinase reaction is the rate-limiting step in the glycolysis of worm homogenates. Hexokinase activity was not particulate in schistosome homogenates, and there was no detectable high Km glucokinase-like activity. The rate of glycolysis by homogenates exceeded that of intact worms by a factor of nearly 5. The contributions of glucose transport, availability of ADP and inorganic phosphate, regulatory enzymes, and a substrate cycle catalyzed by fructose-bisphosphatase are considered as possible mechanisms for the restraint of glycolysis in intact worms. The mechanisms contributing to the rapid rates of glycolysis of adult S. mansoni have not been identified, although several can be excluded (unusually high capacity of the glycolytic enzymes, the presence of mitochondrial hexokinase, the occurrence of glycosomes, and the operation of defective mitochondrial shuttles). In view of the regulatory role of hexokinase in the glycolysis of S. mansoni, inhibition of this enzyme is a potentially important target for the development of new antischistosomal drugs.  相似文献   

6.
Effects of training on erythrocyte 2,3-diphosphoglycerate in normal men   总被引:1,自引:0,他引:1  
The erythrocyte 2,3-diphosphoglycerate concentration (2,3-DPG) and the activity of red cell hexokinase, pyruvate kinase, glucose-6 phosphate dehydrogenase and glutathione reductase were studied in 27 normal volunteers before and after 2 and 4 months of physical endurance training. The 4 months of training increased maximal oxygen uptake and physical working capacity (PWC130) by 16% (p less than 0.001) and 29% (p less than 0.001) respectively. Resting heart rate was decreased (p less than 0.001) by 11 beats.min-1. With 2 months of training the erythrocyte 2,3-DPG concentration increased by 9% (p less than 0.001); with 4 months training the increase was only 4% (p less than 0.05). The training-induced increase in red cell 2,3-DPG was not accompanied by enhanced activity of erythrocyte hexokinase, pyruvate kinase, glucose-6 phosphate dehydrogenase or glutathione reductase. It is concluded that the rise in red cell 2,3-DPG induced by physical endurance training is not due to activation of red cell glycolytic enzymes or the enzymes involved in the pentose-phosphate cycle.  相似文献   

7.
The regulatory properties of pig erythrocyte hexokinase III have been studied. Among mammalian erythrocyte hexokinases, the pig enzyme shows the highest affinity for glucose and a positive cooperative effect with nH = 1.5 at all the MgATP concentrations studied (for 0.5 to 5 mm). Glucose at high concentrations is also an inhibitor of hexokinase III. Similarly, the apparent affinity constant for MgATP is independent of glucose concentration. Uncomplexed ATP and Mg are both competitive inhibitors with respect to MgATP. Glucose 6-phosphate, known as a stronger inhibitor of all mammalian erythrocyte hexokinases, is a poor inhibitor for the pig enzyme (Ki = 120 μm). Furthermore, this inhibition is not relieved by orthophosphate as with other mammalian red blood cell hexokinases. A variety of red blood cell-phosphorylated compounds were tested and found to be inhibitors of pig hexokinase III. Of these, glucose 1,6-diphosphate and 2,3-diphosphoglycerate displayed inhibition constants in the range of their intracellular concentrations. In an attempt to investigate the role of hexokinase type III in pig erythrocytes some metabolic properties of this cell have been studied. The adult pig erythrocyte is able to utilize 0.27 μmol of glucose/h/ml red blood cells (RBC) compared with values of 0.56–2.85 μmol/h/ml RBC for the other mammalian species. This reduced capacity to metabolize glucose results from a relatively poor ability of the cell membrane to transport glucose. In fact, all the glycolytic enzymes were present and a low intracellular glucose concentration was measured (0.5 mm against a plasma level of 5 mm). Furthermore, transport and utilization were concentration-dependent processes. Inosine, proposed as the major energy substrate of the pig erythrocyte, at physiological concentrations is not as efficient as glucose in maintaining reduced glutathione levels under oxidative stress. Furthermore, newborn pig erythrocytes (fully permeable to glucose) possess hexokinase type II as the predominant glucose-phosphorylating activity. This fact and the information derived from the study of the regulatory characteristics of hexokinase III and from metabolic studies on intact pig erythrocytes permit the hypothesis that the presence of this peculiar hexokinase isozyme (type III) enables the adult pig erythrocyte to metabolize low but appreciable amounts of glucose.  相似文献   

