首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of solvolysis of benzo[a]pyrene diol-epoxide in aqueous solutions can be followed by fluorescence spectroscopy. When DNA was present the rat of breakdown of benzo[a]pyrene diol-epoxide was substantially enhanced, while at the same time fluorescence intensity was decreased. This decrease, however, was due to noncovalently bound tetraols and does not seem to be a function of the covalent adducts formed. Nucleosomal core particles, reacted under identical conditions, showed very little quenching of the pyrene-like chromophore. When increasing amounts of cysteine were present the covalent binding could be prevented in both free DNA and nucleosomal DNA. Analysis of the distribution of the carcinogen to nucleosomal DNA showed that the covalently bound carcinogen was located at or within 10 bases of the 5′-OH region of the nucleosomal DNA.  相似文献   

2.
The pyrene-like fluorescence of the covalent benzo(a)pyrene diol-epoxide-DNA complex prepared by reacting 7,8,-dihydrodiol 9,10-epoxy benzo(a)pyrene (BPDE) with DNA in aqueous solution in vitro, has been investigated. It is shown that this fluorescence is sensitive to molecular oxygen, to the concentration of native DNA and to the ionic strength (KCl concentration), but is insensitive to the concentration of denatured DNA. These effects are related to the conformation of the pyrene-like chromophore of BPDE. Most of the fluorescence of a dilute solution of the DNA-bound benzo(a)pyrene derivative originates from binding sites in which the pyrene moiety is not intercalated between the DNA base pairs, but is located on the outside of the DNA double helix.  相似文献   

3.
When single-stranded ØX174 DNA is exposed to certain dihydrodiol derivatives of benzo[a]pyrene and benz[a]anthracene, inhibition of viral DNA infectivity is observed. Binding studies with labeled trans-7,8-dihydrodiol of benzo[a]pyrene and anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide indicate that the diol preferentially reacts with single-stranded DNA, whereas the diolepoxide reacts equally well with both single- and double-stranded DNA, as well as with RNA. Also, the diol and diolepoxide derivatives show a marked difference in their capacity to complex with specific deoxyhomopolymers, i.e., Poly dI. These observations suggest that the diol and diolepoxide derivatives recognize different binding sites in nucleic acids, and that the diol derivative may play an important role in mutagenesis and carcinogenesis induced by polycyclic aromatic hydrocarbons.  相似文献   

4.
When African green monkey kidney cell lines, infected with simian virus 40, were exposed to benzo[a]pyrene-7,8-dihydrodiol or anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide, inhibition of progeny virus formation was observed. Alkylation of SV40 DNA with anti-BPDE inhibits the infectivity of this viral DNA; however, the inactivation does not follow a single-hit mechanism. Studies on [3H]thymidine incorporation indicate that SV40 DNA synthesis is markedly impaired for the first 12 hours following BPDE treatment; 24 to 36 hours later, however, SV40 DNA synthesis is almost normal. These data suggest that the inhibition of SV40 DNA synthesis by BP derivatives is reversible and that the observed reduction in viral titer requires some other explanation.  相似文献   

5.
7β,8α-Dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BP diolepoxide, 1) and 1-pyrenyloxirane (2) bind chemically to calf thymus DNA. The fluorescence efficiency of pyrenyl groups in mutagen modified DNA varies appreciably with its conformation and decreases in the order: pyrenees, modified denatured DNA and modified native DNA. A particularly interesting observation is that the fluorescence efficiency of mutagen modified DNA intensifies substantially upon denaturation. Our results suggest that the pyrenyl groups in mutagen modified DNA are intercalated between the base pairs of DNA. Since both 1 and 2 are powerful frame-shifting mutagens for S. typhimurium TA-98, the intercalative covalent binding of these compounds to DNA may provide a molecular basis for their mutagenic activity.  相似文献   

6.
A new approach has been developed to detect ultra low concentrations of benzo(a)pyrene products bound to nucleic acids invivo. The binding to DNA of hamster embryo cell cultures was characterized by low temperature fluorescence spectroscopy. The method can detect less than one polycyclic hydrocarbon residue per 50,000 nucleotides. The fluorescence spectra indicate that the benzo(a)pyrene derivative bound to DNA has a pyrene-like chromophore and resembles that obtained when DNA is reacted invitro with the 7,8-diol-9,10-oxide of benzo(a)pyrene. This confirms that metabolism of the 7,8,9,10 ring on benzo(a)pyrene precedes reaction with DNA. The method should be useful for detecting and characterizing the invivo binding of other fluorescent carcinogens to nucleic acids.  相似文献   

