首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Effect of sodium butyrate on DNA synthesis and the induction of ornithine decarboxylase (EC 4.1.1.17), a rate-limiting enzyme of polyamine biosynthesis, was studied in phytohemagglutinin(PHA)-stimulated bovine lymphocytes. Millimolar concentrations of butyrate completely inhibited the incorporation of [3H] thymidine into the acid-insoluble fraction and reversibly suppressed the induction of ornithine decarboxylase. Other shortchain fatty acids were much less active than butyrate. These results suggest that the suppression of ornithine decarboxylase activity may be one of the reasons for the inhibition of DNA synthesis with butyrate in bovine lymphocytes, because our previous experimental results have shown that the induction of ornithine decarboxylase closely correlates with the DNA synthesis in growth-stimulated cells.  相似文献   

2.
1. The activity of ornithine decarboxylase in the liver and kidneys of rats maintained on a cyclical regimen of protein-free and protein-containing diets was investigated. There was a daily activation of the enzyme in response to the feeding of protein after 3 days feeding of protein-free diet. 2. The activation of ornithine decarboxylase in the liver and kidneys of rats re-fed on protein was demonstrable throughout 16 cycles of alternating 3-day periods of protein-free and protein-containing diets. The magnitude of the activation in the kidneys diminished from 20-fold stimulation in the first cycle to 5-fold stimulation (compared with animals fed with protein-free diet) in the later cycles of protein re-feeding. The activation of the enzyme in liver was decreased from 20-fold stimulation in the first cycle to approx. 10-fold stimulation in later cycles. 3. The concentration of spermidine was increased by approx. 50% in the liver of animals during cycling from protein-free to protein-containing diets. Spermine was unchanged, and putrescine was maintained at a low concentration approx. one-fifth to one-tenth that of spermidine after protein re-feeding. 4. The incorporation of [(3)H]thymidine into liver DNA was increased 10-fold in animals re-fed with protein compared with animals receiving protein-free diets. 5. The activation of ornithine decarboxylase by re-feeding of protein was inhibited 90% by the injection of propane-1,3-diamine during re-feeding. The stimulation of DNA synthesis was inhibited 60% by multiple injections of propane-1,3-diamine during the re-feeding of protein.  相似文献   

3.
The phorbol ester 12-O-tetradecanoylphorbol 13-acetate induces tumour promotion, inflammation, cell proliferation and prostaglandin release. Recent reports suggest that the prostaglandins released by 12-O-tetradecanoylphorbol 13-acetate (TPA) initiate a cascade of events leading to polyamine synthesis and cell proliferation. In experiments designed to test this contention, it was found that addition of TPA (1 microM to 1 nM) to confluent mouse 3T3 fibroblasts successively caused the release of prostaglandins E2 and I2, induction of the enzyme ornithine decarboxylase (EC 4.1.1.17), stimulation of [3H]thymidine incorporation into DNA, and cell proliferation. Pretreatment of the cells with the anti-inflammatory steroid dexamethasone (1 microM) or the non-steroidal anti-inflammatory drug indomethacin (1 microM) inhibited TPA-induced prostaglandin release. However, dexamethasone enhanced the other effects of TPA, whereas indomethacin was ineffective. Addition of prostaglandin E2 to the cultures did not induce ornithine decarboxylase activity and cell proliferation. Pretreatment of the cells with 1,3-diaminopropane (1 mM) or alpha-methylornithine (5 mM), inhibitors of polyamine synthesis, decreased TPA-induced ornithine decarboxylase activity without affecting DNA synthesis. TPA stimulated [3H]thymidine incorporation into DNA, even when the ornithine decarboxylase activity was completely blocked. These data suggest that the proliferative effect of TPA on 3T3 cells is independent of prostaglandin release and polyamine synthesis.  相似文献   

4.
The relationship between ornithine decarboxylase (L-ornithine carboxylyase, EC 4.1.1.17) activity and DNA synthetic activity was studied in mouse epidermis. Interfollicular epidermis and hair follicles were investigated separately. It was found that, in hair follicles, the variations of DNA replicative activity, which are reflected in the cyclic growth of hair, are paralleled by corresponding changes in ornithine decarboxylase activity. In both interfollicular epidermis and hair follicles, stimulation of DNA synthetic activity by plucking of hair induced a rapid and marked increase in ornithine decarboxylase activity. The relationship of steady-state and induced ornithine decarboxylase activity to DNA synthetic activity was compared in hair follicles and interfollicular epidermis. A correlation between the activity of this enzyme and DNA replication was found thereby in each of these tissues.  相似文献   

