首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After the development of the "black lipid membrane" techniques, studies of the permeability of labeled water and nonelectrolytes across these artificial membranes have yielded permeability constants comparable in magnitude to those obtained from tracer studies of living cell membranes. This general agreement has affirmed the belief that the living cell membranes are indeed closely similar to these bilayer phospholipid membranes. In this report, we draw attention to a hidden assumption behind such comparisons made: the assumption that labeled material passing through the cell membrane barriers instantly reaches diffusion equilibrium inside the cell. The permeability constants to labeled water (and nonelectrolytes) across lipid layers were obtained using setups in which the lipid membrane was sandwiched between aqueous compartments both of which were vigorously stirred. In studies of permeability of living cell membranes only the outside solution was stirred, the intracellular water remained stationary. Yet the calculations of permeability constants of the cell membrane were made with the tacit assumption, that once the labeled materials pass through the cell membrane, they were instantly mixed with the entire cell contents as if a stirrer operating at infinite speed had been present inside the cells. Ignoring this unstirred condition of the intracellular water, in fact, lumped all the real-life delay due to diffusion in the cytoplasm and added it to the resistance to diffusion of the membrane barrier. The result is an estimated membrane permeability to labeled water (and nonelectrolytes) many times slower than it actually is. The present report begins with a detailed analysis of a specific case: tritiated water diffusion from giant barnacle muscle fibers and two non-living models, one real, one imagined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The dynamics of protein distribution in endocytic membranes are relevant for many cellular processes, such as protein sorting, organelle and membrane microdomain biogenesis, protein-protein interactions, receptor function, and signal transduction. We have developed an assay based on Fluorescence Resonance Energy Microscopy (FRET) and novel mathematical models to differentiate between clustered and random distributions of fluorophore-bound molecules on the basis of the dependence of FRET intensity on donor and acceptor concentrations. The models are tailored to extended clusters, which may be tightly packed, and account for geometric exclusion effects between membrane-bound proteins. Two main criteria are used to show that labeled polymeric IgA-ligand-receptor complexes are organized in clusters within apical endocytic membranes of polarized MDCK cells: 1), energy transfer efficiency (E%) levels are independent of acceptor levels; and 2), with increasing unquenched donor: acceptor ratio, E% decreases. A quantitative analysis of cluster density indicates that a donor-labeled ligand-receptor complex should have 2.5-3 labeled complexes in its immediate neighborhood and that clustering may occur at a limited number of discrete membrane locations and/or require a specific protein that can be saturated. Here, we present a new sensitive FRET-based method to quantify the co-localization and distribution of ligand-receptor complexes in apical endocytic membranes of polarized cells.  相似文献   

3.
We present a new method for the determination of structural parameters in biological membranes. Recording the continuous scattering of heavy-atom labeled membranes and applying elementary Fourier methods we obtain the scattering of the heavy-atom distribution alone. The details of this distribution are explored by developing a simple model and testing for cases relevant to biological membranes. We find that the intensity distribution is highly sensitive to many key parameters. The increased signal from heavy-atom labeling and the use of an improved x-ray system make it possible to record patterns from dilute membrane suspensions. Thus determination of these parameters is possible in the same environment where many membrane biochemical studies are performed. Application of the method is made to a model lipid bilayer membrane, dipalmitoyl phosphatidylcholine by labeling with UO2++ ions. We determine the precise distance between UO2++ layers on either side of the membrane as well as the width of the label on each side. This determination permits estimation of phosphate separation across single labeled bilayers in an aqueous suspension.  相似文献   

