首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phosphatidyl glycerol is present in lamellar bodies and in the material obtained by alveolar wash representing 12.3 and 11.5%, respectively, of the total phospholipid phosphorus. Lung microsomes catalyze the formation of phosphatidyl glycerol from the known precursors, L-glycerol 3-phosphate and CDP-diglyceride. The rate of [14C]L-glycerol 3-phosphate incorporation into phosphatidyl glycerol was 30% higher in microsomes as compared to mitochondria. The addition of mercuric chloride inhibited the synthesis of phosphatidyl glycerol, and stimulated the incorporation into another as yet incompletely identified lipid. After pulse labeling of microsomal phosphatidyl glycerol in vitro, further incubation of microsomes with lamellar bodies or alveolar wash resulted in nearly quantitative appearance of label in surfactant.  相似文献   

2.
Specific radioactivities of molecular species of phosphatidyl choline(PC), phosphatidyl ethanolamine(PE) and 1,2-diacylglycerol were determined in rabbit brain 15 and 30 min after intraventricular injection of 10OpCi of either [U-14C]glucose or [U-14C]glycerol. The rate of de nouo synthesis of glycerophospholipids and their molecular species could be determined after glycerol labelling, since 94.0–99.7% of 14C activity was recovered in glyceryl moieties of brain lipids. After injection of glucose radioactivity was measured in both glyccrol and acyl residues of lipids. High incorporation rates were measured in species of PC, PE and 1,2-diacylglycerol with oleic acid in position 2 and with palmitic, stearic or oleic acids in position 1. The conclusion may therefore be drawn that these molecular species were preferably synthesized de novo by selective acylation of glycerol 3-phosphate. The lowest specific activities were observed for 1,2-dipalmitoyl- and l-stearoyl-2- arachidonoyl-glycerol, -PC and -PE. These turnover rates point to incorporation of arachidonate, and probably also of palmitate in dipalmitoyl-PC, amounting to 20% of total PC, via deacylation-acylation- cycle.  相似文献   

3.
Certain metabolic inhibitors or chemotherapeutic agents that increase the susceptibility of line-1 or line-10 guinea pig hepatoma cells to humoral immune attack were studied for their effects on the ability of the cells to synthesize lipids. A direct correlation was found between the drug-induced increase in sensitivity to antibody-C mediated killing and the inhibition of the ability of the cells to incorporate acetate, glycerol, and fatty acids into complex cellular lipids. Drug-treated cells recultured in drug-free medium regained their resistance to antibody-C mediated killing; these cells recovered their ability for complex lipid synthesis at this time. Thin layer chromatography of CHCl3:CH3OH lipid extracts from these cells indicated that the drug-induced increase in susceptibility to humoral immune attack correlated with the inhibition of acetate, glycerol, and fatty acid incorporation into cardiolipin and triglyceride in line-10 cells and the inhibition of incorporation of these compounds into cardiolipin alone in line-1 cells. No direct correlation was found between the sensitivity of the cells to humoral immune attack and the ability of the cells to incorporate precursors of lipid synthesis into other lipid moieties (sphyngomyelin, phosphatidyl serine, phosphatidyl choline, phosphatidyl glycerol, or cholesterol esters). The synthesis of cardiolipin and triglycerides, therefore, appears to be associated with the mechanism whereby these tumor cells resist antibody-C mediated killing.  相似文献   

4.
Lipid and Fatty-acid Composition of Diatoms   总被引:2,自引:0,他引:2  
The lipids and fatty acids of two freshwater diatoms Nitzschiapalea Kutz, Navicula muralis Lewin, and one marine species,Navicula incerta Grun. have been studied. The major lipid components in all species were triglycerides,monogalactosyl, digalactosyl and sulphoquinovosyl diglycerides,phosphatidyl glycerol, phosphatidyl choline (lecithin), andphosphatidyl ethanolamine; while palmitoleic, palmitic, eicosapentaenoicand eicosate-traenoic acids were the major fatty acid constituents.The two galactolipids, monogalactosyl and digalactosyl diglyceridescontained large amounts of C16 and C20 polyunsaturated fattyacids. Lipids of diatoms, whether grown in the light or in the dark,were the same apart from quantitative differences. More storagelipids such as triglycerides were synthesized in the light thanin the dark.  相似文献   

