首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The catalytic bimodality of mammalian phosphoglycerate mutase   总被引:1,自引:0,他引:1  
Rabbit muscle phosphoglycerate mutase, presumed to manifest an absolute cofactor requirement for activity, has been found to express catalysis (3 +/- 1% of optimum) in the absence of added D-glycerate-2,3-P2. Isotope experiments indicate that this catalysis proceeds through a binary phosphoryl enzyme-glycerate intermediate which dissociates into free enzyme and monophosphoglycerate. 32P-Labeled phosphoglycerate mutase is formed by reaction with either D-32P-glycerate-3-P or D-U32P-glycerate-2,3-P2. In each case, the acid lability and alkali stability of the covalent adduct, phosphoenzyme, is consistent with a phosphohistidyl residue having been formed within the active site. D-[U-14C]Glycerate reacts with phosphoenzyme to generate D-[U-14C]monophosphoglycerate which, in turn, can react further with phosphoenzyme to yield D-[U-14C]glycerate-2,3-P2. The pH profile for the cofactor-independent activity exhibits an optimum at 6.0 as opposed to 7.0 when D-glycerate-2,3-P2 is present in the reaction medium. Bisubstrate kinetics (pH 7.0, 23 degrees C) with D-glycerate-3-P concentration as the variable, yields a family of reciprocal plots which is in accord with a modified ping-pong mechanism when D-glycerate-2,3-P2 concentrations are greater than 10(-1) Km (where Km = 0.33 microM). Progressively diminishing concentrations (much less than Km) of D-glycerate-2,3-P2 produce curvilinear reciprocal plots that approach linearity as a limit in accordance with single substrate kinetics.  相似文献   

2.
The steady state kinetics and effects of salts on chicken breast phosphoglycerate mutase have been examined. The enzyme can catalyze three phosphoryl transfer reactions: mutase, bisphosphoglycerate phosphatase, and bisphosphoglycerate synthase. The mutase rate was measured in the favorable direction (Keq = glycerate-3-P/glycerate-2-P approximately equal to 12) using [2T]glycerate-2-P as substrate. The bisphosphoglycerate phosphatase activity was studied in the presence of the activator, glycolate-2-P. The latter is an analog of the glycerate-P's and appears to act as an abortive mutase substrate. The kinetic pattern obtained with both activities is that of a ping-pong mechanism with inhibition by the second substrate occurring at a lower concentration than the Km value for that substrate. The kinetic parameters for the mutase determined in 50 mM N-[tris(hydroxymethyl)methyl-2-amino]ethanesulfonate (TES)/sodium buffer containing 0.1 M KCl, pH 7.5, 25 degrees C are: Km glycerate-2,3-P2, 0.069 micron; Km glycerate-2-P, 14 micron; Km glycerate-3-P approximately 200 micron; Ki glycerate-2-P, 4 micron. The kinetic parameters for the phosphatase reaction in 50 mM triethanolamine/Cl- buffer, pH 7.5, 25 degrees C are: Km glycerate-2,3-P2, 0.065 micron:Km glycolate-2P, 479 micron; Ki glycolate-2-P, 135 micron. The enzyme is sensitive to changes in the ionic environment. Increasing salt concentrations activate the phosphatase in the presence of glycolate-2-P by decreasing the apparent Km of glycerate-2,3-P2. The effects are due to the anionic component and Cl- greater than acetate greater than TES. The same salts are competitive inhibitors with respect to glycolate-2-P. With high levels of KCl that produce a 30-fold decrease in the apparent maximal velocity due to competition with glycolate-2-P, the Km of glycerate-2,3-P2 remains low. These observations lead us to postulate that each monophosphoglycerate substrate has a separate site on the enzyme and that glycerate-2,3-P2 can bind to either site. The binding of anions to one site of the nonphosphorylated enzyme allows an increase in the on and off rates of glycerate-2,3-P2 at the alternate site. Salts inhibit the mutase reaction. The Km of glycerate-2,3-P2 is increased as is that of glycerate-2-P. The effect on the Km of glycerate-2,3-P2 is attributed to an increase in the off rate/on rate ratio for glycerate-2,3-P2. The bisphosphoglycerate synthase reaction is shown to require added glycerate-3-P. The equilibrium between enzyme and glycerate-1,3-P2 is favorable (Kdiss less than or equal 7 X 10(-8) M) and suggests that in the absence of a separate synthase this reaction may have functional significance.  相似文献   