4.
Zymogen granule membranes from the rat exocrine pancreas displays distinctive, simple protein and glycoprotein compositions when compared to other intracellular membranes. The carbohydrate content of zymogen granule membrane protein was 5-10-fold greater than that of membrane fractions isolated from smooth and rough microsomes, mitochondria and a preparation containing plasma membranes, and 50-100-fold greater than the zymogen granule content and the postmicrosomal supernate. The granule membrane glycoprotein contained primarily sialic acid, fucose, mannose, galactose and N-acetylglucosamine. The levels of galactose, fucose and sialic acid increased in membranes in the following order: rough microsomes less than smooth microsomes less than zymogen granules. Membrane polypeptides were analyzed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The profile of zymogen granule membrane polypeptides was characterized by GP-2, a species with an apparent molecular weight of 74 000. Radioactivity profiles of membranes labeled with [3H]glucosamine or [3H]leucine, as well as periodic acid-Schiff stain profiles, indicated that GP-2 accounted for approx. 40% of the firmly bound granule membrane protein. Low levels of a species similar to GP-2 were detected in membranes of smooth microsomes and the preparation enriched in plasma membranes but not in other subcellular fractions. These results suggest that GP-2 is a biochemical marker for zymogen granules. Membrane glycoproteins of intact zymogen granules were resistant to neuraminidase treatment, while those in isolated granule membranes were readily degraded by neuraminidase. GP-2 of intact granules was not labeled by exposure to galactose oxidase followed by reduction with NaB3H4. In contrast, GP-2 in purified granule membranes was readily labeled by this procedure. Therefore GP-2 appears to be located on the zymogen granule interior.  相似文献   

5.
We have quantitated by autoradiography the binding of [125I]labeled 3T3 plasma membrane fragments to 3T3 cells growing on the surface of plastic dishes; ie, the same conditions in which these membranes specifically arrest the growth of 3T3 cells early in the G1 phase of the cell cycle. We have been able to demonstrate that binding of membranes to cells is coincidental with the expression of the growth inhibitory activity of protein(s) present in the membrane fragments. Treatments that reduce binding (heat denaturation of the membranes or culture in the presence of high scrum) also reduce growth inhibitory activity. [125I]labeled membranes bound to cells are located primarily on the cell surface (as determined by electron microscope autoradiography) and are exchangeable with unlabeled membranes. We conclude that binding of membranes to cells is necessary but may not be sufficient for the expression of the growth inhibitory activity of these membranes. This approach provides information not only on the average level of binding of membranes to cells, but also provides a quantitative assessment of the variation of the level of membrane to cell binding between different cells in the population.  相似文献   

6.
Eukaryotic cells are compartmentalized into distinct sub-cellular organelles by lipid bilayers, which are known to be involved in numerous cellular processes. The wide repertoire of lipids, synthesized in the biogenic membranes like the endoplasmic reticulum and bacterial cytoplasmic membranes are initially localized in the cytosolic leaflet and some of these lipids have to be translocated to the exoplasmic leaflet for membrane biogenesis and uniform growth. It is known that phospholipid (PL) translocation in biogenic membranes is mediated by specific membrane proteins which occur in a rapid, bi-directional fashion without metabolic energy requirement and with no specificity to PL head group. A recent study reported the existence of biogenic membrane flippases in plants and that the mechanism of plant membrane biogenesis was similar to that found in animals. In this study, we demonstrate for the first time ATP independent and ATP dependent flippase activity in chloroplast membranes of plants. For this, we generated proteoliposomes from Triton X-100 extract of intact chloroplast, envelope membrane and thylakoid isolated from spinach leaves and assayed for flippase activity using fluorescent labeled phospholipids. Half-life time of flipping was found to be 6 ± 1 min. We also show that: (a) intact chloroplast and envelope membrane reconstituted proteoliposomes can flip fluorescent labeled analogs of phosphatidylcholine in ATP independent manner, (b) envelope membrane and thylakoid reconstituted proteoliposomes can flip phosphatidylglycerol in ATP dependent manner, (c) Biogenic membrane ATP independent PC flipping activity is protein mediated and (d) the kinetics of PC translocation gets affected differently upon treatment with protease and protein modifying reagents.  相似文献   