5.
Photo-, mixo- and heterotrophically grown cultures of Chlamydomonas reinhardi (wild type ss and 2 streptomycin-resistant mutants sr3 and sr35) have been analyzed for lipids and fatty acids. Ether-soluble lipids, chlorophyll, monogalactosyl diglyceride, digalactosyl diglyceride, sulfolipid, phosphatidyl ethanolamine, phosphatidyl choline, phosphatidyl glycerol and the relative amounts of fatty acids in total and individual lipids have been determined. The lipid and fatty acid compositions are very similar in the 3 strains and are not affected by the mutations. Fatty acids belong exclusively to the C16 and C18 series, 16:0, 16:4, 18:1, 18:2, 18:3 (6,9,12) and 18:3 (9,12,15) comprising about 90% of the total. 18:3 (6,9,12) is concentrated in phosphatidyl ethanolamine. In streptomycin-bleached sr3 cells, ether-soluble lipids increase from 7 to 11% of dry weight on greening, mostly due to synthesis of monogalactosyl diglyceride and chlorophyll. Monogalactosyl diglyceride of bleached cells exhibits the same fatty acid pattern before and after greening.  相似文献   

6.
Phosphatidyl choline (PC) is synthesised in wheat (Triticum aestivum L. cv. Flanders) aleurone tissue during early germination when new endomembranes are being formed. Although gibberellic acid does not ostensibly affect PC levels, it inhibits the incorporation of choline and differentially and specifically modulates the turnover of the N-methyl and methylene carbons of the choline headgroup of PC. Gibberellic acid has no effect on turnover of the phosphate moiety of either PC or the other major phosphatides. The possible biological importance of the findings is discussed.Abbreviations ER endoplasmic reticulum - GA gibberellin - GA3 gibberellic acid - PA phosphatidic acid - PC phosphatidyl choline - PE phosphatidyl ethanolamine - PG phosphatidyl glycerol - PI phosphatidyl inositol - t1/2 half-life  相似文献   

7.
[1-14C]-Acetate incorporation into total and polar lipids was studied in the growing pollen tubes of Crotalaria juncea. Ungerminated pollen had phosphatidyl inositol, phosphatidyl serine, phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl glycerol, monogalactosyl diglyceride, digalactosyl diglyceride, sulpholipid and steryl glycosides. In the growing pollen tubes considerable [1-14C]-acetate incorporation was observed into the individual polar lipids. The exogenous carbon source significantly influenced lipid biosynthesis. Boric acid (20mg/l.) promoted both pollen tube growth and acetate incorporation into phospholipids. In comparison to 5′-adenosine monophosphate, cyclic-3′,5′-adenosine monophosphate (cAMP) promoted tube growth and also enhanced phospho-and glycolipid biosynthesis. The regulation of membrane component biosynthesis by cAMP is suggested.  相似文献   

8.
In order to determine the feasibility of using radioactive precursors as markers for membrane phospholipids in Acanthamoeba palestinensis, the characteristics of phospholipids labeled with choline-14C and glycerol-3H were examined. Choline-14C was found to be a specific label for phosphatidyl choline. There was a turnover of the radioactive moiety of phosphatidyl choline at a rate that varied with the concentration of nonradioactive choline added to the growth medium. Radioactivity was lost from labeled phosphatidyl choline into the acid-soluble intracellular pool and from the pool into the extracellular medium. This loss of radioactivity from cells leveled off and an equilibrium was reached between the label in the cells and in the medium. Radioactive choline was incorporated into phosphatidyl choline by cell-free microsomal suspensions. This incorporation leveled off with the attainment of an equilibrium between the choline-14C in the reaction mixture and the choline-14C moiety of phosphatidyl choline in the microsomal membranes. Therefore, a choline exchange reaction may occur in cell-free membranes, as well as living A. palestinensis. In contrast to choline-14C, the apparent turnover of glycerol-3H-labeled phospholipids was not affected by large concentrations of nonradioactive choline or glycerol in the medium. The radioactivity in lipids labeled with glycerol-3H consisted of 33% neutral lipids and 67% phospholipids. Phospholipids labeled with glycerol-3H turned over slowly, with a concomitant increase in the percentage of label in neutral lipids, indicating a conversion of phospholipids to neutral lipids. Because most (~96%) of the glycerol-3H recovered from microsomal membranes was in phospholipids, whereas only a minor component (~2%) of the glycerol-3H was in the phospholipids isolated from nonmembrane lipids, glycerol-3H was judged to be a specific marker for membrane phospholipids.  相似文献   

