首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth of murine hemopoietic cells in culture requires the presence of a stimulator of stem cell proliferation, "colony stimulating factor" (CSF). A widely used source of CSF is lung conditioned medium (LCM). We have earlier shown that the great variability of CSF activities in different batches of LCM is due to varying amounts of inhibitor(s). The present study expands the observation that the addition of ascorbic acid to the murine bone marrow soft agar assay system removes the inhibitory activity. The vitamin probably acts as an antioxidant or free radical scavenger, since addition of reduced (but not oxidized) glutathione, cysteine, dithiothreitol or 2-mercaptoethanol to the cultures also inactivates the endogeneous inhibitor. Cysteine and glutathione gave the highest colony numbers, were active at concentrations present in body fluids and did not inhibit colony growth even at concentrations ten times higher than optimum. No synergistic effects could be observed between the different antioxidants. At optimum concentration (usually 0.45 mmol/l) the otherwise bell-shaped dose-response curve for conditioned medium changed to a sigmoid curve. Antioxidants had no growth promoting effect in the absence of CSF. The presence of cysteine or vitamin C revealed CSF-like activity in conditioned media of tissues not considered to be potent producers of such factors. It has been reported that individual batches of foetal calf serum contain different levels of reduced glutathione, and we suggest that one of the batch variable growth regulators in foetal calf serum may be reduced glutathione. The results indicate a possible physiological role of antioxidants in granulopoiesis and suggest that cysteine or reduced glutathione should be freshly added to culture systems assaying CSF and/or granulocyte macrophage progenitor cells.  相似文献   

2.
Manganese superoxide dismutase (Mn-SOD) has been purified with a high yield (320 mg) from human liver (2 kg) and crystallized. Low-angle laser light scattering of the enzyme has shown that native enzyme is a tetrametic form. Four of the eight cysteine residues in the tetramer reacted with 5,5'-dithiobis(2-nitrobenzoic acid) or with iodoacetamide. The others were only reactive in protein heated with SDS or urea after reduction with dithiothreitol or 2-mercaptoethanol. The reactive sulfhydryl group was found to be located at Cys196 by amino acid sequence analysis of Nbs2-reactive peptides isolated by activated thiol-Sepharose covalent chromatography. Incubation of Mn-SOD in 1% SDS for 2 or 3 days at 25 degrees C or 5 min at 100 degrees C gave material showing two prominent components on polyacrylamide gel electrophoresis in the presence of 0.1% SDS. The major component had a molecular mass of 23 kDa; the other, 25 kDa. Reduction of the protein by dithiothreitol or 2-mercaptoethanol heated in SDS produced only the 25-kDa monomer species. Essentially, no thiol groups were detected in the 23-kDa form, in which two cysteine residues appear to have been oxidized to form an intrasubunit disulfide. This indicates that Cys196 has a reactive sulfhydryl and appears to be a likely candidate for a mixed disulfide formation in vivo.  相似文献   

3.
A sulfhydryl-oxidizing enzyme has been found in skin of young rats and a method for purifying the enzyme over 600-fold has been developed. Enzymatic activity was assayed either by its ability to oxidize dithiothreitol of by measuring its ability to renature reductively denatured ribonuclease A. Skin sulfhydryl oxidase catalyzed the oxidation of various thiols: dithiothreitol, dithioerythritol, D-penicillamine, and L-cysteine. Glutathione and 2-mercaptoethanol were very poor substrates for the enzyme. The enzyme also reactivated reductively denatured ribonuclease A, with neither the presence of a thiol nor prior reduction of the enzyme being necessary. The molecular weight of the enzyme was estimated to be 66 000 +/- 2000, and the isoelectric point was determined to be at pH 4.65. Alkylating reagents alone had some inhibiting effect on skin sulfhydryl oxidase; when the enzyme was preincubated with thiols which were substrates, inhibition by alkylating reagents was greatly increased. After preincubation with dithiothreitol, treatment of the enzyme with alkylating reagents or N-ethylmaleimide caused significant inhibition; preincubation with a poor substrate, reduced glutathione, did not enhance inhibition by alkylating reagents or N-ethylmaleimide.  相似文献   

