首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When slices of Jerusalem artichoke tubers were incubated at 25°C, their concentration in fructose 2,6-bisphosphate increased up to 250-fold within 2 h. Fructose 2,6-bisphosphate was also formed, although at a slower rate, in slices incubated at 0°C. Its formation could not be explained by an increase in the concentration of fructose 6-phosphate or of ATP either by an activation of phosphofructo-2-kinase. Pyrophosphate—fructose-6-phosphate 1-phosphotransferase was the only enzyme present in a tuber extract which was found to be sensitive to fructose 2,6-bisphosphate. An improved procedure for the assay of fructose 2,6-bisphosphate is also reported.  相似文献   

2.
Fructose 6-phosphate from several commercial sources was shown to be contaminated with fructose 2,6-bisphosphate. This contaminant was identified by its activation of PPi:fructose 6-phosphate phosphotransferase, extreme acid lability and behaviour on ion-exchange chromatography. The apparent kinetic properties of PPi:fructose 6-phosphate phosphotransferase from castor bean endosperm were considerably altered when contaminated fructose 6-phosphate was used as a substrate. Varying levels of fructose 2,6-bisphosphate in the substrate may account for differences that have been observed in the properties of the above enzyme from several plant sources.  相似文献   

3.
1. Recycling of metabolites between fructose 6-phosphate and triose phosphates has been investigated in isolated hepatocytes by the randomization of carbon between C(1) and C(6) of glucose formed from [1-14C]galactose. 2. Randomization of carbon atoms was regularly observed with hepatocytes isolated from fed rats and was then little influenced by the concentration of glucose in the incubation medium. It was decreased by about 50% in the presence of glucagon. 3. Randomization of carbon atoms by hepatocytes isolated from starved rats was barely detectable at physiological concentrations of glucose in the incubation medium, but was greatly increased with increasing glucose concentrations. It was nearly completely suppressed by glucagon. These large changes can be attributed to parallel variations in the activity of phosphofructokinase. 4. The main factors that appear to control the activity of phosphofructokinase under these experimental conditions are the concentration of fructose 6-phosphate, the concentration of fructose 1,6-bisphosphate and also the affinity of the enzyme for fructose 6-phosphate. 5. The affinity of phosphofructokinase for fructose 6-phosphate was diminished by incubation of the cells in the presence of glucagon and also by filtration of an extract of hepatocytes through Sephadex G-25 and by purification of the enzyme. When assayed at 0.25 or 0.5mm-fructose 6-phosphate, the activity of phosphofructokinase present in a liver Sephadex filtrate was increased by a low-molecular-weight effector, which could be isolated from a liver extract by ultrafiltration, gel filtration or heat treatment, but was rapidly destroyed in trichloroacetic acid, even in the cold. This effector appears to be a highly acid-labile phosphoric ester. Its concentration was greatly increased in hepatocytes incubated in the presence of glucose and was decreased in the presence of glucagon.  相似文献   

4.
《Experimental mycology》1991,15(1):44-54
DormantPilobolus longipes spores metabolized fructose primarily to ethanol, CO2, and trehalose. Cyclic AMP-induced spore activation was accompanied by a large stimulation of glycolytic activity. Mobilization of reserves, which was cyclic AMP dependent, accounted for a portion of the glycolytic product. The remaining product was derived from exogenous fructose. Increases in both fructose transport activity and hexose 6-phosphate levels were associated with 6-deoxyglucose-induced spore activation. Phosphofructokinase-1 activity in spore extracts was almost totally dependent upon fructose, 2,6-bisphosphate. High fructose 2,6-bisphosphate levels were correlated with rapid fructose metabolism. However, fructose alone caused a rise in fructose 2,6-bisphosphate content (sufficient to fully stimulate phosphofructokinase-1 activity) but there was no concurrent stimulation of glycolysis. These results suggest that glycolytic rates are determined mainly by hexose 6-phosphate levels and that cyclic AMP regulation of transport is an important determinant of hexose 6-phosphate concentration.  相似文献   