9.
In vivo covalent binding of 14CCl4 metabolites in liver microsomal lipids   总被引:1,自引:0,他引:1  
Covalently bound 14C from 14CCl4 is preferentially localized in the lipids of hepatic microsomes of rats within 15 min. Label was recovered in all classes of lipids isolated from the microsomal lipid extract by diethylaminoethyl column chromatography. Among phospholipids, specific activity was the highest in the fraction containing phosphatidyl serine and lowest in phosphatidyl choline. Cholesterol esters had more than ten times the specific activity of cholesterol.  相似文献   

10.
Lipid synthesis has been studied in the dimorphic fungus Candida albicans. 14C-acetate incorporation into lipid material was used to measure new lipid synthesis in two cultures in which either yeast or mycelial growth was initiated from stationary phase yeast cells. When resuspended in fresh medium at 37 °C, cells resume growth and change morphology while at 30 °C cells resume budding growth. When resuspended at the appropriate temperature, both yeast and germ tube cultures immediately incorporated 14C-acetate into lipid material. The labeled lipid was more or less evenly divided between neutral and phospholipid. Phosphatidyl choline was the major phospholipid fraction and along with phosphatidyl ethanolamine accounted for 60–65 % of the total phospholipid. Lipid synthesis during growth initiation of either morphology showed a similar pattern, with no significant differences observed in neutral or phospholipid or phospholipid components between yeast and mycelial forms.  相似文献   

11.
Vesicles formed with phosphatidyl ethanolamine, phosphatidyl choline, cardiolipin, coupling factors and hydrophobic proteins from bovine heart mitochondria catalyzed a rapid32Pi-ATP exchange. When phosphatidyl choline was deleted during the assembly of the vesicles, little32Pi-ATP exchange was observed. Exchange activity was induced by incubating such deficient vesicles with phosphatidyl choline liposomes in the presence of a phosphatidyl choline transfer protein isolated from bovine heart. Transfer of [32P] phosphatidyl choline was demonstrated by isolation of the activated vesicles by sucrose density centrifugation.  相似文献   

12.
Primary leaves of Phaseolus vulgaris show concomitant changes in phospholipid, galactolipid, chlorophyll and fresh weight during leaf development from 3 to 32 days after planting. Phosphatidyl choline, phosphatidyl ethanolamine, and phosphatidyl inositol show only small changes on a mole per cent lipid phosphate basis during leaf development. The chloroplast lipids, phosphatidyl glycerol, monogalactosyl diglyceride (MGDG) and digalactosyl diglyceride (DGDG) all show marked increases and decreases which are coincident with chloroplast development. The decline in the leaf content of chloroplast polar lipids and chlorophyll become evident upon reaching maximal leaf size. The molar ratio of galactolipids (MGDG/DGDG), reaches a maximum value of 2.3 in expanding leaves, but steadily declines during senescence to a minimum value of 1.5 at abscission. The declining ratio is caused by a preferential loss of MGDG in the senescing leaves.  相似文献   

13.
Abstract— Following intracranial injections of puromycin, the incorporation of [3H]leucine into brain protein was inhibited by 80 per cent. Conversely, incorporation of [35S]sulphate into sulphatide or [2-3H]glycerol into phosphatidyl choline was not inhibited. Under these conditions, appearance of labelled protein in myelin was inhibited by 90 per cent, while the appearance of newly labelled sulphatide and phosphatidyl choline in myelin membrane was not greatly affected. Experiments with cycloheximide gave similar results with phosphatidyl choline, but incorporation of [35S]sulphate into total sulphatide was decreased by about 30 per cent in animals given cycloheximide. Neither puromycin nor cycloheximide had any inhibitory effect on galactocerebroside sulphotransferase.  相似文献   