7.
In vivo and in vitro studies were carried out to determine the effects of estradiol and other steroid hormones on aryl hydrocarbon hydroxylase-mediated binding of benzo(a)pyrene metabolites to DNA. Injection of female C57B16J mice with 0.2 mg or 2 mg of estradiol 24 hours prior to, during and 24 hours after injection of 3-methylcholanthrene resulted in a significant decrease in the capacity of hepatic microsomes from these animals to mediate the binding of benzo(a)pyrene metabolites to DNA when compared to microsomes from animals receiving 3 methylcholanthrene treatment only. Binding of benzo(a) pyrene metabolites was inhibited between 22 and 50%, depending on the dose of estradiol used. The enzyme and cytochrome components of the aryl hydrocarbon hydroxylase multienzymic complex were not affected by either estradiol treatment. The data suggests that estradiol inhibits aryl hydrocarbon hydroxylase mediated binding of benzo(a)pyrene metabolites to DNA by activity as a non-competitive inhibitor of aryl hydrocarbon hydroxylase activity.  相似文献   

8.
F M Chen 《Nucleic acids research》1983,11(20):7231-7250
Solubilization as well as spectral studies of pyrene in natural DNA and synthetic deoxypolynucleotide solutions at neutral pH reveal at least two binding modes. Sites I are predominant in native DNA and in poly(dA-dT): poly(dA-dT) whereas sites II are found with denatured DNA and other polynucleotides such as poly(dA):poly(dT) and three different types of guanine containing copolymers which solubilize pyrene to a lesser extent. Spectral comparison with the covalent adducts of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10- tetrahydro-benzo(a)pyrene (anti-BPDE) and the physical complexes of its tetraols lead to the suggestion of a base sequence specific binding model for this carcinogenic metabolite to account for the puzzling fact that although its physical binding is predominantly intercalative, the covalent adducts appear not to be intercalated. It is speculated that in neutral solutions, intercalation may have little, if any, to do with the chemical lesion of this metabolite to the guanine base of the DNA and may, on the contrary, provide an efficient pathway for detoxification.  相似文献   

9.
Benzo[a]pyrene became bound to the hepatic DNA in juvenile English sole (Parophrys vetulus) force fed tritiated benzo[a]pyrene. No statistically signïficant change was observed in the level of the binding from 16 h to 2 wk after the single exposure. Specific activities of binding were similar for both DNA and protein. Moreover, a binding index was calculated to represent the number of benzo[a]pyrene molecules bound per 106 nucleotides after administration of a theoretical dose of 1 mmole of hydrocarbon per kg body weight. The value for English sole liver DNA was of the same order of magnitude as the values reported for mouse skin and mammary gland in which benzo[a]pyrene is carcinogenic.  相似文献   

10.
Using 3H-dioxane, the distribution of dioxane among a number of tissues and various subcellular fractions of rat liver was studied. At various times after i.p. injection, dioxane was found to distribute more or less uniformly among various tissues (liver, kidney, spleen, lung, colon and skeletal muscle), consistent with its polar/nonpolar nature. Studies of the nature of dioxane binding, however, revealed that the extent of “covalent” binding (as measured by incorporation into lipid-free, acid-insoluble tissue residues) was significantly higher in the liver (the main carcinogenesis target tissue), spleen and colon than that in other tissues. Investigations of the subcellular distribution in liver indicated that most of the radioactivity was in the cytosol, followed by the microsomal, mitochondrial and nuclear fractions. The binding of dioxane to the macromolecules in the cytosol was mainly noncovalent. The percent covalent binding was highest in the nuclear fraction, followed by mitochondrial and microsomal fractions and the whole homogenate. Pretreatment of rats with inducers of microsomal mixed-function oxidases had no significant effect on the covalent binding of dioxane to the various subcellular fractions of the liver. There was no microsome-catalyzed invitro binding of 3H- or 14C-dioxane to DNA under conditions which brought about substantial binding of 3H-benzo[a]pyrene.  相似文献   

11.
Abstract

The conformations of the adducts derived from the covalent binding of the two enantiomeric forms of 9,10-epoxy-9,10,11,12-tetrahydrobenzo(e)pyrene (BePE) with native DNA were investigated by the electric linear dichroism technique. Both enantiomers give rise to two major adducts, one of which appears to be a quasi-intercalative site (I) while the other one is an external binding site (II). While the overall linear dichroism spectra are similar, in the case of the (—) enantiomer there is a greater contribution of site II adducts. These results are markedly different from the ones obtained with the two enantiomers of anti-benzo(a)pyrene-7,8-diol-9,10-epoxide (BaPDE), where the (+) enantiomer gives rise almost exclusively to site II binding, while the (—) enantiomer gives rise to both site I and site II covalent binding. The differences in the heterogeneity of binding between BePE and anti-BaPDE enantiomers may be due to the absence of hydroxyl groups in BePE which, in the case of BaPDE, are an important factor in determining the stereoselective properties of the covalent binding to double-stranded DNA.  相似文献   