5.
Rice (Oryza sativa) seeds were imbibed for 3 days and the seedlings were further incubated for 8 days in the presence of either air or nitrogen. In aerobiosis, the specific activity of pyrophosphate:fructose 6-phosphate 1-phosphotransferase and that of the ATP-dependent phosphofructokinase increased about fourfold. In anaerobiosis, the specific activity of ATP-dependent phosphofructokinase remained stable, whereas that of pyrophosphate:fructose 6-phosphate 1-phosphotransferase increased as much as in the presence of oxygen and there was also a fourfold increase in the concentration of fructose 2,6-bisphosphate, a potent stimulator of that enzyme. These data suggest a preferential involvement of pyrophosphate:fructose 6-phosphate 1-phosphotransferase rather than of ATP-dependent phosphofructokinase in glycolysis during anaerobiosis.  相似文献   

6.
Phosphoglucose isomerase negative mutant of mucoid Pseudomonas aeruginosa accumulated relatively higher concentration of fructose 1,6-bisphosphate (Fru-1,6-P2) when mannitol induced cells were incubated with this sugar alcohol. Also the toluene-treated cells of fructose 1,6-bisphosphate aldolase negative mutant of this organism produced Fru-1,6-P2 from fructose 6-phosphate in presence of ATP, but not from 6-phosphogluconate. The results together suggested the presence of an ATP-dependent fructose 6-phosphate kinase (EC 2.7.1.11) in mucoid P. aeruginosa.Abbreviations ALD Fru-1,6-P2 aldolse - DHAP dihydroxyacetone phosphate - F6P fructose 6-phosphate - G6P glucose 6-phosphate - Gly3P glyceraldehyde 3-phosphate - KDPG 2-keto 3-deoxy 6-phosphogluconate - PFK fructose 6-phosphate kinase - PGI phosphoglucose isomerase - 6PG 6-phosphogluconate  相似文献   

7.
The distribution of enzymes interconverting fructose 6-phosphate and fructose 1,6-bisphosphate has been studied in a range of tissues from castor bean seedlings. In each tissue the activity of PPi:fructose 6-phosphate phosphotransferase was greater than phosphofructokinase and substantial compared with fructose 1,6-bisphosphatase. PPi:fructose 6-phosphate phosphotransferase in endosperm is apparently confined to the cytoplasm. The role of this latter enzyme in vivo is discussed.  相似文献   

8.
Phosphofructokinase from the flight muscle of bumblebee was purified to homogeneity and its molecular and catalytic properties are presented. The kinetic behavior studies at pH 8.0 are consistent with random or compulsory-order ternary complex. At pH 7.4 the enzyme displays regulatory behavior with respect to both substrates, cooperativity toward fructose 6-phosphate, and inhibition by high concentration of ATP. Determinations of glycolytic intermediates in the flight muscle of insects exposed to low and normal temperatures showed statistically significant increases in the concentrations of AMP, fructose 2,6-bisphosphate, and glucose 6-phosphate during flight at 25 degrees C or rest at 5 degrees C. Measuring the activity of phosphofructokinase and fructose 1,6-bisphosphatase at 25 and 7.5 degrees C, in the presence of physiological concentrations of substrates and key effectors found in the muscle of bumblebee kept under different environmental temperatures and activity levels, suggests that the temperature dependence of fructose 6-phosphate/fructose 1,6-bisphosphate cycling may be regulated by fluctuation of fructose 2,6-bisphosphate concentration and changes in the affinity of both enzymes for substrates and effectors. Moreover, in the presence of in vivo concentrations of substrates, phosphofructokinase is inactive in the absence of fructose 2,6-bisphosphate.  相似文献   

9.
The aim of this work was to examine the possibility that fructose 2,6-bisphosphate (Fru-2,6-P2) plays a role in the regulation of gluconeogenesis from fat. Fru-2,6-P2 is known to inhibit cytoplasmic fructose 1,6-bisphosphatase and stimulate pyrophosphate:fructose 6-phosphate phosphotransferase from the endosperm of seedlings of castor bean (Ricinus communis). Fru-2,6-P2 was present throughout the seven-day period in amounts from 30 to 200 picomoles per endosperm. Inhibition of gluconeogenesis by anoxia or treatment with 3-mercaptopicolinic acid doubled the amount of Fru-2,6-P2 in detached endosperm. The maximum activities of fructose 6-phosphate,2-kinase and fructose 2,6-bisphosphatase (enzymes that synthesize and degrade Fru-2,6-P2, respectively) were sufficient to account for the highest observed rates of Fru-2,6-P2 metabolism. Fructose 6-phosphate,2-kinase exhibited sigmoid kinetics with respect to fructose 6-phosphate. These kinetics became hyperbolic in the presence of inorganic phosphate, which also relieved a strong inhibition of the enzyme by 3-phosphoglycerate. Fructose 2,6-bisphosphatase was inhibited by both phosphate and fructose 6-phosphate, the products of the reaction. The properties of the two enzymes suggest that in vivo the amounts of fructose-6-phosphate, 3-phosphoglycerate, and phosphate could each contribute to the control of Fru-2,6-P2 level. Variation in the level of Fru-2,6-P2 in response to changes in the levels of these metabolites is considered to be important in regulating flux between fructose 1,6-bisphosphate and fructose 6-phosphate during germination.  相似文献   