14.
The products of phospholipid turnover in Bacillus stearothermophilus were determined in cultures labeled to equilibrium and with short pulses of [32P]phosphate and [2-3H]glycerol. Label lost from the cellular lipid pool was recovered in three fractions: low-molecular-weight extracellular products, extracellular lipid, and lipoteichoic acid (LTA). The low-molecular-weight turnover products were released from the cells during the first 10 to 20 min of a 60-min chase period and appeared to be derived primarily from phosphatidylglycerol turnover. Phosphatidylethanolamine, which appeared to be synthesized in part from the phosphatidyl group of phosphatidylglycerol, was released from the cell but was not degraded. The major product of phospholipid turnover was LTA. Essentially all of the label lost from the lipid pool during the final 40 min of the chase period was recovered as extracellular LTA. The LTA appeared to be derived primarily from the turnover of cardiolipin and the phosphatidyl group of phosphatidylglycerol. Three types of LTA were isolated; an extracellular LTA was recovered from the culture medium, and two types of LTA were extracted from membrane preparations or whole-cell lysates by the hot phenol-water procedure. Cells contained 1.5 to 2.5 mg of cellular LTA per g of cells (dry weight), over 50% of which remained associated with the membrane when cells were fractionated. Over 75% of the 3H label incorporated into the cellular LTA pool during a 90-min labeling period was released from the cells during the first cell doubling after the chase. Label lost from the lipid pool was incorporated into cellular LTA which was then modified and released into the culture medium.  相似文献   

15.
The effect of acetylcholine on the incorporation of P32 into the individual phosphatides in slices of various structures of the nervous system has been studied. There was a marked stimulation of P32 incorporation into phosphoinositide and phosphatidic acid, but not into phosphatidyl choline and phosphatidyl ethanolamine, in the cat stellate and celiac ganglia in vitro. Acetylcholine stimulated P32 incorporation into certain phosphatides, primarily phosphoinositide and phosphatidic acid, in several structures of the cat and guinea pig brain; there was little or no effect of acetylcholine on phosphatide turnover in the inferior corpora quadrigsemina and cerebellar cortex. The suggestion is made that the phospholipid effect can best be explained as being concerned with the active transport of sodium ions out of the cell across the postsynaptic membrane of cholinergic neurons in response to acetylcholine.  相似文献   

16.
Liposomes made by sonication of egg yolk phosphatidyl choline support the proliferation of low-density bovine vascular and corneal endothelial cells, and vascular smooth muscle cells maintained on basement laminacoated dishes and exposed to a defined medium supplemented with transferrin. The optimal growth-promoting effect of phosphatidyl choline was observed at concentrations of 25 μg/ml for low-density cultures of vascular smooth muscle cells, and 100 μg/ml for vascular and corneal endothelial cells. The growth rate and final cell density of vascular endothelial cells exposed to a synthetic medium supplemented with transferrin and either high-density lipoproteins or phosphatidyl choline has been compared. Although cultures exposed to phosphatidyl choline reached a final cell density similar to that of cultures exposed to high-density lipoproteins, they had a longer average doubling time (17 h vs. 12 h) during their logarithmic growth phase and a shorter lifespan (17 generations vs. 30 generations). Similar observations were made in the case of vascular smooth muscle cells or bovine corneal endothelial cells maintained in medium supplemented with transferrin, fibroblast growth factor (FGF) or epidermal growth factor (EGF), and insulin and exposed to either high-density lipoproteins or phosphatidyl choline. Since phosphatidyl choline can, for the most part, replace highdensity lipoproteins in supporting the proliferation of various cell types, it is likely that the growth stimulating signal conveyed by high-density lipoproteins is associated with its polar lipid fraction, which is composed mostly of phosphatidyl cholines.  相似文献   