7.
The rotational mobility of thylakoid membrane proteins labeled with a paramagnetic analog of N-ethylmaleimide was investigated by saturation transfer electron spin resonance. In the wild type strain of Chlamydomonas reinhardtii two polypeptides are prominently labeled. They correspond to the 19-kDa subunit of the reaction center I protein and to the 30-kDa subunit of the light harvesting complex. Several polypeptides, most of which are either trypsin or alkaline sensitive, are also labeled. In order to circumvent the lack of specificity during the labeling, we have compared the rotational mobilities of labeled proteins in thylakoid membranes from several mutant strains which lack in photosystem I., ATPase or light harvesting complexes. Comparison of the saturation transfer electron spin resonance spectra obtained with these mutant membranes as well as with trypsin- and alkaline-treated membranes allowed us to characterize the rotational contribution of some of the labeled proteins to the overall protein dynamics observed in the wild type strain. The reaction center I protein undergoes slow rotation as compared to the other labeled proteins. The rotational characteristics of the labeled light harvesting complexes are those of a peptide fragment in the complex which is in rapid motion in unstacked membranes. Stacking of the thylakoid membranes upon Mg2+ addition is accompanied by a marked change in shape of the saturation transfer spectra, and corresponds to the appearance of highly immobilized nitroxides. We interpret these changes as arising mainly from the hindrance upon membrane appression, of the labeled fragment of the light harvesting complexes which protrude at the thylakoid outer surface.  相似文献   

8.
A method for structural analysis of biological membranes using neutron scattering from suspensions is described and applied to photosynthetic membranes from bacteria. The variation of scattering density across the membrane is analysed using small-angle scattering and contrast variation with H2O/2H2O mixtures. Effects due to membrane curvature and scattering density variation in the plane of the membrane are evaluated. Thickness parameters (D) are obtained from the small-angle scattering data, which are the one-dimensional analogues of radii of gyration. The formalism of contrast variation is used to describe the change of intensity and thickness parameter with H2O/2H2O mixture. The results are expressed in terms of a thickness parameter at infinite contrast, which is directly related to the physical thickness of the membrane, and a measure of the variation of the scattering density across the membrane, produced, for example, by the higher scattering densities of the polar surfaces relative to a hydrocarbon interior of the membrane. Asymmetry in the membrane scattering density is also evaluated.The results for photosynthetic membranes demonstrate a lipid hydrocarbon core in the membrane. About two-thirds of the protein is closely associated with the lipid layer, and no substantial amounts of protein project more than short distances from the lipid layer. There is a contribution to the variation in scattering density across the membrane that cannot be attributed to lipid, and may involve scattering density heterogeneity within the protein, giving a high proportion of hydrophobic protein segments at the interior of the membrane that have lower scattering densities than the hydrophilic segments at the surfaces of the membrane. The membrane scattering density is not markedly asymmetric. Several alternative structures previously proposed for photosynthetic membranes are incompatible with these results.  相似文献   

9.
Lipids that are labeled with the NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl) group are widely used as fluorescent analogues of native lipids in biological and model membranes to monitor a variety of processes. The NBD group of acyl chain labeled NBD lipids is known to loop up to the membrane interface in fluid phase membranes. However, the organization of these lipids in gel phase membranes is not resolved. In this paper, we monitored the influence of the membrane phase state on the looping up behavior of acyl chain labeled NBD lipids utilizing red edge excitation shift (REES) and other sensitive fluorescence approaches. Interestingly, our REES results indicate that NBD group of lipids, which are labeled at the fatty acyl region, resides in the more hydrophobic region in gel phase membranes, and complete looping of the NBD group occurs only in the fluid phase. This is supported by other fluorescence parameters such as polarization and lifetime. Taken together, our results demonstrate that membrane packing, which depends on temperature and the phase state of the membrane, significantly affects the localization of acyl chain labeled NBD lipids. In view of the wide ranging use of NBD-labeled lipids in cell and membrane biology, these results could have potentially important implications in future studies involving these lipids as tracers.  相似文献   

