首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isolation and identification of two metabolites of vitamin D2 found in mammalian and avian species are reported. They are 24-hydroxyvitamin D2 and 24,25-dihydroxyvitamin D2. Their existence suggests that 24-hydroxylation occurs in a sterospecific manner in the 24R position and adds further support to the theory that vitamin D2 metabolism qualitatively parallels that of vitamin D3.  相似文献   

2.
High-pressure liquid chromatography capable of resolving all known vitamin D metabolites and a sensitive competitive binding protein assay specific for 1α,25-dihydroxyvitamin D3 were used to assay the blood of rats dosed with ethanol, 1α-hydroxyvitamin D3, 24R-hydroxy-25-fluorovitamin D3, or 1α-hydroxy-25-fluorovitamin D3. Compared to the ethanoldosed animals, the blood of rats dosed with 1α-hydroxyvitamin D3 had increased levels of 1α,25-dihydroxyvitamin D3; but those dosed with the fluorinated vitamins did not. Instead, their blood contained a compound that cochromatographs with 1α,24R-dihydroxyvitamin D3 on high-pressure liquid chromatography and binds to the 1,25-dihydroxyvitamin D3 receptor proteins. 1α,24R-Dihydroxyvitamin D3 binds as well as 1α, 25-dihydroxyvitamin D3 to the chick-intestinal cytosol receptor protein for 1α,25-dihydroxyvitamin D3; whereas 1α,24S-dihydroxyvitamin D3 binds only one-tenth as well as 1α,25-dihydroxyvitamin D3. Thus it appears that in vivo, the fluorinated vitamin D compounds are converted to a compound likely to be 1α,24R-dihydroxy-25-fluorovitamin D3 and that may rival the potency of 1α,25-dihydroxyvitamin D3.  相似文献   

3.
A sensitive and rapid in vitro assay of 25-hydroxyvitamin D3 [25-(OH)D3]-1 alpha- and 24-hydroxylase activities was developed using rat kidney homogenates. A potent inhibitor of the enzymes in rat plasma was removed by thoroughly perfusing rats with saline. Kidney homogenates prepared from vitamin D-deficient rats preferentially produced tritiated 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3] from 25(OH) [3H]D3. Addition of 10 microliter or more of rat plasma to 3 ml of 10% kidney homogenates suppressed 1 alpha-hydroxylase activity dose-dependently. Thyroparathyroidectomy (TPTX) of vitamin D-deficient rats greatly abolished 1 alpha-hydroxylase activity. Administration of parathyroid hormone to the TPTX rats increased 1 alpha-hydroxylase activity and that of 1 alpha,25(OH)2D3 enhanced 24-hydroxylase markedly. Since this assay is technically simple, rapid and sensitive, it will be useful in studying the regulatory mechanism in the renal metabolism of 25(OH)D3 in mammals.  相似文献   

4.
A single 325-pmol dose of 1,25-dihydroxyvitamin D3 given to chicks fed a vitamin D-deficient diet containing 3% calcium and 0.6% phosphorus suppresses renal mitochondrial 25-hydroxyvitamin D3-1α-hydroxylase and stimulates the 25-hydroxyvitamin D3-24-hydroxylase as measured by in vitro assay. This alteration in the enzymatic activity takes place over a period of hours. The administration of parathyroid hormone rapidly suppresses the 25-hydroxyvitamin D3-24-hydroxylase. The alterations in the hydroxylases by parathyroid hormone or 1,25-dihydroxyvitamin D3 are not related to changes in serum clacium or phosphate but could be related to changes in intracellular levels of these ions. Actinomycin D or cycloheximide given in vivo reduces the 25-hydroxyvitamin D3-24-hydroxylase activity rapidly which suggests that the turnover of the enzyme and its messenger RNA is rapid (1- and 5-h half-life, respectively). The half-lives of the hydroxylases are sufficiently short to permit a consideration that the regulation by 1,25-dihydroxyvitamin D3 and parathyroid hormone may involve enzyme synthesis and degradation.  相似文献   