10.
Crystalline ribulose 1,5-bisphosphate carboxylase-oxygenase (EC 4.1.1.39) was isolated from tobacco (Nicotiana tabacum L.) leaf homogenates and the two competing reactions were examined for differential regulation in vitro by temperature pretreatment and chloroplast metabolites. Both the carboxylase and oxygenase activities were inactivated 50% by storing the dissolved protein at 0 °C and fully reactivated by heating the solution at 50 °C in the absence of Mg2+ and a sulfhydryl reagent. When the heat-activated enzyme was preincubated with physiological levels of various chloroplast metabolites and CO2 and the two reactions were assayed simultaneously in the same reaction vessel upon initiation with ribulose 1,5-bisphosphate, three classes of effectors were observed: (a) those which stimulated both activities (NADPH, 6-phosphogluco-bisphosphate gluconate, fructose 1,6-bisphosphate, 3-phosphoglycerate glycerate), (b) those which essentially had no effect (fructose 6-phosphate, glucose 6-phosphate), and (c) one, ribose 5-phosphate, which inhibited the two reactions. However, within the limits of experimental error, none of the metabolites examined produced a differential regulation of the ribulose 1,5-bisphosphate carboxylase-oxygenase activities. The similar response of the two competing activities to temperature pretreatment and various chloroplast metabolites is consistent with the notion that both reactions are associated with the same or adjacent catalytic sites on this bifunctional enzyme.  相似文献   

11.
The biogenic amine octopamine was injected into the haemolymph of 20-days old male locusts,Locusta migratoria, and the content of fructose 2,6-bisphosphate, a potent activator of glycolysis, was measured in the flight muscle after various time. Octopamine brought about a transient increase in fructose 2,6-bisphosphate. After the injection of 10 l of 10 mmol·l-1 d, l-octopamine fructose 2,6-bisphosphate was increased by 61% within 2 min. Ten minutes after the injection fructose 2,6-bisphosphate was increased to 6.71±0.89 nmol·g-1 flight muscle, almost 300% over the control value. Flight caused fructose 2,6-bisphosphate in flight muscle to decrease, but this decrease was counteracted by octopamine injected into the haemolymph of flying locusts. Octopamine and fructose 2,6-bisphosphate may act as signals to stimulate the oxidation of carbohydrate and to integrate muscle performance and metabolism. This mechanism appears particularly significant in the initial stage of flight when carbohydrates are the main fuel.Abbreviations F2,6P2 fructose 2,6-bisphosphate - F6P fructose 6-phosphate - PFK1 6-phosphofructokinase (EC 2.7.1.11) - P i inorganic phosphate - PP i -PFK pyrophosphate dependent fructose 6-phosphate phosphotransferase (EC 2.7.1.90)  相似文献   

12.
The low-molecular-weight stimulator of phosphofructokinase [Van Schaftingen, Hue & Hers (1980) Biochem. J. 192, 887-895] has been purified from rat liver. It was completely destroyed upon incubation with 0.01 M-HCl for 10 min at 20 degrees C and fructose 6-phosphate and a reducing power equivalent in amount to the acid-labile organic phosphate were formed. It was therefore tentatively identified as fructose 2,6-bisphosphate.  相似文献   