10.
Zymogen granule membranes from the rat exocrine pancreas displays distinctive, simple protein and glycoprotein compositions when compared to other intracellular membranes. The carbohydrate content of zymogen granule membrane protein was 5–10-fold greater than that of membrane fractions isolated from smooth and rough microsomes, mitochondria and a preparation containing plasma membranes, and 50–100-fold greater than the zymogen granule content and the postmicrosomal supernate. The granule membrane glycoprotein contained primarily sialic acid, fucose, mannose, galactose and N-acetylglucosamine. The levels of galactose, fucose and sialic acid increased in membranes in the following order: rough microsomes < smooth microsomes < zymogen granules.Membrane polypeptides were analyzed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The profile of zymogen granule membrane polypeptide was characterized by GP-2, a species with an apparent molecular weight of 74 000. Radioactivity profiles of membranes labeled with [3H]glucosamine or [3H]leucine, as well as periodic acid-Schiff stain profiles, indicated that GP-2 accounted for approx. 40% of the firmly bound granule membrane protein. Low levels of a species similar to GP-2 were detected in membranes of smooth microsomes and the preparation enriched in plasma membranes but not in other subcellular fractions. These results suggest that GP-2 is a biochemical marker for zymogen granules.Membrane glycoproteins of intact zymogen granules were resistant to neuraminidase treatment, while those in isolated granule membranes were readily degraded by neuraminidase. GP-2 of intact granules was not labeled by exposure to galactose oxidase followed by reduction with NaB3H4. In contrast, GP-2 in purified granule membranes was readily labeled by this procedure. Therefore GP-2 appears to be located on the zymogen granule interior.  相似文献   

11.
The electron paramagnetic resonance spectra of spin-labeled fatty acid in intact mycoplasma cells and isolated membrane preparations have been compared. With Mycoplasma hominis and Acholeplasma laidlawii preparations, the freedom of motion of the spin-label was higher in labeled intact cells than in labeled isolated membranes but no differences could be detected between the labeled intact cells and membranes isolated from the labeled intact cells. It is proposed that the higher freedom of motion of the spin-label in the intact cells is due to a higher fluidity of the outer half of the lipid bilayer of mycoplasma membranes rather than to alterations in the structure of the membrane upon isolation.  相似文献   

12.
 Recently, we have developed a quick-freezing/freeze-fracture replica labeling technique, sodium dodecyl sulfate (SDS)-digested freeze-fracture replica labeling (SDS-FRL), to study the two-dimensional distribution of cytochemical labeling on the membrane surface and the relationship of this distribution to images of freeze-fracture replicas created by platinum shadowing. In SDS-FRL, unfixed, quick-frozen cells, after freeze-fracture and platinum/carbon shadowing, are treated with SDS. The detergent dissolves unfractured areas of the cell membranes, with the release of the cytoplasmic contents. The cytoplasmic and exoplasmic membrane surfaces can be then labeled cytochemically. Integral membrane proteins, revealed as intramembrane particles by freeze-fracture replication, which are indistinguishable on a purely morphological basis, can be selectively labeled by SDS-FRL with specific antibody. In addition, this approach can be applied to examine the transmembrane phospholipid distribution in various cell and intracellular membranes. In this review, we describe the practical procedure for SDS-FRL in detail, present its application to labeling of various membrane components, and briefly discuss the possibility of a combination of SDS-FRL with atomic force microscopy. Accepted: 1 November 1996  相似文献   

13.
Melittin is a cationic hemolytic peptide isolated from the European honey bee, Apis mellifera. The organization of membrane-bound melittin has earlier been shown to be dependent on the physical state and composition of membranes. In this study, we covalently labeled the N-terminal (Gly-1) and Lys-7 of melittin with an environment-sensitive fluorescent probe, the NBD group, to monitor the influence of negatively charged lipids and cholesterol on the organization and dynamics of membrane-bound melittin. Our results show that the NBD group of melittin labeled at its N-terminal end does not exhibit red edge excitation shift in DOPC and DOPC/DOPG membranes, whereas the NBD group of melittin labeled at Lys-7 exhibits REES of approximately 8 nm. This could be attributed to difference in membrane microenvironment experienced by the NBD groups in these analogs. Interestingly, the membrane environment of the NBD groups is sensitive to the presence of cholesterol, which is supported by time-resolved fluorescence measurements. Importantly, the orientation of melittin is found to be parallel to the membrane surface as determined by membrane penetration depth analysis using the parallax method in all cases. Our results constitute the first report to our knowledge describing the orientation of melittin in cholesterol-containing membranes. These results assume significance in the overall context of the role of membrane lipids in the orientation and function of membrane proteins and peptides.  相似文献   