5.
Adenovirus type 5 induces cellular DNA synthesis and thymidine kinase in quiescent rat cells but does not induce ornithine decarboxylase. We now show that unlike serum, adenovirus type 5 fails to induce S-adenosylmethionine decarboxylase or polyamine accumulation. The inhibition by methylglyoxal bis(guanylhydrazone) of the induction of thymidine kinase by adenovirus type 5 is probably unrelated to its effects on polyamine biosynthesis. Thus, induction of cellular thymidine kinase and DNA replication by adenovirus type 5 is uncoupled from polyamine accumulation.  相似文献   

6.
The activities of ornithine decarboxylase and thymidine kinase were determined in tissues of young intact and hypophysectomized rats at various times after treatment with prolactin. In both types of animals, ornithine decarboxylase activity increased in liver, kidney, spleen and adrenal of prolactin treated rats. Thymidine kinase activity increased only in liver and spleen of intact rats. Increase in the kinase activity was smaller, and occurred later than the change in ornithine decarboxylase. In hypophysectomized animals, thymidine kinase activity increased in spleen, but not in liver, following prolactin treatment.  相似文献   

7.
A transient rise in cyclic guanosine 3' : 5' monophosphate (c-GMP) in the liver was observed in rats in vivo 10--20 min after partial hepatectomy. A similar increase in c-GMP in the liver was also found in rats in vivo 15 min after infusion of TGH solution (a mixture of triiodothyronine, glucagon, and heparin). In both cases, inductions of ornithine decarboxylase [EC 4.1.1.17] and tyrosine aminotransferase [EC 2.6.1.5] were found 4 hr after the beginning of the experiments. Later, 22 hr after the surgical intervention or hormone infusion, thymidine kinase [EC 2.7.1.21] was activated and liver slices were able to incorporate [3H]thymidine into DNA. These biochemical phenomena were observed commonly in regenerating liver as well as in the liver of rats infused with TGH solution. c-GMP, but not c-AMP, could induce ornithine decarboxylase and tyrosine aminotransferase in isolated, perfused liver.  相似文献   

8.
The possibility that arginine and lysine might be decarboxylated by rat tissues was investigated. No evidence for decarboxylation of arginine could be found. Lysine decarbosylase (L-lysine carboxy-lyase, EC 4.1.1.18) activity producing CO2 and cadaverine was detected in extracts from rat ventral prostate, androgen-stimulated mouse kidney, regenerating rat liver and livers from rats pretreated with thioacetamide. These tissues all have high ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) activities. Lysine and ornithine decarboxylase activities were lost to similar extents on inhibition of protein synthesis by cycloheximide and on exposure to alpha-difluoromethylornithine. A highly purified ornithine decarboxylase preparation was able to decarboxylate lysine and the ratio of ornithine to lysine decarboxylase activities was constant throughout purification. Kinetic studies of the purified preparation showed that the V for ornithine was about 4-fold greater than for lysine, but the Km for lysine (9 mM) was 100-times greater than that for ornithine (0.09 mM). These experiments indicate that all of the detectable lysine decarboxylase activity in rat and mouse tissues was due to the action of ornithine decarboxylase and that significant cadaverine production in vivo would occur only when ornithine decarboxylase activity is high and lysine concentrations substantially exceed those of ornithine.  相似文献   

9.
The effect of two putrescine analogs were studied on hepatic polyamine synthesis and cell proliferation, both of which were stimulated by food intake. Trans-1, 4-diamino-2-butene (diaminobutene), which is a potent competitive inhibitor of ornithine decarboxylase [EC 4.1.1.17] (ODC), repressed the induction of ODC and effectively inhibited the accumulation of putrescine in rat liver which was induced by the feeding of dietary protein. Unexpectedly, diaminobutene did not suppress DNA synthesis and mitotic activity in rat liver, suggesting that it can mimic the role of putrescine in cell proliferation. 1,3-Diaminopropane effectively repressed the induction of ODC caused by food intake and also suppressed DNA synthesis and mitotic activity without affecting the accumulation of RNA or protein. The suppression of mitotic activity by 1,3-diaminopropane was reversed by a single injection of putrescine, spermidine, spermine, or diaminobutene. It was concluded that rapid accumulation of polyamines, especially putrescine, was a prerequisite for the later enhancement of DNA synthesis and cell proliferation in rat liver caused by food intake.  相似文献   