5.
A high-pressure liquid chromatographic (hplc) procedure was developed for the determination of 25-hydroxycholecalciferol (25-OH-D3) in cow plasma or serum. The procedure involved extraction with an ethanol-ethyl ether mixture, separation of the aqueous phase, solvent partitions, column chromatography on silica gel, and, finally, determination by reversed phase hplc on a C18-bonded microparticulate silica column. The identity of the drug in the extract was confirmed by comparison with a standard by liquid, thin-layer, and gas-liquid chromatography as the free steroid and the heptafluorobutyrate and by the uv spectra and also from the mass spectrum of the heptafluorobutyrate. Twenty-four samples from cows on normal diet (dry, lactating, and pregnant) were analyzed. The normal circulating levels of 25-OH-D3 ranged from 40 to 58 ng/g; mean 48 ± 5.0 ng/g. The procedure was used to analyze a limited number of human and hog samples. Human serum contained 10–20 ng/g which was in agreement with literature values. Hog serum contained 18 ng/g.  相似文献   

6.
An epimeric mixture of 24-hydroxy-[24-3H]vitamin D3 was synthesized by the reduction of 24-ketovitamin D3 by sodium borotritide. The epimeric mixture was converted to the trimethylsilylether derivatives and subjected to high-pressure liquid chromatography using silica gel columns to separate the 24-hydroxy-[24-3H]vitamin D3 isomers. The 24R-hydroxy-[24-3H] vitamin D3 induced calcification in rachitic rats while the 24S-hydroxy-[24-3H] vitamin D3 had little or no such activity. As both isomers of 24-hydroxy-vitamin D3 are metabolized to 24,25-dihydroxyvitamin D3, it appears that the 24-hydroxyvitamin D3-25-hydroxylase does not discriminate between the isomers. Only the R-isomer of 24-hydroxyvitamin D3 is metabolized to 1,24-dihydroxyvitamin D3, although only trace amounts of this compound were found 2 days after the administration of 24-hydroxyvitamin D3. The striking difference in the metabolism of the isomers is the high selectivity of the 1-hydroxylase for R-isomer. It is suggested that the high specificity of biological activity for the R-isomer of 24-hydroxyvitamin D3 is because of the specificity of the 1-hydroxylation of 24,25-dihydroxyvitamin D3 for the R configuration.  相似文献   

7.
A primary confluent culture of epithelial cells from rat kidney has been developed. These cells possess a 3.2–3.4 S high-affinity, low-capacity binding protein for 1,25-dihydroxyvitamin D3. They metabolize 25-hydroxyvitamin D3 to at least five metabolites. Two have been identified as 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. Two others have been identified by means of physical data and cochromatography as trans 19-nor-10-oxo-25-hydroxyvitamin D3 and the other as its cis isomer. These two “metabolites” have not been observed in vivo, but one of them (cis) comigrates with 1,25-dihydroxyvitamin D3 on straight-phase high-performance liquid chromatography. Thus, mere cochromatography on high-performance liquid chromatography is not sufficient to identify critical vitamin D metabolites.  相似文献   

8.
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) has been isolated from human liver utilizing HMG-CoA affinity chromatography. The apparent monomer molecular weight of purified human HMG-CoA reductase by SDS-gel electrophoresis was 53,000, and the oligomeric molecular weight determined by sucrose density centrifugation was 104,000. A monospecific antibody prepared against rat liver HMG-CoA reductase inhibited the enzymic activity of microsomal and purified human liver enzyme and formed a single immunoprecipitin line by radial immunodiffusion. These results represent the initial isolation and characterization of human liver HMG-CoA reductase.  相似文献   

9.
10.
Methods have been developed for the examination of yeast RNA polymerases I, II, and III by electron microscopy. The results enabled us to establish the size and shape of a eucaryotic RNA polymerase for the first time. The enzymes are roughly spherical in shape and compact in appearance. Their measured molecular diameters are 12.7 ± 0.4 and 11.0 ± 1.4 (SD) nm for polymerase I, 12.7 ± 1.1 and 12.2 ± 1.0 (SD) nm for polymerase II, and 13.6 ± 0.6 and 11.5 ± 1.3 (SD) nm for polymerase III.  相似文献   