4.
Herbimycin A, an antibiotic which reverses Rous sarcoma virus transformation, inhibited irreversibly the auto- and trans-phosphorylation activities of p60v-src in in vitro immune complex kinase assays. The addition of a sulfhydryl compound such as dithiothreitol, 2-mercaptoethanol, glutathione (reduced form) or cysteine abolished the ability of herbimycin A to inactivate p60v-src kinase as well as the ability to reverse transformed cell morphology, whereas the addition of oxidized glutathione, cystine or methionine showed no effect. The sulfhydryl alkylating reagent N-ethylmaleimide also, although less effectively, inactivated p60v-src kinase activity in vitro. These results suggest the likelihood that sulfhydryl groups of p60v-src are involved in the inactivation of v-src tyrosine kinase activity by herbimycin A.  相似文献   

5.
Centrifugal column chromatography was shown to provide a rapid, efficient, and useful means of separation of various low molecular weight thiols from proteins. The single chromatographic step procedure employed standard 5 ml plastic syringes containing Sephadex G-25 as the bed matrix and required less than 5 min to produce average dilutions of 5000-, 980-, and 25-fold, respectively, from 5 to 200 mM initial concentrations of 2-mercaptoethanol, dithiothreitol, and reduced glutathione in the sample as measured by titration with 5,5'-dithiobis-(2-nitrobenzoic acid). Dihydrofolate reductase solutions of 0.07-0.08 mM were separated from 50 mM 2-mercaptoethanol, dithiothreitol, or reduced glutathione with a minimum 16,500-fold dilution of the thiol after centrifugal chromatography on two consecutive columns. Thymidylate synthase solutions of 0.06 mM were effectively separated from 50 mM 2-mercaptoethanol or dithiothreitol with a minimum average 5900-fold dilution of the thiol after consecutive column chromatography. There was no change in either the physical or chemical properties of the enzyme throughout the course of the experiments as determined by activity, active site sulfhydryl group titration, and binding assays. Recoveries of protein obtained in the load fraction were usually in excess of 70% of the protein loaded with virtually no dilution from the initial concentration. This method was developed in order to facilitate the study of the active site sulfhydryl groups in enzymes.  相似文献   

6.
Cell-free protein synthesis systems are powerful tools for protein expression, and allow large amounts of specific proteins to be obtained even if these proteins are detrimental to cell survival. In this report we describe the effect of cysteine on cell-free protein synthesis. The addition of cysteine caused a 2.7-fold increase in the level of synthesized glutathione S-transferase (GST). Moreover, the levels of sulfhydryl group reductants, including reduced glutathione and dithiothreitol (DTT), were increased 1.9- and 1.7-fold, respectively, whereas levels of the disulfide dimers, cystine and oxidized glutathione, were suppressed 87% and 66%, respectively. These trends were also observed for green fluorescent protein (GFP) expression. The addition of cysteine competitively reversed the inhibitory effect of cystine on protein expression. These results suggest that the sulfhydryl group in cysteine plays a crucial role in enhancing protein synthesis, and that the addition of excess cysteine could be a convenient and useful method for improving protein expression.  相似文献   

7.
A systematic study was carried out to optimize production of biologically active recombinant IGF-I with native conformation. Careful optimization of buffer carbonate, pH (9.5), protein concentration (0.5 mg/ml), temperature (25°C), and disulfide-exchange reagents (2 mM reduced glutathione/1 mM oxidized glutathione, 1 mM cysteine, 1 mM -mercaptoethanol, and 2 mM dithiothreitol) allowed a yield of correctly folded recombinant IGF-I as high as 80%, which may be useful for large scale production of IGF-I.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

8.
Ishiguro K  Ando T  Watanabe O  Goto H 《FEBS letters》2008,582(23-24):3531-3536
6-Shogaol and 6-gingerol are ginger components with similar chemical structures. However, while 6-shogaol damages microtubules, 6-gingerol does not. We have investigated the molecular mechanism of 6-shogaol-induced microtubule damage and found that the action of 6-shogaol results from the structure of alpha,beta-unsaturated carbonyl compounds. alpha,beta-Unsaturated carbonyl compounds such as 6-shogaol react with sulfhydryl groups of cysteine residues in tubulin, and impair tubulin polymerization. The reaction with sulfhydryl groups depends on the chain length of alpha,beta-unsaturated carbonyl compounds. In addition, alpha,beta-unsaturated carbonyl compounds are more reactive with sulfhydryl groups in tubulin than in 2-mercaptoethanol, dithiothreitol, glutathione and papain, a cysteine protease.  相似文献   