10.
Antiserum against ornithine decarboxylase (EC 4.1.1.17) was prepared in rabbits using purified ornithine decarboxylase from rat liver as the antigen. Immunoglobulins from the immune sera were covalently coupled to agarose by cyanogen bromide activation. With the aid of this immunoadsorbent against the enzyme it has been shown that following partial hepatectomy and growth hormone administration, the ornithine decarboxylase activity is elevated concomitantly with the increase in the immunoreactive enzyme protein. In addition, the rapid decay in ornithine decarboxylase activity in regenerating rat liver after cycloheximide injection is accompanied by a decrease in the immunoreactive protein. These results suggest that the activity of ornithine decarboxylase in rat liver is regulated through rapid changes in de novo synthesis and degradation of the enzyme protein.  相似文献   

11.
In chick embryo retina during development, DNA synthesis and the activities of DNA polymerase, thymidine kinase, thymidylate synthetase, and ornithine decarboxylase (ODC) declined in parallel from day 7 to 12. The administration in ovo of hydrocortisone reduced significantly, particularly at 8-10 days of incubation, both DNA synthesis and the four enzyme activities tested. The effect was dose dependent, reaching the maximum with 50-100 nmol of hydrocortisone, 8-16 h after treatment. The highest inhibition was found for ODC activity (70%), followed by thymidine kinase activity (62%) and DNA synthesis (45%), whereas activities of DNA polymerase and thymidylate synthetase were reduced only by 30%. The inhibitory effect was exerted by all the glucocorticoids tested, with dexamethasone and hydrocortisone being the most efficacious. The results support the view that glucocorticoids reduce the proliferative events in chick embryo retina, particularly at 8-10 days of embryonic life.  相似文献   

12.
The divalent cation ionophore, A23187, at a concentration of 0.25 microgram/ml, enhanced influx of Ca2+, activity of ornithine decarboxylase and incorporation of [3H]thymidine into DNA of guinea pig lymphocytes. Combined treatment of cells with A23187 and dibutyryladenosine 3',5'-monophosphate (Bt2cAMP) augmented these three events. A23187 at a concentration of 0.06 microgram/ml was insufficient for induction of ornithine decarboxylase stimulated neither Ca2+ influx nor [3H]thymidine incorporation, but stimulated Ca2+ efflux. A23187 (0.06 microgram/ml) in combination with Bt2cAMP caused a marked induction of ornithine decarboxylase and stimulation of [3H]thymidine incorporation into DNA. When the time of Bt2cAMP addition was delayed after A23187, the stimulation of ornithine decarboxylase activity decreased. Washout of Bt2cAMP from cell culture earlier than 4 h of incubation caused a reduction in the stimulatory effect of Bt2cAMP. These results suggest that raising concentrations of cytoplasmic Ca2+ and cellular cAMP are important to some initial events leading to induction of ornithine decarboxylase and these biochemical changes are obligatory sequential steps for stimulation of DNA synthesis.  相似文献   

13.
In primary cultures of adult rat hepatocytes maintained in a salts/glucose medium, a more than 100-fold increase in ornithine decarboxylase (EC 4.1.1.17) activity was caused by asparagine and glucagon in a synergistic manner. The synthesis rate of ornithine decarboxylase was determined by [35S]methionine incorporation into the enzyme protein, and the amount of ornithine decarboxylase-mRNA was measured by hybridization with a cloned rat liver ornithine decarboxylase-cDNA. The synthesis rate of ornithine decarboxylase was stimulated more than 20-fold by asparagine and glucagon together, but the amount of ornithine decarboxylase-mRNA was increased only 3-4-fold, indicating that translational stimulation was involved in the induction process. Asparagine alone stimulated the synthesis of ornithine decarboxylase without substantial effect on the amount of ornithine decarboxylase-mRNA, whereas glucagon alone increased the amount of ornithine decarboxylase-mRNA about 3-fold without a detectable change in either enzyme activity or enzyme synthesis. Asparagine, at least in part, also suppressed degradation of ornithine decarboxylase.  相似文献   

