首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Ascorbic acid was found to be oxidized by O2? which was generated by the xanthine-xanthine oxidase system. From a kinetic analysis of the inhibition of this reaction by superoxide dismutase, the second-order rate constant for the reaction between ascorbic acid and O2? at pH 7.4 was estimated to be 2.7 × 105 M?1 sec?1. A function of ascorbic acid as a defense against O2? is presented.  相似文献   

2.
Human copper-zinc superoxide dismutase undergoes inactivation when exposed to O2? and H2O2 generated during the oxidation of acetaldehyde by xanthine oxidase at pH 7.4 and 37° C. In contrast, human manganese superoxide dismutase is not inactivated under the same conditions. Catalase and Mn-superoxide dismutase protect CuZn superoxide dismutase from inactivation. Similar protection is observed with hydroxyl radical (OH.) scavengers, such as formate and mannitol. In contrast, other OH. scavengers such as ethanol and tert-butyl alcohol, have no protective action. The latter results indicate that “free OH.” is not responsible for the inactivation. Furthermore, H2O2 generated during the oxidation of glucose by glucose oxidase, i.e., without production of O2?, does not induce CuZn superoxide dismutase inactivation. A mechanism accounting for this O2?H2O2-dependent inactivation of CuZn superoxide dismutase is proposed.  相似文献   

3.
4.
In the presence of NADH, and the reductase and rubredoxin components of the ω-hydroxylation system of Pseudomonas oleovorans, epinephrine is oxidized to adrenochrome at pH 7.8, and the reaction is strongly inhibited by the addition of superoxide dismutase (SDM). Boiled SDM has no effect on the reaction rate. The oxidation reaction is oxygen-dependent, and approximately 1 mole of H2O2 is produced per mole of O2 consumed. The stoichiometry between NADH oxidation and adrenochrome formation is approximately 2:1. Epoxidation and epinephrine oxidation are mutually competitive reactions, despite the fact that the epoxidation reaction is not stimulated by a superoxide generating system nor inhibited by SDM.  相似文献   

5.
Barry Halliwell 《Planta》1978,140(1):81-88
The enzyme horseradish peroxidase (EC 1.11.1.7) catalyses oxidation of NADH. NADH oxidation is prevented by addition of the enzyme superoxide dismutase (EC 1.15.1.1) to the reaction mixture before adding peroxidase but addition of dismutase after peroxidase has little inhibitory effect. Catalase (EC 1.11.1.6) inhibits peroxidase-catalysed NADH oxidation when added at any time during the reaction. Apparently the peroxidase uses hydrogen peroxide (H2O2) generated by non-enzymic breakdown of NADH to catalyse oxidation of NADH to a free-radical, NAD., which reduces oxygen to the superoxide free-radical ion, O2 .-. Some of the O2 .- reacts with peroxidase to give peroxidase compound III, which is catalytically inactive in NADH oxidation. The remaining O2 .- undergoes dismutation to O2 and H2O2. O2 .- does not react with NADH at significant rates. Mn2+ or lactate dehydrogenase stimulate NADH oxidation by peroxidase because they mediate a reaction between O2 .- and NADH. 2,4-Dichlorophenol, p-cresol and 4-hydroxycinnamic acid stimulate NADH oxidation by peroxidase, probably by breaking down compound III and so increasing the amount of active peroxidase in the reaction mixture. Oxidation in the presence of these phenols is greatly increased by adding H2O2. The rate of NADH oxidation by peroxidase is greatest in the presence of both Mn2+ and those phenols which interact with compound III. Both O2 .- and H2O2 are involved in this oxidation, which plays an important role in lignin synthesis.  相似文献   

6.
Addition of 1mM ascorbate to isolated chloroplasts with methyl viologen (MV) as electron acceptor trebled the rate of oxygen uptake and decreased the ADPO ratio to a third of that with no ascorbate present. These effects of ascorbate were reversed by superoxide dismutase (SOD), which in the absence of ascorbate had little effect on O2 uptake or ADPO ratio. A chloroplast-associated SOD activity equivalent to 500 units/mg chlorophyll was detected. The effects of ascorbate and SOD on O2 uptake were similar in both coupled and uncoupled chloroplasts. The results are consistent with the hypothesis that ascorbate stimulates O2 uptake by reduction of superoxide, which is formed by autoxidation of the added electron acceptor (MV), and which dismutates in the absence of ascorbate. Ascorbate does not seem to stimulate O2 uptake by replacing water as the photosystem II donor.  相似文献   

