首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutants resistant to diphtheria toxin (Dipr) have been selected from a variety of human fibroblast cell strains derived from both normal subjects and individuals with known genetic predisposition to cancer such as xeroderma pigmentosum, Fanconi anemia and Bloom's syndrome. Treatment with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) led to a marked increase in the frequency of Dipr mutants in various cell strains. The increase in the frequency of Dipr mutants occurred in a linear dose-dependent manner in response to MNNG and ethyl methanesulfonate, in one of the cell strains examined. The rate of muation to diphtheria toxin as determined by fluctuation analysis was very similar in various cell strains (1–3 × 10?7 mutations/cell/generation), except for the strain GM1492 (8.8 × 10?7 mutations/cell/generation) which is derived from a Bloom syndrome patient.  相似文献   

2.
A mutant of Chinese hamster ovary cells, GE1, that is highly resistant to diphtheria toxin was isolated. The mutant contains 50% ADP-ribosylatable elongation factor 2, but its protein synthesis was not inhibited by the toxin even at concentrations above 100 μg/ml. 125I-labeled diphtheria toxin was associated with GE1 cells as well as with the parent cells but did not block protein synthesis of GE1 cells even when the cells were exposed to low pH in the presence or absence of NH4Cl. The infections of GE1 cells and the parent cells by vesicular stomatitis virus were similar. GE1 cells were cross-resistant to Pseudomonas aeruginosa exotoxin A and so were about 1000 times more resistant to this toxin than the parent cells. Hybrids of GE1 cells and the parent cells or mutant cells lacking a functional receptor were more sensitive to diphtheria toxin than GE1 cells. These results suggest that entry of diphtheria toxin into cells requires a cellular factor(s) in addition to those involved in receptor function and acidification of endosomes and that GE1 cells do not express this cellular factor. This character is recessive in GE1 cells.  相似文献   

3.
We describe here three different hamster cell mutants which are resistant to diphtheria toxin and which provide models for investigating some of the functions required by the toxin inactivates elongation factor 2 (EF-2). Cell-free extracts from mutants Dtx(r)-3 was codominant. The evidence suggests that the codominant phenotype is the result of a mutation in a gene coding for EF-2. The recessive phenotype might arise by alteration of an enzyme which modifies the structure of EF-2 so that it becomes a substrate for reaction with the toxin. Another mutant, Dtx(r)-2, contained EF-2 that was sensitive to the toxin and this phenotype was recessive. Pseudomonas aeruginosa exotoxin is known to inactivate EF-2 as does diphtheria toxin and we tested the mutants for cross-resistance to pseudomonas exotoxin. Dtx(r)-1 and Dtx(r)-3 were cross-resistant while Dtx(r)-2 was not. It is known that diphtheria toxin does not penetrate to the cytoplasm of mouse cells and that these cell have a naturally occurring phenotype of diphtheria toxin resistance. We fused each of the mutants with mouse 3T3 cells and measured the resistance. We fused each of the mutants with mouse 3T3 cells and measured the resistance of the hybrid cells to diphtheria toxin. Intraspecies hybrids containing the genome of mutants Dtx(r)-1 and Dtx(r)-3 had some resistance while those formed with Dtx(r)-2 were as sensitive as hybrids derived from fusions between wild-type hamster cells and mouse 3T3 cells.  相似文献   

4.
The human B-cell line Namalwa expresses the common acute lymphoblastic leukemia antigen (CALLA). Frame-shift mutants in Namalwa cell cultures were generated with ICR-191, and mutants were then selected for resistance to ricin or resistance to a conjugate of ricin with the anti-CALLA antibody J5 in the presence of lactose. Three mutants were found that were resistant to ricin and were in addition shown to be resistant to diphtheria toxin, to a J5-ricin conjugate, and to a conjugate between ricin B-chain and gelonin. The mutants, however, were sensitive to a J5-gelonin conjugate. These mutants expressed high levels of CALLA and/or receptors for ricin, and their cell-free translation systems appeared to be as sensitive to the inhibitory action of ricin A-chain and of gelonin as the translation system of wild-type Namalwa cells. The behavior of these mutants was consistent with the hypothesis that these cells possess an alteration of their surface that impedes the passage of ricin and diphtheria toxin across the plasma membrane. A fourth mutant was found to bind reduced quantities of ricin and was resistant to ricin but was sensitive to J5-ricin. The properties of this cell line provide evidence that the binding of antibody-ricin conjugates to cells via the ricin moiety may be prevented without impeding the cytotoxicity of the conjugates.  相似文献   