13.
1. The method proposed by Rognstad & Katz [(1976) Arch, Biochem, Biophys, 177, 337-345] for the determination of the fructose 6-phosphate/fructose 1,6-bisphosphate cycle by the randomization of carbon between C-1 and C-6 of glucose glucose formed from [1-14C] galactose was applied to anaesthetized rats and conscious mice. 2. It was checked that the hydrolysis of fructose 6-phosphate by glucose 6-phosphatase is too weak to invalidate the method. The participation of the Cori cycle in the randomization was negligible within the short experimental period used (2-4 min). 3. No detectable randomization of carbon was observed in starved animals, indicating that phosphofructokinase is inactive in this experimental condition. 4. Randomization of carbon was detected as soon as 1 min after administration of [1-14C] galactose to fed animals and was maximal at about 3-4 min. It was calculated that on average 15% of the glucose formed by the liver to fed rats was recycled through the triose phosphates. The extent of cycling was quite variable. Recycling was also observed in starved rats in which glucose had been administered intravenously 10 min previously. In these animals, recycling was completely inhibited by glucagon. 5. The main factors that appear to be responsible for the very large changes in recycling observed in various experimental conditions are the concentrations of fructose 1,6-bisphosphate and of fructose 6-phosphate and also the affinity of phosphofructokinase for fructose 6-phosphate. The concentration of nucleotides does not seem to play a role.  相似文献   

14.
Stationary states of the fructose 6-phosphate/fructose 2,6-bisphosphate cycle were investigated in relation to the input concentration of fructose 6-phosphate. Below a critical input concentration of fructose 6-phosphate very low levels of fructose 2,6-bisphosphate were obtained. Above this point the fructose 2,6-bisphosphate changes in direct proportion to the input of fructose 6-phosphate. Phosphorylation of the enzyme causes an increase of the critical input concentration of fructose 6-phosphate. The control coefficients for fructose 2,6-bisphosphate have their maximum at the critical input concentration of fructose 6-phosphate.  相似文献   

15.
Wheat (Triticum aestivum L.) ears were removed to investigate long-term regulation of photosynthesis by sink demand at ambient CO2 and 22 °C. The CO2 level was also increased to 660 μmol mol?1 and temperature was lowered to 5 °C to examine short-term responses of photosynthesis to low sink demand. Sink removal inhibited photosynthesis and increased leaf levels of glucose, fructose and ribulose-1, 5-bisphosphate (RuBP), and the glucose-6-phosphate (G6P)/fructose-6-phosphate (F6P) and RuBP/3-phosphoglycerate (PGA) ratios under growth conditions, but had no effect on the activity and activation state of ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco) either under growth or short-term conditions, suggesting an inhibition of photosynthesis by decreased in vivo catalysis of Rubisco. Photosynthesis increased similarly in eared and earless shoots after a rise in CO2 concentration, and the ratio of triose-phosphates (glyceraldehyde 3-phosphate and dihydroxyacetone phosphate, TP) to PGA was similar or higher for removed than intact ears, suggesting that feedback inhibition of photosynthesis was not caused by a limitation of ATP synthesis in chloroplasts. Under short-term conditions (660 μmol mol?1 CO2, 5 °C), TP and RuBP levels and the TP/PGA and TP/RuBP ratios were increased by sink removal, indicating an additional limitation of photosynthesis by the rate of RuBP regeneration.  相似文献   

16.
1. Fructose 6-phosphate, 2-kinase and fructose 2,6-bisphosphatase occurred in Euglena gracilis SM-ZK, and is located in cytosol. 2. Fructose 6-phosphate, 2-kinase and fructose 2,6-bisphosphatase were partially purified, and both enzyme activities were not separated during the partial purification. 3. The pH optimum for fructose 6-phosphate, 2-kinase activity was 7.0. The saturation curve of the enzyme activity for ATP concentration was hyperbolic, and the Km value for the substrate was 0.88 mM. On the other hand, the saturation curve of the enzyme activity for fructose 6-phosphate concentration was sigmoidal, and the K0.5 value for the substrate was 70 microM. 4. The pH optimum for fructose 2,6-bisphosphatase activity was 6.5. The saturation curve for fructose 2,6-bisphosphate concentration was sigmoidal, and the K0.5 value for the substrate was 1.29 microM. Fructose 2,6-bisphosphate showed a substrate inhibition at high concentration over 5 microM, and the enzyme activity was completely inhibited by 20 microM of fructose 2,6-bisphosphate.  相似文献   