8.
Glycolysis in bloodstream T. brucei is the sole source of energy and remains a favourable chemotherapeutic target. In furtherance of this, an attempt has been made to understand better the contribution of glucose, fructose, mannose and glycerol to the energy charge of these parasites incubated in the presence of oligomycin, salicyhydroxamic acid (SHAM) and digitonin. Their cellular energy charge, when catabolizing glucose was 0.860, and under inhibition by oligomycin (10 microg), SHAM (2 mM) or oligomycin plus SHAM, 0.800, 0.444 and 0.405, respectively. Oligomycin inhibited the rate of catabolism of glucose, mannose and fructose up to 80%. The inhibition could not be alleviated by uncouplers, such as 2,4-dinitrophenol or permeabilization of the membranes by digitonin. Glucose-6-phosphate and other phosphorylated glycolytic intermediates, such as fructose-6-phosphate were catabolized by the permeabilized parasites in the presence of oligomycin, implying that except hexokinase, all the other glycolytic enzymes were active. Glucose oxidation was stimulated by low concentrations of digitonin (up to 4 microg), but at higher concentrations, it was significantly inhibited (up to 90% inhibition at 10 microg). Apparently, the inhibitory effects of oligomycin and digitonin were confined to glucose uptake and hexokinase catalysis. The above observations suggest that the hexose transporter and the enzyme hexokinase might be functionally-linked in the glycosomal membrane and oligomycin inhibits the linkage, by using a mechanism not linked to the energy charge of the cell. Digitonin at concentrations higher than 4 microg disrupted the membrane, rendering the complex in-operative. A hexokinase/hexose transporter complex in the glycosomal membrane is envisaged.  相似文献   

9.
K R Siebenlist  F Taketa 《Biochemistry》1983,22(18):4229-4234
Triethyltin bromide was found to demonstrate temperature-dependent inactivation of yeast hexokinase B. At temperatures of 20 degrees C or lower, little or no inactivation of the enzyme was detected after 2 h of reaction with 50-300 microM concentrations of the reagent. However, incubation at 25 degrees C or higher resulted in an increased rate and extent of loss of the enzyme activity with increasing incubation temperatures. The Arrhenius plot for the inactivation process showed a sharp break at approximately 30 degrees C, with a heat of activation (delta H*) above this temperature of 55.2 kcal, indicating that a triethyltin-induced conformational change occurred at the elevated temperatures. Sugar substrates provided protection against the inactivating effect by reducing the binding of triethyltin to the enzyme. In the absence of glucose, two sites of different affinity for triethyltin exist in the hexokinase monomer. Binding of triethyltin to the enzyme shifted its monomer-dimer equilibrium toward the monomeric form in an early stage of the interaction. Inactivation of the enzyme was associated with a slower subsequent event. Comparative effects of various organotin compounds on the activity of the enzyme indicated that inhibitory potency was associated with increasing hydrophobicity of the alkyl groups attached to the tin.  相似文献   

10.
Three glucose-phosphorylating enzymes were separated from cell-free extracts of Saccharomyces cerevisiae by hydroxylapatite chromatography. Variations in the amounts of these enzymes in cells growing on glucose and on ethanol showed that hexokinase PI was a constitutive enzyme, whereas synthesis of hexokinase PII and glucokinase were regulated by the carbon source used. Glucokinase proved to be a glucomannokinase with Km values of 0.04 mM for both glucose and mannose. D-Xylose produced an irreversible inactivation of the three glucose-phosphorylating enzymes depending on the presence or absence of ATP. Hexokinase PI inactivation required ATP, while hexokinase PII was inactivated by D-xylose without ATP in the reaction mixture. Glucokinase was protected by ATP from this inactivation. D-Xylose acted as a competitive inhibitor of hexokinase PI and glucokinase and as a non-competitive inhibitor of hexokinase PII.  相似文献   

11.
Deciliation of Paramecium tetraurelia by a Ca2+ shock procedure releases a discrete set of proteins which represent about 1% of the total cell protein. Marker enzymes for cytoplasm (hexokinase), endoplasmic reticulum (glucose-6-phosphatase), peroxisomes (catalase), and lysosomes (acid phosphatase) were not released by this treatment. Among the proteins selectively released is a Ca2+-dependent ATPase. This enzyme has a broad substrate specificity which includes GTP, ATP, and UTP, and it can be activated by Ca2+, Sr2+, or Ba2+, but not by Mg2+ or by monovalent cations. The crude enzyme has a specific activity of 2–3 μmol/min per mg; the optimal pH for activity is 7.5. ATPase, GTPase, and UTPase all reside in the same protein, which is inhibited by ruthenium red, is irreversibly denatured at 50°C, and which has a sedimentation coefficient of 8–10 S. This enzyme is compared with other surface-derived ATPases of ciliated protozoans, and its possible roles are discussed.  相似文献   