11.
12.
Microsome preparations extracted from wheat roots or sycamore cell suspensions catalyzed the transfer of sugar from nucleotide-sugars to endogenous lipidic acceptors. The nature of the products biosynthesized from UDP-Glc, GDP-Glc, UDP-Gal, UDP-Xyl or UDP-Arab was examined. Sterylglycosides were obtained from UDP-Gglc, GDP-Glc or UDP-Xyl. Galactosyldiglycerides were synthesized from UDP-Gal. When UDP-Glc or UDP-Gal was used as a substrate, a membrane-bound 4-epimerase interconverted the epimeric nucleotide-sugars, thereby allowing the simultaneous biosynthesis of galactosyldiglycerides and sterylglucosides. The biosynthesis of free and acylated sterylglucosides from UDP-Glc, without interference of other glycosyl transfer reactions, was obtained by the omission of Mg++ ions from the incubation medium. The biosynthesis of galactosyldiglycerides from UDP-Gal without interference of other transfer reactions was obtained when digitonin was added to the incubation medium of sycamore microsomes.  相似文献   

13.
Oxidative phosphorylation and 1 α,25-dihydroxyvitamin D3 [lα,25-(OH)2D3]synthesis in isolated mitochondria were decreased by the addition of strontium. Calcium effected a similar inhibition of 1α,25-(OH)2D3 synthesis which correlated with cation-induced mitochondrial swelling. The ultrastructural changes were found to be a consequence of experimental conditions and not a prerequisite for suppressed 1α,25-(OH)2D3 synthesis. Dietary administration of strontium or calcium also resulted in a decreased rate of 1α,25-(OH)2D3 synthesis; however, the decrease in 1-hydroxylase activity was accompanied by an induction of mitochondrial 25-hydroxyvitamin D3 24-hydroxylase activity. Such an in vivo-prompted mitochondrial response occurred in the absenee of morphological changes or extensive loss of oxidative phosphorylation activity. In contrast, no induction of 24-hydroxylase activity could be observed in acute studies using isolated mitochondria. Therefore, the in vitro action of calcium and strontium does not appear to reflect the in vivo mechanism whereby the cations act to change renal 25-hydroxyvitamin D3 (25-OHD3) hydroxylation. Results from in vitro studies corcerning the action of calcium to alter renal 25-OHD3 metabolism should be interpreted in light of the cation's capacity to decrease oxidative phosphorylation and the subsequent intramitochondrial generation of NADPH.  相似文献   

14.
A polar metabolite of vitamin D3 has been produced in vitro from either 1,25-dihydroxyvitamin D3 incubated with kidney homogenate from vitamin D-supplemented chickens or from 25,26-dihydroxyvitamin D3 incubated with vitamin D-deficient chicken kidney homogenate. This compound was isolated in pure form and identified as 1,25,26-trihydroxyvitamin D3 by ultraviolet absorption spectrophotometry and mass spectrometry. Furthermore, its periodate cleavage product comigrates with synthetic 1α-hydroxy-25-keto-27-norvitamin D3 on high-performance liquid chromatography. The 1,25,26-trihydroxyvitamin D3 is 0.1-0.01 as active as 1,25-dihydroxyvitamin D3 in the stimulation of intestinal calcium transport and bone calcium mobilization.  相似文献   

15.
16.
An extracellular aminopeptidase, purified 465-fold from culture filtrates of Bacillus licheniformis, was found to be a metalloenzyme consisting of a single peptide chain. Sedimentation equilibrium yielded a molecular weight of 43,270 and two polyacrylamide electrophoretic procedures gave values of 37,500 and 36,000, respectively. The activity of the enzyme was inhibited severely by 1,10-phenanthroline and to a lesser extent by EDTA, cyanide, and fluoride. The addition of Co2+ ions greatly stimulated enzymatic activity, but analysis of the purified enzyme revealed the presence of zinc, not cobalt, in stoichiometric quantities. Moreover, the ratio of zinc to protein was found to increase during fractionation, reaching a final value corresponding to 1 g-atom/mol. The aminopeptidase possessed characteristics of a euglobulin, sparingly soluble in water and dilute buffer solutions, but soluble in buffers containing higher concentrations of salts. Both activity and pH optimum were substantially influenced by ionic strength; as the latter was increased over the range from 0.01 to 0.1, activity increased and the pH optimum was shifted to more acidic values. Enzymatic activity was affected by the identity of the buffer, being markedly greater in Tris-HCl than in sodium barbital and strongly inhibited by phosphate. The Bacillus aminopeptidase hydrolyzed substrates with unsubstituted amino groups of the l configuration, including dipeptides, aminoacylnaphthylamides, and amino acid amides.  相似文献   