9.
The reaction between allicin (diallylthiosulfinate), the active component of garlic and reduced glutathione was investigated. The product of this reaction, mixed disulfide S-allylmercaptoglutathione (GSSA) was separated by high performance liquid chromatography and identified by 1H and (13)C nuclear magnetic resonance and mass spectroscopy. The reaction is fast (with an apparent bimolecular reaction rate constant of 3.0 M(-1) s(-1)). It is pH-dependent, which reveals a direct correlation to the actual concentration of mercaptide ion (GS(-)). Both GSSA and S-allylmercaptocysteine (prepared from allicin and cysteine) reacted with SH-containing enzymes, papain and alcohol dehydrogenase from Thermoanaerobium brockii yielding the corresponding S-allylmercapto proteins, and caused inactivation of the enzymes. The activity was restored with dithiothreitol or 2-mercaptoethanol. In addition, GSSA also exhibited high antioxidant properties. It showed significant inhibition of the reaction between OH radicals and the spin trap 5,5'-dimethyl-1-pyroline N-oxide in the Fenton system as well as in the UV photolysis of H2O2. In ex vivo experiments done with fetal brain slices under iron-induced oxidative stress, GSSA significantly lowered the production levels of lipid peroxides. The similar activity of GSSA and allicin as SH-modifiers and antioxidants suggests that the thioallyl moiety has a key role in the biological activity of allicin and its derivatives.  相似文献   

10.
The mutagenic activity of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), which is formed during chlorination of drinking water, was effectively inhibited by sulfhydryl compounds such as cysteine, cysteamine, glutathione, dithiothreitol and 2-mercaptoethanol. Preincubation of 0.5 μg MX with 15 μg cysteine (molar ratio 1:37) in a phosphate buffer (pH 6.0–8.0) at 37°C for 15 min prior to exposure of bacterial cells depleted the mutagenic activity of MX. Together with the result showing a change in the UV spectra, it is suggested that sulfhydryl compounds inactivate MX by direct chemical interaction before MX induces DNA damage. On the other hand, a variety of antioxidants other than the sulfhydryl compounds showed no inhibitory effects. Investigation using structural analogs of cysteine revealed that the thiol moiety was indispensable for antimutagenic activity and the amino moiety appeared to enhance the MX-inactivating reaction of the SH group.  相似文献   

11.
An iron chelate, ferric nitrilotriacetate (Fe3+-NTA), is nephrotoxic and also carcinogenic to the kidney in experimental animals. Iron-promoted lipid peroxidation in the proximal tubules is thought to be responsible for the pathologic process. In the present study, iron-promoted lipid peroxidation, with thiobarbituric acid (TBA) formation as an indication, in the tubular surface was simulated in vitro using rat kidney brush border membrane vesicles and the results were compared with those using linoleate micelles and rat liver microsomal lipid liposomes. Addition of ascorbate, cysteine, or dithiothreitol to the Fe3+-NTA solution resulted in consumption of dissolved oxygen and promoted the lipid peroxidation in the micelles and in the liposomes. In contrast, addition of glutathione to the Fe3+-NTA solution caused only sluggish oxygen consumption and far less peroxidation in these lipid systems. When the brush border membrane vesicles were used for the peroxidation substrate, Fe3+-NTA and glutathione could promote TBA formation at a rate comparable to that elicited by Fe3+-NTA with cysteine or dithiothreitol. Acivicin, a gamma-glutamyl transpeptidase inhibitor, suppressed the peroxidation of the brush border membrane vesicles promoted by Fe3+-NTA and glutathione. These results suggest the following mechanism of proximal tubular cell lipid peroxidation promoted by Fe-NTA: Fe3+-NTA filtered through glomeruli is rapidly reduced by cysteine and Fe2+-NTA starts lipid peroxidation at the site, leading to proximal tubular necrosis. Cysteine is amply supplied by the decomposition of glutathione within the lumen by the action of gamma-glutamyl transpeptidase and dipeptidase situated at the proximal tubular brush border membrane.  相似文献   

12.
ADP-ribosylation is a posttranslational modification of proteins by amino acid-specific ADP-ribosyltransferases. Both pertussis toxin and eukaryotic enzymes ADP-ribosylate cysteine residues in proteins and also, it has been suggested, free cysteine. Analysis of the reaction mechanisms of cysteine-specific ADP-ribosyltransferases revealed that free ADP-ribose combined nonenzymatically with cysteine. L- and D-cysteine, L-cysteine methyl ester, and cysteamine reacted with ADP-ribose, but alanine, serine, lysine, arginine, N-acetyl-L-cysteine, 2-mercaptoethanol, dithiothreitol, and glutathione did not. The 1H NMR spectrum of the product, along with the requirement for both free sulfhydryl and amino groups of cysteine, suggested that the reaction produced a thiazolidine linkage. ADP-ribosylthiazolidine was labile to hydroxylamine and mercuric ion, unlike the ADP-ribosylcysteine formed by pertussis toxin and NAD in guanine nucleotide-binding (G-) proteins, which is labile to mercuric ion but stable in hydroxylamine. In the absence of G-proteins but in the presence of NAD and cysteine, pertussis toxin generated a hydroxylamine-sensitive product, suggesting that a free ADP-ribose intermediate, expected to be formed by the NADase activity of the toxin, reacted with cysteine. Chemical analysis, or the use of alternative thiol acceptors lacking a free amine, is necessary to distinguish the enzymatic formation of ADP-ribosylcysteine from nonenzymatic formation of ADP-ribosylthiazolidine, thereby differentiating putative NAD:cysteine ADP-ribosyltransferases from NAD glycohydrolases.  相似文献   