5.
Ehrlich ascites tumor cells were found to be very insensitive to diphtheria toxin. We formed 37 hybrids from Ehrlich tumor cells and diphtheria toxin-sensitive human fibroblasts. The effects of diphtheria toxin on protein synthesis in those hybrids were examined. The hybrids were divided into three groups on the basis of toxin sensitivity. Group A hybrids were as sensitive to diphtheria toxin as human fibroblasts, Group C were as resistant as Ehrlich tumor cells, and Group B had intermediate sensitivity. Group A hybrids had diphtheria toxin-binding sites but Group B and C had no detectable binding sites. Elongation factor-2 of all the hybrids was susceptible to ADP-ribosylation by fragment A of diphtheria toxin. Cells of Group A and B became more sensitive to CRM 45 (cross-reacting material 45 of diphtheria toxin) after they were exposed to low pH (pH = 4.5). The resistance of Group C to CRM 45 was not affected by the same treatment. Group A and B hybrids and human fibroblasts had similar sensitivities to a hybrid toxin composed of wheat germ agglutinin and fragment A of diphtheria toxin, but Group C and Ehrlich tumor cells were resistant to this hybrid toxin. All the hybrids and Ehrlich tumor cells were more sensitive to a hybrid toxin composed of wheat germ agglutinin and subunit A of ricin than were human fibroblasts. On subcloning of Group B hybrids, one Group C hybrid was obtained, but no Group A hybrid. These facts suggest that Ehrlich ascites tumor cells differ from human fibroblasts in the expression of a factor(s) that is involved in entry of fragment A of diphtheria toxin into the cytoplasm after the toxin binds to its surface receptors.  相似文献   

6.
Diphtheria toxin-resistant mutants of Saccharomyces cerevisiae.   总被引:2,自引:1,他引:1       下载免费PDF全文
We developed a selection procedure based on the observation that diphtheria toxin kills spheroplasts of Saccharomyces cerevisiae (Murakami et al., Mol. Cell. Biol. 2:588-592, 1982); this procedure yielded mutants resistant to the in vitro action of the toxin. Spheroplasts of mutagenized S. cerevisiae were transformed in the presence of diphtheria toxin, and the transformed survivors were screened in vitro for toxin-resistant elongation factor 2. Thirty-one haploid ADP ribosylation-negative mutants comprising five complementation groups were obtained by this procedure. The mutants grew normally and were stable to prolonged storage. Heterozygous diploids produced by mating wild-type sensitive cells with the mutants revealed that in each case the resistant phenotype was recessive to the sensitive phenotype. Sporulation of these diploids yielded tetrads in which the resistant phenotype segregated as a single Mendelian character. From these observations, we concluded that these mutants are defective in the enzymatic steps responsible for the posttranslational modification of elongation factor 2 which is necessary for recognition by diphtheria toxin.  相似文献   

7.
Role of the 5.8S rRNA in ribosome translocation.   总被引:1,自引:0,他引:1       下载免费PDF全文
Studies on the inhibition of protein synthesis by specific anti 5.8S rRNA oligonucleotides have suggested that this RNA plays an important role in eukaryotic ribosome function. Mutations in the 5. 8S rRNA can inhibit cell growth and compromise protein synthesis in vitro . Polyribosomes from cells expressing these mutant 5.8S rRNAs are elevated in size and ribosome-associated tRNA. Cell free extracts from these cells also are more sensitive to antibiotics which act on the 60S ribosomal subunit by inhibiting elongation. The extracts are especially sensitive to cycloheximide and diphtheria toxin which act specifically to inhibit translocation. Studies of ribosomal proteins show no reproducible changes in the core proteins, but reveal reduced levels of elongation factors 1 and 2 only in ribosomes which contain large amounts of mutant 5.8S rRNA. Polyribosomes from cells which are severely inhibited, but contain little mutant 5.8S rRNA, do not show the same reductions in the elongation factors, an observation which underlines the specific nature of the change. Taken together the results demonstrate a defined and critical function for the 5.8S rRNA, suggesting that this RNA plays a role in ribosome translocation.  相似文献   