14.
This report describes an immunoferritin labeling study of mouse H-2 histocompatibility antigens on epithelial cells dissociated from stomach, duodenum-jejunum, ileum, trachea, diestrus uterus, gall bladder, and vas deferens. Before cell dissociation, most of the organs were prefixed in periodate-lysine-paraformaldehyde to preserve the shape of the cells and to immobilize H-2 antigens in their native positions. Five kinds of epithelial cells expressed H-2 antigens on lateral and basal membranes but not on apical membranes. These were the lining cells of the upper intestine, ileum, gall gladder, uterus, and the tracheal brush cell. The antigens were continuously distributed on the lateral and basal membranes of these cells and appeared to be absent from the apical membranes, rather than masked by the fuzzy coat. On four other epithelial cell types H-2 antigens could not be detected. These were the lining cells of the vas deferens, parietal and chief cells from the stomach, and ciliated tracheal cells. It does not seem to be uncommon for normal nucleated cells to lack H-2 antigens. On fixed and labeled epithelial cells from the upper intestine the zonula occludens membranes were unlabeled, while the zonula adherens and desmosome membranes were labeled as densely as the remainder of the lateral membranes. The zonula occludens membrane thus constituted the boundary betewen the unlabeled apical membrane and the labeled lateral membrane of these cells. Intestinal epithelial cells dissociated without prefixation showed a patchy distribution of H-2 antigens on their lateral membranes after indirect labeling, indicating antigen mobility in this membrane. On the same unfixed dissociated cells the antigens were able to migrate from lateral to apical membranes, a movement which appears to be prevented in the intact epithelial layer by the occluding junction. The absence of H-2 antigens from apical membranes and their inability to migrate through an intact zonula occludens suggest that these molecules must reach the lateral membranes of epithelial cells by a pathway which is distinct from that followed by apical membrane components.  相似文献   

15.
Cell-free translation of Chlamydomonas reinhardtii RNA in the presence of photosynthetic membranes resulted in association of the herbicide binding (Qb) protein with membranes. Incubation of recovered membranes with high salt did not extract the polypeptide from membranes. Tryptic digestion of in vivo labeled membranes or membranes recovered from in vitro translation mixtures showed that Qb had similar orientation. In vitro translation in the presence of chloroplast membranes from cells exposed to high light intensity restored the membrane associated kinase activity lost by photoinhibition. Thus, in vitro synthesis resulted in functional integration of the Qb protein within the photosynthetic membrane.  相似文献   

16.
Single-vesicle fusion assays in vitro are useful tools for examining mechanisms of membrane fusion at the molecular level mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). This approach allows the experimentalist to define the lipid and protein composition of the two fusing membranes and perform experiments under highly controlled conditions. In previous experiments, in which we reconstituted a SNARE acceptor complex into supported membranes and observed the docking and fusion of fluorescently labeled synaptobrevin proteoliposomes by total internal reflection fluorescence microscopy with millisecond time resolution, we were able to determine the optimal number of SNARE complexes needed for fast fusion. Here, we utilize this assay in combination with polarized total internal reflection fluorescence microscopy to investigate topology changes that vesicles undergo after the onset of fusion. The theory that describes the fluorescence intensity during the transformation of a single vesicle from a spherical particle to a flat membrane patch is developed and confirmed by experiments with three different fluorescent probes. Our results show that on average, the fusing vesicles flatten and merge into the planar membrane within 8 ms after fusion starts.  相似文献   