12.
This study describes the effect of some saturated and unsaturated free fatty acids and acyl-CoA thioesters on Trypanosoma cruzi glucose 6-phosphate dehydrogenase and hexokinase activities. Glucose 6-phosphate dehydrogenase was sensitive to the destabilizing effect provoked by free fatty acids, while hexokinase remained unaltered. Glucose 6-phosphate dehydrogenase inhibition by free fatty acids was dependent on acid concentration and chain length. Both enzymes were inhibited when they were incubated with acyl-CoA thioesters. The acyl-CoA thioesters inhibited glucose 6-phosphate dehydrogenase at a lower concentration than the free fatty acids; the ligands glucose 6-phosphate and NADP+ afforded protection. The inhibition of hexokinase by acyl-CoAs was not reverted when the enzyme was incubated with ATP. The type of inhibition found with acyl-CoAs in relation to glucose 6-phosphate dehydrogenase and hexokinase suggests that this type inhibition may produce an in vivo modulation of these enzymatic activities.  相似文献   

13.
1. The relationship between red cell aging and enzyme activities was studied in rabbit, guinea-pig, hamster, rats (F344/N and SD), and mice (BALB/c and DBA/2). 2. The activities of six enzymes: glucose-6-phosphate dehydrogenase (G-6-PD), 6-phosphogluconate dehydrogenase (6-PGD), hexokinase (Hx), glutamate oxaloacetate transminase (GOT), lactate dehydrogenase (LDH) and acetylcholinesterase (AChE), were measured in the red cells of different ages which were obtained either by centrifugation or experimental anaemia. 3. Hx, AChE and GOT activities were much higher in younger red cells than in older cells, hence the activities of these enzymes may be used as an indicator of age of the cells.  相似文献   

14.
An hexokinase (EC 2.7.1.1) and a glucokinase (EC 2.7.1.2) from the red yeast Rhodotorula glutinis are described. Both enzymes have been separated and some of their properties studied. The two enzymes share many properties, the Kmfor glucose is 0.1 mm for both enzymes and the Km values for ATP are 0.5 mm and 0.6 mm respectively for hexokinase and glucokinase. The hexokinase shows a Km of 2 mm for fructose and 0.1 mm for mannose; the glucokinase has a Km for mannose of 0.2 mm. Both enzymes are constitutive, show competitive inhibition by N-acetylglucosamine and xylose, have weak affinity for glucosamine and exhibit a broad pH optimum. The molecular weights determined by gel filtration are 110,000 for glucokinase and 96,000 for hexokinase. The maximal activity of both hexose kinases nearly accounts for glucose utilization by Rh. glutinis.  相似文献   

15.
Free and bound forms of hexokinase, pyruvate kinase, and lactate dehydrogenase were prepared from the brain of the sea scorpion (Scorpaena porcus) in a low ionic strength medium. Properties of the free and bound forms were compared to determine whether binding to particulate matter could influence enzyme function or stability in vivo. Changes in pH differently affected the activity of the free and bound forms of all three enzymes. Furthermore, bound forms of hexokinase and pyruvate kinase were more stable than the free enzymes to heating at 45 degrees C. Bound hexokinase showed higher affinity for substrates (ATP, glucose) than the free form and bound lactate dehydrogenase had greater affinity for pyruvate and NADH. Although the affinities of the two forms of pyruvate kinase for substrates were similar, Hill coefficients for phosphoenolpyruvate as well as inhibition by ATP differed between the two enzyme forms. Free and bound lactate dehydrogenase also showed differences in Hill coefficients and bound lactate dehydrogenase was less sensitive to substrate inhibition by high pyruvate concentrations. The possible physiological role of the binding of these glycolytic enzymes to subcellular structures is discussed.  相似文献   