14.
The activities of ornithine decarboxylase (ODC) and thymidine kinase (TK) and the rates of DNA synthesis were determined in hepatomas and livers of rats bearing Morris hepatoma 5123-C or 7800 and entrained to a schedule of 12 hours of light followed by 12 hours of darkness, with food (60% protein) available only during the first 2 hours of the dark period. ODC activity in hepatoma 5123-C displayed a diurnal oscillation, increasing 2-fold during the feeding period and then rapidly decaying to 20% of the peak level. The livers of rats bearing hepatoma 5123-C exhibited a similar oscillation of ODC activity, with peak values lower than in the hepatomas but higher than in the livers of control (non-tumor bearing) animals. TK activity and the rate of DNA synthesis in hepatoma 5123-C were low during most of the dark period but increased rapidly towards the end of the dark period. DNA synthesis reached a plateau at the dark-light interface and then rapidly declined, but TK activity remained high during the light period. Similar studies on hepatoma 7800 established that ODC activity in this hepatoma did not oscillate but remained at low levels throughout the day. Similarly, host livers of rats bearing hepatoma 7800 did not exhibit the diurnal oscillation of ODC activity characteristic of liver from control rats, but showed a slow increase in activity followed by a plateau and a slow decline to base-line levels. DNA synthesis in hepatoma 7800 was constant throughout the day, whereas TK activity may have increased during the dark period. In the livers of control rats and animals bearing hepatoma 5123-C or 7800, TK activity and rate of DNA synthesis were at low levels at all times studied and appeared not to oscillate.  相似文献   

15.
The marked enhancement of the activity of ornithine decarboxylase (EC 4.1.1.17) in rat liver at 4 h following partial hepatectomy or the treatment with growth hormone could be almost completely prevented by intraperitoneal administration of putrescine. A single injection of putrescine to partially hepatectomized rats caused a remarkably rapid decline in the activity of liver ornithine decarboxylase with an apparent half-life of only 30 min, which is almost as rapid as the decay of the enzyme activity after the administration of inhibitors of protein synthesis. Under similar conditions putrescine did not have any inhibitory effect on the activity of adenosylmethionine decarboxylase (EC 4.1.1.50) or tyrosine aminotransferase (EC 2.6.1.5). Spermidine given at the time of partial hepatectomy or 2 h later also markedly inhibited ornithine decarboxylase activity at 4 h after the operation and, in addition, also caused a slight inhibition of the activity of adenosylmethionine decarboxylase.  相似文献   

16.
In the present study, we investigated the relationship between ornithine decarboxylase, MAP kinase, and MMP-2 expression in vitro. Overexpression of ornithine decarboxylase cDNA induced MMP-2 expression both at mRNA and protein levels. Promoter analysis and gel shift assay showed that p53 and Ets-1 were involved in MMP-2 expression in ornithine decarboxylase overexpressing transfectants. Erk and p38 MAP kinase were significantly activated. Using specific inhibitors of MEK and p38, we clarified that MMP-2 expression was induced via both Erk and p38 MAP kinase signaling pathways. This is the first report showing the existence of a causal relationship between ornithine decarboxylase expression, Erk and p38 MAP kinase activation, and MMP-2 expression.  相似文献   

17.
Aging of IMR-90 human diploid fibroblasts in vitro is accompanied by significant changes of polyamine metabolism, most notably, a 5-fold decrease of serum-induced activity of ornithine decarboxylase, the key enzyme in the biosynthesis of polyamines (Chen, K. Y., Chang, Z. F., and Liu, A. Y.-C. (1986) J. Cell. Physiol. 129, 142-146). In this paper, we employed Northern blot hybridization and affinity radiolabeling techniques to investigate the molecular basis of this age-associated change of ornithine decarboxylase activity. Since the induction of ornithine decarboxylase by serum is a mid-G1 event, we also examined expressions of other cell cycle-dependent genes that are induced before and after the mid-G1 phase to determine if their expressions may also be age-dependent. Our results demonstrated a 3-fold decrease of the amount of active ornithine decarboxylase molecules that can be labeled by alpha-difluoromethyl[3H]ornithine in senescent IMR-90 cells (population doubling level (PDL) = 52) as compared to young cells (PDL = 22). However, the levels and kinetics of induction of ornithine decarboxylase mRNA in both young and senescent IMR-90 cells were found to be identical throughout a 24-h time period after serum stimulation. The time course and the magnitude of the expression of c-myc, an early G1 gene, were quite similar in young and senescent IMR-90 cells and appeared to be PDL-independent. In contrast, the expression of thymidine kinase, a late G1/S gene, was significantly reduced in senescent IMR-90 cells. Levels of thymidine kinase mRNA and thymidine kinase activity in senescent IMR-90 cells were 6- and 8-fold less than those in young cells, respectively. Based on these data, we proposed that impairment of cell cycling in senescent IMR-90 cells may occur at the late G1/S phase and that decreases of ornithine decarboxylase activity and putrescine accumulation during cell senescence may contribute to this impairment.  相似文献   