17.
Galactosyltransferase immunoreactive sites were localized in human duodenal enterocytes by the protein A-gold technique on thin sections from low temperature Lowicryl K4M embedded biopsy specimens. Antigenic sites detected with affinity-purified, monospecific antibodies were found at the plasma membrane of absorptive enterocytes with the most intense labeling appearing along the brush border membrane. The lateral plasma membrane exhibited a lower degree of labeling at the level of the junctional complexes but the membrane interdigitations were intensely labeled. The labeling intensity decreased progressively towards the basal part of the enterocytes and reached the lowest degree along the basal plasma membrane. Quantitative evaluation of the distribution of gold-particle label proved its preferential orientation to the outer surface of the plasma membrane. In addition to this membrane-associated labeling, the glycocalyx extending from the microvillus tips was heavily labeled. Occasionally, cells without plasma membrane labeling were found adjacent to positive cells. The demonstration of ecto-galactosyltransferase on membranes other than Golgi membranes precludes its general use as a marker for Golgi membrane fractions. The possible function of galactosyltransferase on a luminal plasma membrane is unclear at present, but a role in adhesion appears possible on the basolateral plasma membrane.  相似文献   

18.
We have previously reported changes in the chemical composition of cell surface membranes in diabetic rats (Chandramoulis, V. and Carter, Jr., J. R. (1975) Diabetes 24, 257-262 [1]). To examine the possible implications of these changes for cell surface structures, we have measured the binding of labeled lectins and desialylated glycoproteins to plasma membranes prepared from the livers of streptozotocin--diabetic and control rats. Lectins were chosen which have affinities for different carbohydrate moieties. The binding of ricin and concanavalin A to liver cell membranes from the diabetic rats was significantly reduced, but no change in the binding of wheat germ agglutinin was noted. Binding of desialylated thyrozine--binding globulin, previously shown to be dependent on membrane sialic acid residues, ws strongly suggest that insulin deficiency leads to generalized changes in cell surfaced glycoproteins, at least in this animal model of diabetes.  相似文献   

19.
Human erythrocyte band 3 was covalently labeled within the integral membrane domain by incubating intact erythrocytes with the phosphorescent probe eosinyl-5-maleimide. The rotational diffusion of band 3 in membranes prepared from these labeled cells was measured using the technique of time-resolved phosphorescence anisotropy. Three rotational correlation times ranging from 16 to 3800 microseconds were observed, suggesting that band 3 exists in different aggregate states within the plane of the membrane. The oxidizing agent phenylhydrazine was used to induce hemichrome formation within intact erythrocytes. The immobilization of band 3 in membranes prepared from these erythrocytes suggests that the binding of hemichromes induces clustering of band 3. The addition of purified hemichromes to erythrocyte ghosts leads to a similar effect. We have also examined the mobility of the cytoplasmic domain of band 3. This region was labeled indirectly using a phosphorescently labeled antibody which binds to an epitope within the cytoplasmic domain. We observed very rapid motion of the cytoplasmic region of band 3, which was only partially restricted upon hemichrome binding. This suggests that the integral and cytoplasmic domains of band 3 may be independently mobile.  相似文献   

20.
We have characterized the measurement of fluorescence polarization on single cells using an EPICS V cell sorter. A critical analysis is made of the balancing and calibration of the system. The system is highly linear for polarization measurements. Cellular membranes were labeled with 1,6-diphenyl-1,3,5-hexatriene (DPH) to measure membrane fluidity. Fluorescence polarization histograms had coefficients of variation as low as 7%. Cells labeled with DPH after 24 hr incubation in medium lacking serum showed a significantly higher fluorescence polarization than cells in medium containing serum. The fluorescence polarization measured at 15 degrees C was 0.311 compared to 0.270 at 25 degrees C for cells labeled with DPH, verifying that temperature affects the membrane fluidity as measured by flow cytometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号