13.
Manganese, calcium and mercury ions, as well as p-chloromercury benzoate and dithiothreitol are studied for their effect on the activity of inorganic pyrophosphatase (EC 3.6.1.1) of mice spleen. It is shown that Ca2+ and Mn2+ are inhibitors of this enzyme, but Mn2+ in low concentrations may replace Mg2+ in the pyrophosphatase reaction. Hg2+ and p-chloromercury benzoate inhibit the pyrophosphatase activity essentially but not completely. Mice spleen pyrophosphatase is very labile: its preincubation without the substrate for 30 min at 37 degrees C leads to a complete loss of the activity. Neither glycerol, nor glutathione and cysteine but magnesium ions, dithiothreitol and 2-mercaptoethanol protect the enzyme from inactivation. The enzyme is purified by the sulphate ammonium salting-out, gel filtration on Sephadex G-100 as well as by isoelectrofocusing in 5% PAAG. Then pyrophosphatase is eluted from gel and subjected to electrophoresis in the plane layer of the linear gradient of 5-15% PAAG with SDS or 5-25% PAAG without denaturing conditions. One zone corresponding to the molecular mass of 70 kDalton is obtained. It is splitted into two zones in electrophoresis with SDS and 2-mercaptoethanol.  相似文献   

14.
Caspases are cysteine proteinases that play a critical role in the execution phase of apoptosis. The active site cysteine residue must be reduced for caspase activity. Thioredoxins are redox proteins that catalyze the reduction of cysteine residues. We have examined the ability of various recombinant human thioredoxins to activate caspase-3. The EC(50) for caspase-3 activation by reduced thioredoxin-1 was 2.5 microM, by reduced glutathione 1.0 mM and by dithiothreitol 3.5 mM. A catalytic site redox-inactive mutant thioredoxin-1 was almost as active as thioredoxin-1 in activating caspase-3. Caspase activation was shown to correlate with the number of reduced cysteine residues in the thioredoxins. Reduced insulin and serum albumin were as effective on a molar basis as thioredoxin-1 in activating caspase-3. Thus, caspase-3 activation is not a specific effect of thioredoxins but is a property shared by other reduced proteins.  相似文献   

15.
Superfusates from rat brain slices were screened for thiol compounds after derivatization with monobromobimane by reversed-phase HPLC. Only glutathione and cysteine were detected. The Ca(2+)-dependent release of these compounds from slices of different regions of rat brain was investigated, applying a highly sensitive and reproducible quantification method, based on reduction of superfusates with dithiothreitol, reaction of thiols with iodoacetic acid, precolumn derivatization with o-phthalaldehyde reagent solution, and analysis with reversed-phase HPLC. This methodology allowed determination of reduced and total thiols in aliquots of the same superfusates. Mostly reduced glutathione and cysteine were released upon K+ depolarization and the Ca2+ dependency suggests that they originate from a neuronal compartment. The GSH release was most prominent in the mesodiencephalon, cortex, hippocampus, and striatum and lowest in the pons-medulla and cerebellum. This underscores a physiologically significant role for glutathione in CNS neurotransmission.  相似文献   

16.
The translational inhibition produced by addition of oxidized glutathione (GSSG) to hemin-containing reticulocyte lysates and the accompanying phosphorylation of the alpha subunit of the polypeptide chain initiation factor eIF-2 can be prevented or reversed by NADPH generators, including glucose 6-phosphate, deoxyglucose 6-phosphate, fructose 6-phosphate, NADPH itself, and also by dithiols, e.g., dithiothreitol, but not by reduced glutathione (GSH) or other monothiols, e.g., 2-mercaptoethanol. The same is true of the inhibition caused by addition of glutamate dehydrogenase, alpha-ketoglutarate, and NH4+, which may be entirely due to NADPH depletion via the reaction.  相似文献   