8.
In the present study, we compared the abilities of ricin and diphtheria toxin to induce apoptosis in Vero cells. The cytolysis and DNA fragmentation by ricin paralleled its protein synthesis inhibitory activity. However, unlike ricin, diphtheria toxin could induce neither cytolysis nor DNA fragmentation in Vero cells up to very high concentration, in spite of the fact that Vero cells were even more sensitive to protein synthesis inhibition by diphtheria toxin than ricin. Interestingly, coexistence of brefeldin A (BFA) and okadaic acid (OA) significantly enhanced diphtheria toxin-mediated cytolysis and DNA fragmentation without affecting the activity of protein synthesis inhibition. Ammonium chloride almost completely abolished the ability of diphtheria toxin to induce apoptosis in the presence of BFA and OA as well as the protein synthesis inhibitory activity. The mutant CRM 197, which does not catalyze the ADP ribosylation of elongation factor-2 (EF-2), failed to induce apoptosis in Vero cells even in the presence of BFA and OA. Thus, translocation of diphtheria toxin into the cytosol and subsequent enzymatic inactivation of EF-2 may be necessary steps to induce apoptosis. Taken together our results suggest that protein synthesis inhibition by toxins is not sufficient to induce apoptosis, and underlying mechanisms of apoptosis induction may be distinct between ricin and diphtheria toxin. Since a morphological change in the Golgi complex was observed in Vero cells treated with BFA and OA, modulation of the Golgi complex by these reagents may be partly responsible for enhanced apoptosis induction by diphtheria toxin.  相似文献   

9.
We have measured the specific uptake of 125I-labelled diphtheria toxin in the presence of methylamine by a number of cell lines with different sensitivities to diphtheria toxin. The results show a strong correlation between the toxin sensitivities of the cell lines and the amount of specific uptake. The specific association of labelled toxin with cells was clearly demonstrated even with CHO cells, a cell line with relatively low sensitivity. Thus, CHO cell mutants that are resistant to diphtheria toxin could be classified as toxin-binding or non-binding cells by this method.  相似文献   

10.
Concanavalin A, wheat germ agglutinin and the ovalbumin glycopeptide are all inhibitors of the cytotoxic effect of diphtheria toxin on Chinese hamster cells. Ovalbumin glycopeptide loses its inhibitory property after treatment with β-N-acetylglucosaminidase. This demonstrates the importance of the glycopeptide structure for the mechanism of inhibition. The glycopeptide may be a toxin cell-surface receptor analogue. Diphtheria toxin-resistant mutants were isolated in order to search for cells that might have an altered toxin receptor. One mutant was 10-to 15-fold more resistant to diphtheria toxin than wild-type cells when protein synthesis was measured as a function of toxin concentration. However, when protein synthesis was measured as a function of time at a high toxin concentration, the time before onset of inhibition was identical in the mutant and wild-type cells. We present evidence indicating that the resistance of this mutant can be accounted for by a decreased affinity of toxin for a cell-surface receptor.  相似文献   

11.
Insulin has been cross-linked via a disulfide bond to the diphtheria toxin fragment A which is catalytically active in ADP-ribosylating elongation factor-2 but does not retain binding sites for toxin receptors. The purified conjugate proved to be cytotoxic to mouse Swiss/3T3 cells which are toxin resistant but express insulin receptors. This cytotoxicity coincided with a decrease in protein synthesis and with drastic morphology changes. In contrast, IN-2 cells, which are insulin-nonresponsive variants derived from mouse BALBc3T3 cells, were resistant to the conjugate. Thus, the conjugate (a chimeric insulin) appears to mediate entry of the toxic fragment A into 3T3 cells through insulin receptors.  相似文献   

12.
Epidermal growth factor (EGF) was linked to the toxic A chain of ricin toxin (RTA) to produce an EGF-receptor-specific cytotoxic agent, EGF-RTA. Three EGF-RTA-resistant mutants of the human HeLa cell line were selected. These mutant cell lines are 10-fold to more than 100-fold more resistant to EGF-RTA when compared to HeLa cells. The EGF-RTA-resistant mutants have at least as many EGF receptors as parent cells; the basis for the EGF-RTA-resistant phenotype must be distal to EGF binding. The EGF-RTA-resistant cells are not cross-ressitant to ricin or to diphtheria toxin; their mutant phenotype appears to be EGF specific. The EGF-RTA-resistant mutants are able to internalize and degrade EGF. However, the mutants have altered EGF receptor down-regulation and phorbol 12-tetradecanoate 13-acetate modulation properties. EGF-RTA/ammonium chloride and EGF-RTA/adenovirus co-treatment data suggest that the mutant defect(s) which confers EGF-RTA resistance is either in the endosome or at a step(s) in the intracellular EGF processing pathway between the endosome and the lysosome.  相似文献   