16.
Summary Mammalian red blood cell hexokinase has been shown to exist in two or more distinct molecular forms, which are separable by ion-exchange chromatography. Of these forms just one corresponds to hexokinase type I from other tissues, while the others differ from any previously reported hexokinase isozyme. Analysis of several molecular properties of the three major forms (la, Ib and Ic in the order of their elution from DE-52 columns) of hexokinase prepared from human red cells and of the two forms purified from rabbit reticulocytes, shows significant differences in the isoelectric point. The kinetic and regulatory characteristics, the molecular weight, the temperature and pH-dependence of the various isozymes were similar.The hexokinase isozymic pattern is largely dependent upon red blood cell age. Among all, hexokinase Ib is the predominant form in rabbit reticulocytes and becomes the minor component in the older cells; a similar situation has also been found in the human erythrocyte. At present the molecular basis of hexokinase heterogeneity remains unknown, however preliminary experimental findings indicate a post-translational modification as a possible mechanism.  相似文献   

17.
Hexokinase isozyme I is proposed to be associated with mitochondria in vivo. Moreover, it has been suggested that this association is modulated in coordination with changes in cell metabolic state. To test these hypotheses, we analyzed the subcellular distribution of hexokinase relative to mitochondria in paraformaldehyde-fixed astrocytes using immunocytochemistry and quantitative three-dimensional confocal microscopy. Analysis of the extent of colocalization between hexokinase and mitochondria revealed that approximately 70% of cellular hexokinase is associated with mitochondria under basal metabolic conditions. In contrast to the immunocytochemical studies, between 15 to 40% of cellular hexokinase was found to be associated with mitochondria after fractionation of astrocyte cultures depending on the exact fractionation conditions. The discrepancy between fractionation studies and those based on imaging of distributions in fixed cells indicates the usefulness of using techniques that can evaluate the distributions of "cytosolic" enzymes in cells whose subcellular ultrastructure is not severely disrupted. To determine if hexokinase distribution is modulated in concert with changes in cell metabolism, the localization of hexokinase with mitochondria was evaluated after inhibition of glucose metabolism with 2-deoxyglucose. After incubation with 2-deoxyglucose there was an approximate 35% decrease in the amount of hexokinase associated with mitochondria. These findings support the hypothesis that hexokinase is bound to mitochondria in rat brain astrocytes in vivo, and that this association is sensitive to cell metabolic state.  相似文献   

18.
Glucose oxidation by rat brain cortex slices is inhibited by low concentrations of triethyltin and this sensitive inhibition is shown to be chloride-dependent. Pyruvate oxidation is only inhibited at high concentrations of triethyltin whether chloride is present or not. In contrast, the stimulation of both glucose and pyruvate oxidation observed with low concentrations of triethyltin prior to inhibition is chloride-dependent. The results are discussed in relation to the chloride-hydroxide exchange reaction known to be mediated across the inner mitochondrial membrane by triethyltin and other organo-metals.  相似文献   

19.
Three glycolytic enzymes, hexokinase, phosphoglycerate kinase, and pyruvate kinase, were fluorine labeled in the yeast Saccharomyces cerevisiae by biosynthetic incorporation of 5-fluorotryptophan. 19F NMR longitudinal relaxation time measurements on the labeled enzymes were used to assess their rotational mobility in the intact cell. Comparison with the results obtained from relaxation time measurements of the purified enzymes in vitro and from theoretical calculations showed that two of the labeled enzymes, phosphoglycerate kinase and hexokinase, were tumbling in a cytoplasm that had a viscosity approximately twice that of water. There were no detectable signals from pyruvate kinase in vivo, although it could be detected in diluted cell extracts, indicating that there was some degree of motional restriction of the enzyme in the intact cell.  相似文献   

20.
Glucosephosphate isomerase (EC 5.3.1.9) of Schistosoma mansoni is inhibited competitively by a number of tetrose, pentose, and hexose phosphates with inhibitor constant (Ki) values in the range of 0.5 to 400 μM. The most potent inhibitor is 5-phospho-d-arabinonate which resembles the cis-enediolate transition state intermediate of the reaction. These analogs were also found to be effective inhibitors of the production of lactate from glucose by suitably supplemented worm homogenates. The rank order of potency of inhibition of glycolysis was inversely related to the magnitudes of the Ki values for glucosephosphate isomerase. These Ki values were similar to those previously reported for mammalian glucosephosphate isomerase, suggesting similarities in the steric and electronic characteristics of the active sites of these isofunctional enzymes. This conclusion was further supported by the observed pH dependence of the inhibition by 5-phospho-d-arabinonate. Although glucosephosphate isomerase is not a rate-limiting enzyme of glycolysis, in the conventional sense, its selective inhibition could be of chemotherapeutic importance, in part because of the accumulation in glycolyzing systems of glucose 6-phosphate which is a potent feedback inhibitor of hexokinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号