12.
In order to define the site of bioactivation of CCl4, CHCl3 and CBrCl3 in the NADPH cytochrome c reductase-cytochrome P-450 coupled systems of liver microsomes, the 14C-labeled hepatotoxins were incubated invitro with isolated rat liver microsomes and a NADPH-generating system. The covalent binding of radiolabel to microsomal protein was used as a measure of the conversion of the hepatotoxins to reactive intermediates. Omission of NADPH, incubation under CO:O2 (8:2) and addition of a cytochrome c reductase specific antisera mardedly reduced the covalent binding of all three compounds. When cytochrome P-450 was reduced to less than 25% of normal by pretreatment of rats with allylisopropylacetamide (AIA), but cytochrome c reductase activity was unchanged, the covalent binding of CCl4, CHCl3, and CBrCl3 was decreased by 63, 83, 70%, respectively. Incubation under an atmosphere of N2 enhanced the binding of CCl4, inhibited the binding of CHCl3 and did not influence the binding of CBrCl3. It is concluded that cytochrome P-450 is the site of bioactivation of these three compounds rather than NADPH cytochrome c reductase and that CCl4 bioactivation proceeds by cytochrome P-450 dependent reductive pathways, while CHCl3 activation proceeds by cytochrome P-450 dependent oxidative pathways.  相似文献   

13.
Abstract

The reaction mechanisms of two isomeric bay-region diol epoxides of 5-methylchrysene (trans-1,2-dihydroxy-anti/-3,4-epoxy-1,2,3,4-tetrahydro-5-methylchrysene (DE-I) and trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydro-5-methylchrysene (DE-II) with double-stranded DNA in aqueous solutions were studied utilizing kinetic flow dichroism and fluorescence techniques. As in the case of the previously studied benzo(a)pyrene-7,8-diol-9,10-oxide isomers (BaPDE), both DE-I and DE-II rapidly form intercalation-type complexes (association constants K = 2700 and 1500 M?1 respectively in a neutral 5mM phosphate solution). The physically bound diol epoxide molecules react on time scales of minutes to form predominantly tetraols; a greater fraction (6±1%) of DE-I than of DE-II (2–3%) molecules react with the DNA to form covalent products. The DE-II isomer is characterized by a greater reactivity than DE-I, and the rates of reaction are markedly accelerated in the presence of DNA in both cases. The linear dichroism spectra of the covalent adducts reveal that the conformations of both types of adducts are similar, with the long axes of the phenanthrenyl chromophores tilted, on the average, at angles of 38-52° with respect to the average orientations of the transition moments (at 260 nm) of the DNA bases. The conformations of the covalently bound DE-I and DE-II molecules resemble those observed in the case of the highly tumorigenic (+) enantiomer of anti-BaPDE. The differences in the biological properties of these and other polycyclic aromatic diol epoxides are discussed in terms of their reactivities with DNA and the conformations of the adducts formed.  相似文献   

14.
An antibody prepared against purified rat liver NADPH-cytochrome c reductase inhibited both the pulmonary and hepatic microsomal covalent binding of 4-ipomeanol as well as the respective NADPH-cytochrome c reductase activities, findings which are consistent with previous studies which indicated the participation of cytochrome P450 in the metabolic activation of the toxin. An antibody prepared against purified rat liver cytochrome b5, which strongly inhibited both the rat hepatic and pulmonary NADH-dependent cytochrome c reductases, and was inactive against the respective NADPH-dependent cytochrome c reductases, had little effect on metabolic activation of 4-ipomeanol by hepatic microsomes, but strongly inhibited both the NADH-supported and the NADPH-supported pulmonary microsomal metabolism and covalent binding of the compound. These results suggest that metabolic activation of 4-ipomeanol involves a two-electron transfer in which transfer of the second electron via cytochrome b5 is rate-limiting in lung microsomes.  相似文献   

15.
Chromatin was prepared from mouse liver and incubated in an invitro binding assay containing 3H-benzo(a)pyrene and a NADPH-generating system. Binding to chromatin DNA was stimulated by the presence of microsomes from 3-methylcholanthrene pretreated mice. This incubation system represents an improvement over previous studies in which purified DNA is employed as the target macromolecule in that aralkylation is being investigated under conditions which better approximate those present in the cell, i.e., the genetic material is “coated” with nuclear protein.  相似文献   