18.
Compared with normally fed animals, rats fed on a low-protein diet for 3 days exhibit a considerable delay in DNA synthesis after partial hepatectomy. In the regenerating livers of these animals (a) the timing of the first peak of ornithine decarboxylase activity is not altered and (b) the second peak of enzyme activity is delayed by a few hours, but polyamine concentrations are similar to those of normally fed rats. The results suggest that regardless of the possible effect of polyamines on DNA synthesis, the time course of ornithine decarboxylase activity appears to be independent of the onset of DNA replication in regenerating livers.  相似文献   

19.
Heavy metal treatment (2 X 1 mg/kg per day) for 3, 5, and 7 days resulted in progressive augmentation in the incorporation of [14C]thymidine into hepatic DNA. In contrast with the observed enhancement in DNA synthesis, cadmium exposure tended to produce a decrease in the activity of hepatic ornithine decarboxylase (EC 4.1.1.17) at 1, 3, or 5 days with the lowest (34% of control values) enzymic activity seen after 7 days. A similar reduction in the activity of S-adenosylmethionine decarboxylase (EC 4.1.1.50) was observed in livers of rats treated with cadmium for 1-7 days. Subacute exposure to cadmium significantly lowered the hepatic levels of spermidine and spermine whereas the endogenous concentrated of putrescine remained unaltered. In addition to the observed effects on the biosynthesis of polyamines and DNA, heavy metal treatment produced stimulation of the hepatic adenylate cyclase (EC 4.6.1.1)--cyclic AMP system. Significant increases in the activity of hepatic adenylate cyclase and endogenous cyclic AMP levels were detected as early as 1 day and the observed alterations persisted during the entire 1-week period of cadmium exposure. The depression in polyamine formation was accompanied by enhanced DNA biosynthesis as well as stimulation in the adenylate cyclase-cyclic AMP system of rat liver.  相似文献   

20.
1. 1,3-Diaminopropane and some of its derivatives are potent inhibitors of ornithine decarboxylase (EC 4.1.1.17) in Ehrlich ascites cells grown in suspension culture. Among the amine derivatives tested, 1,3-diamino-2-propanol most effectively prevented any accumulation of spermidine and spermine in ascites cells when the proliferation was stimulated by diluting the cells with fresh medium. 2. The effectiveness of diaminopropanol in abolishing polyamine accumulation was primarily based on a rapid decay of ornithine decarboxylase activity following the exposure of the cells to the drug. 3. The mechanism of action of diaminopropanol on ornithine decarboxylase apparently involved a formation of macromolecular inhibitors or 'antizymes' to the enzyme. 4. Even though the inhibitory effect of 1,3-diaminopropane on polyamine accumulation approached that of diaminopropanol, the former compound only marginally inhibited the incorporation of [3H]thymidine into DNA and that of [14C]leucine into protein, in contrast to the marked depression of macromolecular synthesis produced by diaminopropanol. The apparent dissociation of polyamine depletion brought about by 1,3-diaminopropane from an antiproliferative action was apparently due to the fact that diaminopropane, unlike diaminopropanol, was partially capable of taking over the function of natural polyamines. 5. The inhibition of DNA and protein synthesis as well as the prevention of increase in cell number by diaminopropanol was closely associated with polyamine depletion and was fully comparable, as regards timing and magnitude, with that achieved with difluoromethylornithine. The antiproliferative effect of diaminopropanol, however, was only partly reversed by a simultaneous addition of putrescine (or spermidine) into the culture medium. The lack of a complete reversal of the action of diaminopropanol on cell growth by natural polyamines was apparently due to the fact that it was remarkably difficult or even impossible to increase intracellular polyamine concentrations by exogenous polyamines in the presence of diaminopropanol. Nevertheless, the diaminopropanol-induced arrest of growth was reversible as judged by a rapid increase in ornithine decarboxylase activity followed by restoration of DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号