17.
The incorporation of 1-[14C]-palmitate into the lipids of microsomal and mitochondrial membranes from peas (Pisum sativum L., var. Massey Gem) and the relative effects of ATP and coenzyme A(CoA) on the process have been examined. Both mitochondrial and microsomal pellets possessed acyltransferase capacity, which responded similarly to additions of ATP and CoA. Incorporation of 1-[14C]-palmitate into phospholipid was promoted by ATP alone, but incorporation into triacylglycerols was not. The addition of CoA alone did not promote incorporation. The addition of CoA and ATP further promoted incorporation into phospholipids and also stimulated incorporation into triacylglycerol. It was concluded that some CoA must be membrane-bound and available for phospholipid but not for triacylglycerol synthesis. Phospholipase A, treatment of microsomal and mitochondrial phospholipids, previously labelled with 1-[14C]-palmitate in the presence of ATP and coenzyme A, showed that incorporation occurred only into the 2-position of phosphatidyl choline and phosphatidyl ethanolamine. There was enough lyso-phosphatidyl choline in the phospholipids of microcomal membranes (obtained from a 100 000 g pellet) to account for the observed incorporations of palmitate. Using microsomal membranes whose fatty acyl groups were pre-labelled by incubation of tissue with 1-[14C]-acetate, no evidence of acyl exchange was found during subsequent incubations with unlabelled palmitate. Similar observations were made using oleate instead of palmitate. It was concluded that acyl-CoA: 1-acylglycerophosphocholine o-acyltransferase (E.C. 2.3.1.23) was responsible for the observed acyl transfer to phosphatidyl choline. Sucrose gradient analysis of whole homogenates and of the 10 000 g pellet showed that both mitochondrial and rough endoplasmic reticulum possessed acyltransferase capacity, with the bulk of this residing in the mitochondria. The possible significance of this widely distributed membrane activity is briefly discussed.  相似文献   

18.
Glycerophospholipid biosynthesis by the de novo pathway was assessed in mouse peritoneal macrophages by pulse-labeling with [U-14C]glycerol. Phosphatidylcholine (PC), which amounts to about 35% of total cellular phospholipids, exhibited the highest rate of glycerol uptake, followed by phosphatidylinositol (PI) and phosphatidylethanolamine (PE). Remodeling of PC molecular species by deacylation/reacylation was established by determining the redistribution of glycerol label over 2 h after a 1 h pulse of [U-14C]glycerol and by determining incorporation of 18O from H2 18O-containing media. These data suggest that stearic and arachidonic acid enter PC primarily by the remodeling pathway but that small amounts of highly unsaturated molecular species, including 1,2-diarachidonoyl PC, are rapidly synthesized de novo, and subsequently remodeled or degraded. Treatment of the cells with the ionophore A23187 resulted in the selective enhancement of arachidonate turnover in PC, PI and neutral lipid, as well as enhanced de novo PI synthesis. [U-14C]Glycerol labeling experiments suggest that arachidonic acid liberated by Ca2+-dependent phospholipase A2 activity is also reacylated in part through de novo glycerolipid biosynthesis, leading to the formation and remodeling of 1,2-diarachidonoyl PC and other highly polyunsaturated molecular species.  相似文献   

19.
The amount of phospholipids in the membrane fractions of the endoplasmic reticulum (ER) and plasma membrane of cotyledons of Pisum sativum and P. elatius was followed during germination. Incorporation of [14C-methyl]choline into the ER and the plasma membrane was followed as well as [U-14C]glycerol into the ER. The pool size of endogenous choline was determined and found to be much greater in the wild pea and to increase early in germination. In both species membranes are synthesized in large quantities early in germination and both turnover and synthesis of the backbone and the phosphatidyl tail occur throughout 48 hr of germination. In P. sativum incorporation peaks earlier than in P. elatius and degradation also begins earlier than in P. elatius. This is consistent with the general behaviour of the two species.  相似文献   

20.
Glyceride metabolism in cultured cells dissociated from rat cerebral cortex   总被引:5,自引:5,他引:0  
Abstract— [1-14C]stearic acid and [2-3H]glycerol were rapidly taken up and esterified into triacylglycerol and phospholipids by rat brain cells cultivated in monolayers. Expressed in terms of pool size, the incorporation of glycerol and stearate into triacylglycerol was 6- and 8-fold, respectively, higher than the incorporation into the choline phosphoglycerides. Tritium-labelled glycerol in both triacylglycerol and glycerophosphatides was diluted more rapidly than the [14C] labelled fatty acids. Chase experiments indicated a transfer of fatty acid from one lipid class to another, mainly from triacylglycerol to phospholipids, with no apparent loss of radioactivity. The accumulation of triacylglycerol in the brain cells was a function of both the presence of exogenous fatty acids in the culture medium and the metabolic needs of the cells; as long as the cells were involved in active formation of membranes the proportion of triacylglycerol was relatively small; its concentration increased while cell division slowed down in older, fully monolayered cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号