13.
Toxin-resistant polypeptide chain elongation factor 2 cDNA has been cloned from a mutant hamster cell line with only non-ADP-ribosylatable elongation factor 2. The mutation conferring resistance to diphtheria toxin and Pseudomonas aeruginosa exotoxin A is a G-to-A transition in the first nucleotide of codon 717. Codon 715 encodes a histidine residue that is modified post-translationally to diphthamide, which is the target amino acid for ADP-ribosylation by both toxins. Transfection of mouse L cells with a recombinant elongation factor 2 cDNA differing from the wild-type only by this G-to-A transition confers resistance to P. aeruginosa exotoxin A. The degrees of toxin-resistant protein synthesis of stable transfectants are dependent on the ratio of non-ADP-ribosylated elongation factor 2 to wild-type elongation factor 2, not the amount of non-ADP-ribosylated elongation factor 2. The mutation creates a new Mbo II restriction site in the elongation factor 2 gene. Several independently isolated diphtheria toxin-resistant Chinese hamster ovary cell lines show the same alteration in the Mbo II restriction pattern.  相似文献   

14.
Elevated expression of the receptor for epidermal growth factor (EGF) is a characteristic of several malignancies including those of the breast, bladder, prostate, lung, and neuroglia. To therapeutically target the cytotoxic action of diphtheria toxin to EGF receptor-expressing tumor cells, we have constructed a hybrid gene in which the sequences for the binding domain of diphtheria toxin have been replaced by those for human EGF. The resulting fusion toxins, DAB486EGF and DAB389EGF, bind specifically to the EGF receptor and inhibit protein synthesis in a variety of EGF receptor expressing human tumor cell lines with an IC50 as low as 0.1 pM. Comparisons of DAB486EGF and DAB389EGF showed that DAB389EGF was consistently 10- to 100-fold more cytotoxic than DAB486EGF. Like diphtheria toxin, the cytotoxic action of DAB389EGF results from ADP-ribosylation of elongation factor-2 and is sensitive to the action of chloroquine. Studies of the kinetics of cellular intoxication showed that a 15-min exposure of EGF receptor-expressing A431 cells to DAB389EGF results in complete protein synthesis inhibition within 4 h. Furthermore, inhibition of protein synthesis results in elimination of human tumor cell colonies. These findings show that DAB389EGF is a potential therapeutic agent for a wide variety of EGF receptor-expressing solid tumors.  相似文献   

15.
Stable mutants resistant to pactamycin (PacR), a polypeptide chain initiation inhibitor, have been selected in a single step in Chinese hamster ovary (CHO) cells. The sensitivity of protein synthesis in mutant cell extracts to pactamycin indicates that resistance involves an alteration in the permeability of this drug. The failure of PacR mutants to show cross-resistance to other compounds provides further indication that the lesion is presumably specific for pactamycin. Cell hybrids formed between PacR × PacS lines show intermediate sensitivity towards pactamycin, suggesting that the PacR lesion behaves codominantly under these conditions. In the presence of subinhibitory concentrations of pactamycin, CHO cells, which are normally short, polygonal and disoriented, became greatly elongated and aligned themselves in parallel fashion to produce highly oriented colony morphologies, reminiscent of normal diploid fibroblasts. This effect of pactamycin on cellular morphology was seen much more clearly with the PacR mutants, although somewhat higher concentrations of the drug were required to produce this change.  相似文献   

16.
Variations in two general classes of diphtheria toxin-resistant mutants which may be selected from Chinese hamster ovary (CH0-K1) cells and the conditions for their selection are described. The resistance of class I mutants can be overcome with increasing concentrations of toxin. Their entire complement of EF-2 is susceptible to ADP-ribosylation by toxin. Class I includes those strains in which resistance resides at the level of the plasma membrane. The resistance of class II, translational, mutants cannot be overcome by high concentrations of toxin, as all, or a portion, of their EF-2 is insensitive to the action of diphtheria toxin and Pseudomonas exotoxin A. Adjustment of the concentration of toxin used to select resistant mutants can be used to regulate the class of mutant recovered. Metabolic cooperation between cells does not affect recovery of either class I or class II mutants. Resistance is stable in class I strains, but class IIb strains, which possess 50% resistant and 50% sensitive EF-2, display a transient high level of resistance which is retained for varying lengths of time following exposure to toxin. Class IIa strains, which possess 100% resistant EF-2, grow normally in saturating concentrations of toxin, but class IIb strains grow at a reduced rate. Evidence is presented which suggests that the gene for EF-2 is functionally diploid in CHO-K1 cells.  相似文献   