17.
NADPH-cytochrome c reductase has been isolated from a top-fermenting ale yeast, Saccharomyces cerevisiae (Narragansett strain), after ca. a 240-fold purification over the initial extract of an acetone powder, with a final specific activity (at pH 7.6, 30 °C) of ca. 150 μmol cytochrome c reduced min?1mg?1 protein. The preparation appears to be homogeneous by the criteria of: sedimentation velocity; electrophoresis on cellulose acetate in buffers above neutrality; and by polyacrylamide gel electrophoresis. Although the reductase appeared to partially separate into species “A” and “B” on DEAE-cellulose at pH 8.8, the two species have proven to be indistinguishable electrophoretically (above pH 8) and by sedimentation. By sedimentation equilibrium at 20 °C, a molecular weight of ca. 6.8 (± 0.4) × 104 was obtained with use of a V?20 ° = 0.741 calculated from its amino acid composition. After disruption in 4 m guanidinium chloride- 10 mm dithioerythritol- 1 mm EDTA, pH 6.4 at 20 °C, an M?r of 3.4 (± 0.1) × 104 resulted, which points to a subunit structure of two polypeptide chains per mole. Confirmatory evidence of the two-subunit structure with similar, if not identical, polypeptide chains was obtained by polyacrylamide gel electrophoresis in dodecyl-sulfate, after disruption in 4 m urea and 2% sodium dodecyl sulfate, and yielded a subunit molecular weight of ca. 4 × 104. Sulfhydryl group titration with 4,4′-dithiodipyridine under acidic conditions revealed one sulfhydryl group per monomer, which apparently is necessary for the catalytic reduction of cytochrome c. NADPH, as well as FAD, protects this-SH group from reaction with 5,5′-dithiobis (2-nitrobenzoate). The visible absorption spectrum of the oxidized enzyme (as prepared) has absorption maxima at 383 and 455 nm, typical of a flavoprotein. Flavin analysis (after dissociation by thermal denaturation of the “A” protein) conducted fluorometrically, revealed the presence of 2.0 mol of FAD per 70,000 g, in confirmation of the deduced subunit structure. The identity of the FAD dissociated from either “A” or “B” protein was confirmed by recombination with apo-d-amino acid oxidase and by thin-layer chromatography. A kinetic approach was used to estimate the dissociation constant for either FAD or FMN (which also yields a catalytically active enzyme) to the apoprotein reductase at 30 °C and pH 7.6 (0.05 m phosphate) and yielded values of 4.7 × 10?8m for FAD and 4.4 × 10?8m for FMN.  相似文献   

18.
19.
20.
The binding of 25-hydroxy-[26,27-3H]vitamin D3 and 1,25-dihydroxy-[26,27-3H]vitamin D3 to the cytosol of intestinal mucosa of chicks and rats has been studied by sucrose gradient analysis. The cytosol from chick mucosa showed variable binding of 1,25-dihydroxyvitamin D3 to a 3.0S macromolecule which has high affinity and low capacity for this metabolite. However, when the mucosa was washed extensively before homogenization, a 3.7S macromolecule was consistently observed which showed considerable specificity and affinity for 1,25-dihydroxyvitamin D3. Although 3.7S binders for 1,25-dihydroxyvitamin D3 could also be located in other organs, competition experiments with excess nonradioactive 1,25-dihydroxyvitamin D3 suggested that they were not identical to the 3.7S macromolecule from intestinal mucosal cytosol. As the 3.7S macromolecule was allowed to stand at 4 °C with bound 1,25-dihydroxy-[3H]vitamin D3, the 1,25-dihydroxy-[3H]vitamin D3 became increasingly resistant to displacement by non-radioactive 1,25-dihydroxyvitamin D3. The 1,25-dihydroxy-[3H]vitamin D3 remained unchanged and easily extractable with lipid solvents through this change, making unlikely the establishment of a covalent bond. Unlike the chick, mucosa from rats yielded cytosol in which no specific binding of 1,25-dihydroxy-[3H]vitamin D3 was detected. Instead, a 5-6S macromolecule which binds both 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 was found. This protein which was also found in chick mucosa shows preferential binding for 25-hydroxyvitamin D3. It could be removed by washing the mucosa with buffer prior to homogenization which suggests that it may not be a cytosolic protein. Although the 3.7S protein from chick mucosa has properties consistent with its possible role as a receptor, the 5-6S macromolecule does not appear to have “receptor”-like properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号