17.
In gluconeogenesis, fructose 6-phosphate is formed from fructose 1,6-bisphosphate, and if fructose 1,6-bisphosphate were reformed by the phosphofructokinase reaction there would be a "gluconeogenic futile cycle." We assessed the extent of this cycling in Escherichia coli growing on glycerol 3-phosphate, using a medium containing 32Pi. Fructose 1,6-bisphosphate coming from glycerol 3-phosphate should be unlabeled, but any coming from fructose 6-phosphate should contain label from the gamma-position of ATP. The amount of labeling of the 1-position of fructose 1,6-bisphosphate was only 2 to 10% of that of the gamma-position of ATP in a series of isogenic strains differing in phosphofructokinases (Pfk-1, Pfk-2, or Pfk-2). In control experiments with glucose 6-phosphate instead of glycerol 3-phosphate, the two positions were equally labeled. Thus, although the presence of Pfk-2 causes gluconeogenic impairment (Daldal et al., Eur. J. Biochem., 126:373-379, 1982), gluconeogenic futile cycling cannot be the reason.  相似文献   

18.
Using comparative ion-exchange chromatography on Dowex 1X4, the product of dephosphorylation of fructose 2,6-bisphosphate with purified yeast fructose-2,6-bisphosphate 6-phosphohydrolase, was shown to be identical to the furanose form of fructose 2-phosphate prepared by chemical synthesis according to Pontis and Fischer [Biochem. J. 89, 452-459 (1963)]. As expected for the furanose form of fructose 2-phosphate, the enzymatically formed product consumes 1 mol periodate/mol fructose 2-phosphate, whereas the chemically synthesized pyranose form consumes 2 mol periodate/mol. In addition, it is shown that the enzymatic product behaves identically to the furanose, not the pyranose, form of fructose 2-phosphate in hydrolysis of the ester bond at pH 4 and 37 degrees C, as described previously for the chemically synthesized compounds [Pontis and Fischer (1963) vide supra].  相似文献   

19.
Substrate cycling of fructose 6-phosphate through reactions catalysed by 6-phosphofructokinase and fructose-1,6-bisphosphatase was measured in skeletal muscles of the rat in vitro. The rate of this cycle was calculated from the steady-state values of the 3H/14C ratio in hexose monophosphates and fructose 1,6-bisphosphate after the metabolism of either [5-3H,6-14C]glucose or [3-3H,2-14C] glucose. Two techniques for the separation of hexose phosphates were studied; t.l.c. chromatography on poly(ethyleneimine)-cellulose sheets or ion-exchange chromatography coupled with enzymic conversion. These two methods gave almost identical results, suggesting that either technique could be used for determination of rates of fructose 6-phosphate/fructose 1,6-bisphosphate cycling. It was found that more than 50% of the 3H was retained in the fructose 1,6-bisphosphate; it is therefore probable that previous measurement of cycling rates, which have assumed complete loss of 3H, have underestimated the rate of this cycle. The effects of insulin, adrenaline and adrenergic agonists and antagonists on rates of fructose 6-phosphate/fructose 1,6-bisphosphate cycling were investigated. In the presence of insulin, adrenaline (1 microM) increased the cycling rate by about 10-fold in epitrochlearis muscle in vitro; the maximum rate under these conditions was about 2.5 mumol/h per g of tissue. The concentration of adrenaline that increased the cycling rate by 50% was about 50 nM. This effect of adrenaline appears to be mediated by the beta-adrenergic receptor, since the rate was increased by beta-adrenergic agonists and blocked by beta-adrenergic antagonists. From the knowledge of the precise rate of this cycle, the possible physiological importance of cycling is discussed.  相似文献   

20.
6-Phosphofructo-1-kinase and fructose-1,6-bisphosphatase are rate-limiting enzymes for glycolysis and gluconeogenesis respectively, in the fructose 6-phosphate/fructose 1,6-bisphosphate cycle in the liver. The effect of ribose 1,5-bisphosphate on the enzymes was investigated. Ribose 1,5-bisphosphate synergistically relieved the ATP inhibition and increased the affinity of liver 6-phosphofructo-1-kinase for fructose 6-phosphate in the presence of AMP. Ribose 1,5-bisphosphate synergistically inhibited fructose-1,6-bisphosphatase in the presence of AMP. The activating effect on 6-phosphofructo-1-kinase and the inhibitory effect on fructose-1,6-bisphosphatase suggest ribose 1,5-bisphosphate is a potent regulator of the fructose 6-phosphate/fructose 1,6-bisphosphate cycle in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号