16.
Evidence is presented that both myosin and actomyosin in presence of Mg2+ and KCl catalyze an incorporation of 32Pi into ATP. The rate with actomyosin is about 1500 the rate of ATP hydrolysis; the rate with myosin is less than 1100 of that with actomyosin. With myosin, but not with actomyosin, an apparent initial “burst” of 32Pi incorporation into ATP is observed. Actin binding thus promotes ATP dissociation. The data with myosin allow estimation of both the amount of enzyme-bound [32P]-ATP present and the rate constant, k?1, for dissociation of the myosin· ATP. From these results and other data a ?ΔGo for ATP binding to myosin of 12–13 kcal/mole may be estimated, with a much lower ?ΔGo for hydrolysis of enzyme-bound ATP. Protein conformational change accompanying ATP binding appears to be the principal means of capture of energy from the overall reaction of ATP cleavage.  相似文献   

17.
CNDO2 molecular orbital theoretical calculations performed on the anti and syn diolepoxides (1 and 2) of the potent carcinogen benzo[a]pyrene provide insight into the molecular structure and reactivity of these mutagenic and carcinogenic hydrocarbon metabolites. Hydrogen-bonded interaction between the 7-HO proton and the epoxide oxygen atom of 2 is shown to be absent in the normal semichair conformation of the tetrahydro ring, (H…O bond distance = 2.7 Å), but is energetically favored in a somewhat distorted puckered structure (H…O bond distance = 1.7 Å). Unexpectedly, internal H-bonding alters the relative electron density at C9 and C10, leading to prediction of the former as the more electrophilic center. Since all reactions of 2 take place exclusively at C10, transannular H-bonding is concluded not to contribute significantly to the structure of 2. Diolepoxide reactions with both weak and strong nucleophiles and with DNA are discussed and the mechanisms interpreted in terms of molecular structure as determined by the theoretical calculations.  相似文献   

18.
The in vitro reaction of bacteriophage T7-DNA with the radioactive diastereomeric benzo(a)pyrene-diol-epoxides, (±) [3H9, 3H10]-7β,8α-dihydroxy-9α,10β-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene, and (±) [3H9, 3H10]-7β,8α-dihydroxy-9β,19β-epoxy-7,8,9,10-tetrahydrobenzo(1)pyrene, was investigated. Chromatographic analysis of digests of the DNA allowed the distinction of characteristic deoxynucleoside adduct peaks for the two benzo(a)pyrene-diol-epoxides. Our results, together with data from the literature, allow the identification of these adducts as mostly N2-(10-7β,8α,9α-trihydroxy-7,8,9,10-tetrahydrobenzo(a)pyreney1)deoxyguanosine and N2-(10-7β,8α,9β-trihydroxy-7,8,9,10-tetrahydrobenzo(a)pyreney1)deoxyguanosine, respectively. DNA-benzo(a)pyrene adducts with the same chromatographic properties were formed in mouse embryo fibroblasts upon treatment with benzo(a)pyrene.  相似文献   

19.
The metabolic activation of benz(a)anthracene was investigated by incubating [3H]-benz(a)anthracene with DNA, a NADPH-generating system and rat-liver microsomes. When hydrolysates of the DNA were chromatographed on Sephadex LH20 columns, three hydrocarbon-nucleoside adduct peaks were resolved and these were further examined using HPLC. One adduct probably results from the reaction of the non-bay-region diol-epoxide r-8,t-9-dihydroxy-t-10,11-oxy-8,9,10,11-tetrahydrobenz(a)anthracene (anti-BA-8,9-diol 10,11-oxide) with DNA. The other two adducts did not co-chromatograph with adducts formed from any of the four possible isomeric diolepoxides that can be formed in the 8,9,10,11-ring of benz(a)anthracene.  相似文献   

20.
The primary mode of non-covalent interaction of the strong carcinogen, benzo(a)pyrene diol epoxide, with DNA is through intercalation. It has variously been suggested that intercalative complexes may be prerequisite for either covalent binding or DNA-catalysed hydrolysis of the epoxide or both. Geacintov [Geacintov, N. E. (1986). Carcinogenesis 7, 589.] has recently argued that intercalation is important in covalent binding and presented theoretical constructs consistent with this proposal. A more general theoretical model is presented here which includes the possibilities that either catalysis of hydrolysis or covalent binding of benzo(a)pyrene diol epoxide DNA can occur (a) in an intercalation complex, or (b) without formation of a detectable, physically bound complex. It is shown that a variety of possible mechanisms formulated under this general theory lead to equations for overall reaction rates and covalent binding fractions which are all of the same form with respect to DNA concentration dependence. A consequence of this is that experimental studies of the dependence of hydrolysis rates and covalent binding fractions on DNA concentration do not distinguish between the various possible mechanisms. These findings are discussed in relation to the interactions of benzo(a)pyrene diol epoxide with chromatin in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号