7.
The relative effectiveness of oxidizing (.OH, H2O2), ambivalent (O2?) and reducing free radicals (e? and CO2?) in causing damage to membranes and membrane-bound glyceraldehyde-3-phosphate dehydrogenase of resealed erythrocyte ghosts has been determined. The rates of damage to membranebound glyceraldehyde-3-phosphate dehydrogenase (R(enz)) were measured and the rates of damage to membranes (R(mb)) were assessed by measuring changes in permeability of the resealed ghosts to the relatively low molecular weight substrates of glyceraldehyde-3-phosphate dehydrogenase. Each radical was selectively isolated from the mixture produced during gamma-irradiation, using appropriate mixtures of scavengers such as catalase, superoxide dismutase and formate. .OH, O2? and H2 O2 were approximately equally effective in inactivating membrane-bound glyceraldehyde-3-phosphate dehydrogenase, while e? and CO2? were the least effective. R(enz) values of O2? and H2O2 were 10-times and of .OH 15-times that of e?. R(mb) values were quite similar for e? and H2O2 (about twice that of O2?), while that of .OH was 3-times that of O2?. Hence, with respect to R(mb): .OH >e? = H2O2 >O2? , and with respect to R(enz): .OH >O2? = H2O2 >e?. The difference between the effectiveness of the most damaging and the least damaging free radicals was more than 10-fold greater in damage to the enzyme than to the membranes. Comparison between H2O2 added as a chemical reagent and H2O2 formed by irradiation showed that membranes and membrane-bound glyceraldehyde-3-phosphate dehydrogenase were relatively inert to reagent H2O2 but markedly susceptible to the latter.  相似文献   

8.
Glutathione peroxidase activity has been measured in erythrocytes from normal subjects and from trisomy 21 patients. The latter cases show about 50 % increase of this enzyme similar to the increase observed for superoxide dismutase (erythrocuprein) suggesting either localisation of the gene for glutathione peroxidase on chromosome 21 (as is the case for erythrocuprein) or regulation of this enzyme by intracellular levels of O2?, H2O2 or superoxide dismutase.  相似文献   

9.
Polarographic measurements showed that N3? and halides in hibit the activity of bovine Cu, Zn superoxide dismutase in a competitive fashion, as previously demonstrated for CN? and OH?. All anions increase the spin-lattice nuclear magnetic relaxation time (T1) of aqueous solutions of the enzyme as well, but the stability constants measured from T1 data are lower than those calculated from activity data. The results suggest that substrate and anionic inhibitors bind during the catalytic action at the water coordination position of the enzyme copper, and that these inhibitors may have a greater affinity for the cuprous form of the enzyme which is generated in the catalytic cycle.  相似文献   

10.
We have measured the contribution of the reduced form of bovine ZnCu superoxide dismutase to the relaxation of the 35Cl nucleus of chloride ion. The reduced protein has a molar relaxivity approximately 2.5 greater than the metal free protein, and addition of a small excess of cyanide lowers the relaxivity of the reduced protein to that of the apo-protein. We have interpreted these observations in terms of an open coordination position on one of the two metal ions, and we have proposed a mechanism for the reduction of superoxide by reduced superoxide dismutase which requires that O2? binds to Cu+ prior to electron transfer.  相似文献   

11.
The cell-free preparations from autotrophieally grown Pseudomonas saccharophila catalyzed the process of electron transport from H2 or various other organic electron donors to either O2 or NO3? with concomitant ATP generation. The respective PO ratios with H2 and NADH were 0.63 and 0.73, the respective PNO3? ratios were 0.57 and 0.54. In contrast, the PO and PNO3? ratios with succinate were 0.18 and 0.11, respectively. ATP formation coupled to the oxidation of ascorbate, in the absence or presence of added N,N,N′,N′-tetramethyl-p-phenylenediamine or cytochrome c, could not be detected. Various uncouplers inhibited phosphorylation with either O2 or NO3? as terminal electron acceptors without affecting the oxidation of H2 or other substrates. The NADH oxidation at the expense of O2 or NO3? reduction as well as the associated phosphorylation were inhibited by rotenone and amytal. The aerobic and anaerobic H2 oxidation and coupled ATP synthesis, on the other hand, was unaffected by the flavoprotein inhibitors as well as by the NADH trapping system. The NADH, H2, and succinate-linked electron transport to O2 or NO3? and the associated phosphorylations were sensitive, however, to antimycin A or 2-n-nonyl-4-hydroxyquino-line-N-oxide, and cyanide or azide. The data indicated that although the phosphorylation sites 1 and II were associated with NADH oxidation by O2 or NO3?, the energy conservation coupled to H2 oxidation under aerobic or anaerobic conditions appeared to involve site II only.  相似文献   