17.
We investigated two phenotypically distinct types of diphtheria toxin-resistant mutants of Chinese hamster cells and compared their resistance with that of naturally resistant mouse cells. All are resistant due to a defect in the process of internalization and delivery of toxin to its target in the cytosol, elongation factor 2. By cell hybridization studies, analysis of cross-resistance, and determination of specific binding sites for 125I-labeled diphtheria toxin, we showed that these cell strains fall into two distinct complementation groups. The Dipr group encompasses Chinese hamster strains that are resistant only to diphtheria toxin, as well as mouse LM cells. These strains possess a normal complement of high-affinity binding sites for diphtheria toxin, but these receptors are unable to deliver active toxin fragment A to the cytosol. Cells of the DPVr group have a broader spectrum of resistance, including Pseudomonas exotoxin A and several enveloped viruses as well as diphtheria toxin. In these studies, which investigate the resistance of these cells to diphtheria toxin, we demonstrate that they possess a reduced number of specific binding sites for this toxin and behave, phenotypically, like cells treated with the proton ionophore monensin. Their resistance is related to a defect in a mechanism required for release of active toxin from the endocytic vesicle.  相似文献   

18.
Diphthamide is a post-translational derivative of histidine in protein synthesis elongation factor-2 (eEF-2) that is present in all eukaryotes with no known normal physiological role. Five proteins Dph1–Dph5 are required for the biosynthesis of diphthamide. Chinese hamster ovary (CHO) cells mutated in the biosynthetic genes lack diphthamide and are resistant to bacterial toxins such as diphtheria toxin. We found that diphthamide-deficient cultured cells were threefold more sensitive than their parental cells towards ricin, a r ibosome- i nactivating p rotein (RIP). RIPs bind to ribosomes at the same site as eEF-2 and cleave the large ribosomal RNA, inhibiting translation and causing cell death. We hypothesized that one role of diphthamide may be to protect ribosomes, and therefore all eukaryotic life forms, from RIPs, which are widely distributed in nature. A protective role of diphthamide against ricin was further demonstrated by complementation where dph mutant CHO cells transfected with the corresponding DPH gene acquired increased resistance to ricin in comparison with the control-transfected cells, and resembled the parental CHO cells in their response to the toxin. These data show that the presence of diphthamide in eEF-2 provides protection against ricin and suggest the hypothesis that diphthamide may have evolved to provide protection against RIPs.  相似文献   

19.
The role of impaired toxin uptake in conferring cellular resistance to the plant toxin RCAII (ricin) has been examined using a murine BW5 147 lymphoma line and a toxin-resistant variant (BW5 147 RicR.3) selected by repeated exposure to RCAII. The toxin-resistant variant is 250 times more resistant to RCAII in long-term growth experiments and 1,000 times more resistant in short-term protein synthesis assays. Experiments with ferritin-conjugated 125I-labeled RCAII (ferritin-125I-RCAII) indicated that toxin binding to sensitive and resistant cells is similar at low toxin concentrations where maximum differential cytotoxicity occurs but that major difference exist with respect to toxin uptake. In sensitive cells toxin is internalized via endocytosis, and as seen previously in other systems subsequent rupture of some of the toxin-containing endocytotic vesicles releases toxin into the cytoplasm, where it inhibits protein synthesis. The process of toxin transfer to the cytoplasm is presumed to account for the one-hour lag before toxin-induced inhibition of protein synthesis can be detected. Endocytotic uptake of toxin is impaired in resistant BW5147RicR.3 cells, and they are unaffected by toxin concentrations that inhibit protein synthesis and kill sensitive parental cells. Killing of resistant cells at low toxin concentrations was accomplished by encapsulating RCAII into lipid vesicles capable of fusing with the plasma membrane. Direct introduction of toxin into resistant cells using lipid vesicles as carriers produced rapid inhibition (< 15 min) of protein synthesis and eliminated the lag in toxin action seen in sensitive cells exposed to free toxin. These findings are discussed in relation to the mechanism of toxin action and proposals that toxin activity requires structural modification of the toxin molecule at the cell surface before transport into the cell.  相似文献   

20.
Liu S  Leppla SH 《Molecular cell》2003,12(3):603-613
Retroviral insertional mutagenesis was used to produce a mutant Chinese hamster ovary cell line that is completely resistant to several different bacterial ADP-ribosylating toxins. The gene responsible for toxin resistance, termed diphtheria toxin (DT) and Pseudomonas exotoxin A (ETA) sensitivity required gene 1 (DESR1), encodes two small protein isoforms of 82 and 57 residues. DESR1 is evolutionally conserved and ubiquitously expressed. Only the longer isoform is functional because the mutant cell line can be complemented by transfection with the long but not the short isoform. We demonstrate that DESR1 is required for the first step in the posttranslational modification of elongation factor-2 at His(715) that yields diphthamide, the target site for ADP ribosylation by DT and ETA. KTI11, the analog of DESR1 in yeast, which was originally identified as a gene regulating the sensitivity of yeast to zymocin, is also required for diphthamide biosynthesis, implicating DESR1/KTI11 in multiple biological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号