17.
关于巯基和Mn~(2+)介导豆壳过氧化物酶氧化藜芦醇的研究   总被引:1,自引:0,他引:1  
藜芦醇作为非酚型木素模型物具有较高的氧化还原电位,豆壳过氧化物酶(soybeanhullperoxidase,SHP,EC.1.11.1.7)通过依赖于过氧化氢的正常过氧化物酶催化循环不能氧化藜芦醇,但在还原型谷胱甘肽、Mn2+和有机酸络合剂存在下却可以通过不依赖于过氧化氢的氧化酶反应途径完成对藜芦醇的氧化,产物为藜芦醛,反应最适pH为4.2。动力学研究表明该反应遵循顺规序列反应机制;对藜芦醇的表观KM值为4.3mmol/L,对谷胱甘肽的表观KM值为4.8mmol/L。巯基还原剂二硫苏糖醇、L-半胱氨酸和β-巯基乙醇亦可替代还原型谷胱甘肽促进藜芦醇氧化  相似文献   

18.
The 73-kDa protease (73K protease) was purified from a clinical isolate of Serratia marcescens kums 3958. The purified protease appeared homogeneous by sodium dodecyl sulfate polyacrylamide gel electrophoresis in the presence or absence of 2-mercaptoethanol. The protease is active in a broad pH range with maximum activity at pH 7.5-8.0. The protease appeared to be a thiol protease, since it was inhibited by sulfhydryl reactive compounds such as p-chloromercuribenzoic acid, fluorescein mercuric acetate (FMA), iodoacetamide, and N-ethylmaleimide, and the protease activity was enhanced by various reducing agents such as cysteine, glutathione, 2-mercaptoethanol, and dithiothreitol. The protease contained 2 mol of free sulfhydryl residues per mol of protease. When the protease was reacted with FMA, a maximum of 2 mol of FMA per mol of enzyme was found reacted, based on fluorescence quenching in which the enzyme inactivation was paralleled linearly with the loss of both SH groups. This indicates possible equal involvement of the two thiol groups for the enzyme activity. The inactivation of the protease by FMA was partially restored by a dialysis in the presence of cysteine or dithiothreitol. The protease was not inhibited by high molecular weight kininogen but was inhibited by alpha 2-macroglobulin. The protease bound stoichiometrically to alpha 2-macroglobulin with 1:1 molar ratio and 25% activity remained constant even after the addition of 4 molar excess of alpha 2-macroglobulin. The protease extensively degraded IgG, IgA, fibronectin, fibrinogen, and alpha 1-protease inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The acetone precipitation of a partially purified tyrosine 3-monooxygenase (L-tyrosine, tetrahydropteridine: oxygen oxidoreductase (3-hydroxylating), EC 1.14.16.2) resulted in the complete loss of enzymatic activity. The enzymatic activity was restored by incubation with iron and dithiothreitol. The restoration of the activity was a pH-, temperature- and time-dependent reaction. Since cobalt, nickel, copper, zinc, manganese, cadmium, magnesium calcium and barium ions were all ineffective in restoring activity, iron ion appeared to be specifically required in the restoration of the enzyme activity. Dithiothreitol could be partially replaced in the restoration step by glutathione, 2-mercaptoethanol or cysteine.  相似文献   

20.
The transition from the vegetative rosette stage to the reproductive growth stage (bolting) in the rosette plant Eustoma grandiflorum has a strict requirement for vernalization, a treatment that causes oxidative stress. Since we have shown that reduced glutathione (GSH) and its biosynthesis are associated with bolting in another rosette plant Arabidopsis thaliana, we here investigated whether a similar mechanism governs the vernalization-induced bolting of E. grandiflorum. Addition of GSH or its precursor cysteine, instead of vernalization, induced bolting but other thiols, dithiothreitol and 2-mercaptoethanol, did not. The inductive effect of vernalization on bolting was nullified by addition of buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, without decreasing the plant growth rate. BSO-mediated inhibition of bolting was reversed by addition of GSH but not by cysteine. These indicate that vernalization-induced bolting involves GSH biosynthesis and is specifically regulated by GSH. Plant GSH increased during the early vernalization period along with the activity of gamma-glutamylcysteine synthetase that catalyzes the first step of GSH biosynthesis, although there was little change in amounts of GSH precursor thiols, cysteine and gamma-glutamylcysteine. These findings strongly suggest that vernalization stimulates GSH synthesis and synthesized GSH specifically determines the bolting time of E. grandiflorum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号