12.
Superoxide dismutase (SOD) activities of the oomycete Phytophthora cinnamomi were examined. Five polypeptides with manganese superoxide dismutase (MnSOD) activity were found in mycelium growing in liquid culture with relative molecular weights ranging from approximately 25 to 100 kDa. Comparison with characterized avocado SODs showed no evidence for the presence of either iron or copper/zinc SODs in P. cinnamomi. The level of activity of the MnSOD polypeptides decreased in the presence of avocado root or cell wall components. Growth of P. cinnamomi, measured as dry weight, increased when the mycelium was grown in the presence of superoxide anion (O2 ?), which was added exogenously. Our results suggest that the metabolism of O2 ? has an important role in the development of P. cinnamomi.  相似文献   

13.
The oxidation of Mn2+-pyrophosphate to Mn3+ by superoxide (O2?) was quantitative as evidenced from the formation of Mn3+-pyrophosphate and hydrogen peroxide and from the inhibition by superoxide dismutase. Using the competitive relation between Mn2+-pyrophosphate and superoxide dismutase for the O2?, the rate constant of Mn2+ oxidation was estimated to be about 6 × 106m?1 s?1. The oxidation of Mn2+-pyrophosphate by illuminated chloroplasts was also indicated to be stoichiometrically induced by O2?. In the presence of saturating amounts of the Mn2+, a double enhancement of hydrogen peroxide production and triple uptake of oxygen were found, as expected from the oxidation of Mn2+-pyrophosphate by O2?. Anaerobiosis or superoxide dismutase annuled these increments. We propose that the O2? generated as the sole initial step of the Mehler reaction oxidized Mn2+-pyrophosphate, and we discuss the role of free manganese in chloroplasts.  相似文献   

14.
The reactivities of anionic nitroalkanes with 2-nitropropane dioxygenase of Hansenula mrakii, glucose oxidase of Aspergillus niger, and mammalian d-amino acid oxidase have been compared kinetically. 2-Nitropropane dioxygenase is 1200 and 4800 times more active with anionic 2-nitropropane than d-amino acid oxidase and glucose oxidase, respectively. The apparent Km values for anionic 2-nitropropane are as follows: 2-nitropropane dioxygenase, 1.61 mm; glucose oxidase, 16.7 mm; and d-amino acid oxidase, 11.1 mm. Anionic 2-nitropropane undergoes an oxygenase reaction with 2-nitropropane dioxygenase and glucose oxidase, and an oxidase reaction with d-amino acid oxidase. In contrast, anionic nitroethane is oxidized through an oxygenase reaction by 2-nitropropane dioxygenase, and through an oxidase reaction by glucose oxidase. All nitroalkane oxidations by these three flavoenzymes are inhibited by Cu and Zn-superoxide dismutase of bovine blood, Mn-superoxide dismutases of bacilli, Fe-superoxide dismutase of Serratia marcescens, and other O2? scavengers such as cytochrome c and NADH, but are not affected by hydroxyl radical scavengers such as mannitol. None of the O2? scavengers tested affected the inherent substrate oxidation by glucose oxidase and d-amino acid oxidase. Furthermore, the generation of O2? in the oxidation of anionic 2-nitropropane by 2-nitropropane dioxygenase was revealed by ESR spectroscoy. The ESR spectrum of anionic 2-nitropropane plus 2-nitropropane dioxygenase shows signals at g1 = 2.007 and g11 = 2.051, which are characteristic of O2?. The O2? generated is a catalytically essential intermediate in the oxidation of anionic nitroalkanes by the enzymes.  相似文献   

15.
In vivo exposure of rats to ozone or nitrogen dioxide results in a dose-dependent decrease in superoxide anion radical production (O2?·) by alveolar macrophages isolated from the exposed animals. When alveolar macrophages from ozone-exposed animals were stimulated with phorbol myristate acetate (PMA, a non-phagocytic stimulus of O2?· production) the decrease in O2?· production ranged from 85.9% of control at 3.2 ppm-hrs ozone to 7% of control at 10.5 ppm-hrs. In a similar fashion, O2?· production by PMA-stimulated macrophages from NO2-exposed rates ranged from 78% of control at 18.3 ppm-hrs NO2 down to 14.5% of control at 51 ppm-hrs. Since the viability of the alveolar macrophages obtained from ozone or nitrogen dioxide-exposed animals was 88% or better in all cases as judged by both Trypan blue exclusion and lactate dehydrogenase release, the decreased ability of these cells to produce superoxide anion radical cannot be attributed to a pollutant effect on cell viability. This diminution in superoxide anion radical production by alveolar macrophages from the pollutant-exposed animals might account, in part, for the ability of these 2 air pollutants to potentiate bacterial infections in laboratory animals.  相似文献   

16.
Four superoxide dismutase active copper chelates, Cu(acetylsalicylate)2, Cu(salicylate)2, Cu(lysine)2 and Cu(tyrosine)2, proved to be inhibitors of prolyl and lysyl hydroxylase. The kinetics of the inhibition are consistent with the proposal that these compounds dismutated ?O2staggered? at the active site of the enzymes. The data strongly suggest that ?O2staggered? is the active form of O2 in the prolyl and lysyl hydroxylase reactions.  相似文献   

17.
The rate constants of the reactions between pulse radiolytically produced superoxide anions and the Cu(II) chelates of salicylate, acetylsalicylate, p-aminosalicylate and diisopropylsalicylate were determined at pH 7.5 and found to range from 0.8 to 2.4 × 109 M?1 sec?1. It was intriguing to note that they had a superoxide dismutase activity identical with that of native cuprein-copper (k245 = 1.3 × 109 M?1 sec?1 per g-atom of Cu). These measurements confirm our earlier observations using indirect assays that all copper salicylates act as perfect model superoxide dismutases and favour the proposal that the activity of anti-inflammatory agents might be assigned to their in vivo formed Cu complexes.  相似文献   

18.
The action of xanthine oxidase upon acetaldehyde or xanthine at pH 10.2 has been shown to be accompanied by substantial accumulation of O2? during the first few minutes of the reaction. H2O2 decreases this accumulation of O2? presumably because of the Haber-Weiss reaction (H2O2+O2?OH?+OH+O2) and very small amounts of superoxide dismutase eliminate it. This accumulation of O2? was demonstrated in terms of a burst of reduction of cytochrome c, seen when the latter compound was added after aerobic preincubation of xanthine oxidase with its substrate. The kinetic peculiarities of the luminescence seen in the presence of luminol, which previously led to the proposal of H2O4?, can now be satisfactorily explained entirely on the basis of known radical intermediates.  相似文献   

19.
The oxidation of unsaturated fatty acid micelles by the superoxide free radical (O?2), during γ irradiation in the presence of formate, is kinetically distinct from oxidation by hydroxyl free radicals (HO.). The evidence suggests that a direct reaction between (O?2) and lipid hydroperoxide initiates a chain oxidation process in the micelles. While tetranitromethane, which reacts rapidly with (O?2), protects the micelles from oxidation, active superoxide dismutase is no more effective than its apoprotein, due to lack of penetration of the micellar environment. We discuss these findings in the light of recent literature, and with reference to their possible significance for biological systems.  相似文献   

20.
The interaction of chartreusin with covalently closed circular PM2 phage DNA was studied. The antibiotic caused a single strand scission in the presence of reducing agents, such as dithiothreitol, ascorbic acid or NaBH4. The degree of DNA breakage was dependent upon the drug concentration. The DNA-cleaving activity was enhanced by ferrous ion; but was completely blocked by catalase and partially by superoxide dismutase. The results suggest that reduction, chelate formation and auto-oxidation of the antibiotic, presumably the 5,12-dione moiety, produce free radicals, including O2? and ?OH, which are capable of inducing DNA strand scission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号