3.
Type M phosphoglycerate mutase and skeletal muscle bisphosphoglycerate synthase-phosphatase from pig are similarly affected by Hg2+. Both enzymes lose the phosphoglycerate mutase and the glycerate-2,3-P2 synthase activities, and increase the glycerate-2,3-P2 phosphatase activity upon Hg2+-treatment. In contrast, bisphosphoglycerate phosphatase from pig skeletal muscle is inactivated by Hg2+. These results confirm the similarity between phosphoglycerate mutase and bisphosphoglycerate synthase-phosphatase. In addition they support the existence of separate binding sites for monophosphoglycerates and for bisphosphoglycerates at the phosphoglycerate mutase active site.  相似文献   

4.
The dissociabilities of dimeric gamma enolase, alpha enolase, and phosphoglycerate mutase of brain origin were tested using fluorescein isothiocyanate attached covalently to these enzymes. The dissociation constant of dimeric gamma enolase is lower (Kd = 0.03 microM) than that of the alpha enolase (Kd = 3 microM), while dimeric mutase seems to be nondissociable in the concentration range 0.1-10 microM, at pH 7.3 in 50 mM imidazole buffer at 20 degrees C. Interaction of neuron-specific gamma enolase with D-phosphoglycerate mutase was detected with the same fluorescence-labeling technique as well as by a kinetic analysis. The determined dissociation constant of the enolase-mutase complex was found to be in the range 5-40 microM, independent of the technique used. A mixed type of inhibition in the binding of D-glycerate-2-P and mutase to the D-glycerate-2-P binding site on enolase was observed in the absence of D-glycerate-2,3-P2. However, the inhibition of the enolase activity by brain D-phosphoglycerate mutase in the D-glycerate-2-P----phosphoenolpyruvate transformation is almost fully reverted by D-glycerate-2,3-P2, probably via the proper coordination of the active centers in the ternary complex of enolase, D-phosphoglycerate mutase, and their common intermediate, D-glycerate-2-P. The mechanism of intermediate transfer by consecutive enzyme pairs in a nondivergent metabolite flux (around the transformation of D-glycerate-2-P) is examined and conclusions of the present experiments are compared with the results of an extended analysis performed earlier with a divergent metabolite flux (around the transformation of multiusage triosephosphates, D-glyceraldehyde-3-P, and dihydroxyacetone phosphate).  相似文献   

5.
The levels of the enzymes involved in the metabolism of glycerate-2,3-P2 (phosphoglycerate mutase, bisphosphoglycerate synthase-phosphatase and bisphosphoglycerate phosphatase) in cat and in pig tissues are different. The main difference is the low level of bisphosphoglycerate synthase-phosphatase in cat tissues. As a consequence, in contrast with pig erythrocytes, in cat erythrocytes, both the synthesis and the breakdown of glycerate-2,3-P2 are mainly controlled by phosphoglycerate mutase.  相似文献   

6.
Bisphosphoglycerate synthase from horse red cells has been purified to apparent homogeneity by a simple and efficient new procedure incorporating chromatography on a column of Sepharose 4B derivatized with blue dextran. The enzyme is similar to the human red cell synthase in subunit size. It is phosphorylated by either glycerate-1,3-P2 or glycerate-2,3-P2 to form a phosphoenzyme with the acid-lability of a histidyl phosphate. In addition to the synthase activity (glycerate-1,3-P2 → glycerate-2,3-P2), kcat 12.5 s?1, the enzyme has bisphosphoglycerate phosphatase activity in the presence of glycolate-2-P (glycerate-2,3-P2 → glycerate-P + Pi), kcat 2.6 s?1 and phosphoglycerate mutase activity (3-PGA ? 2-PGA), kcat 1.7 s?1. The energy of activation for the synthase reaction is 9.38 kcal/mol. Lineweaver-Burk plots of the kinetic data are parallel lines. In contrast intersecting patterns were obtained from similar experiments done with the human red cell enzyme. Further investigation is required to explain these differences. This enzyme may function as both synthase and phosphatase for bisphosphoglycerate in the red blood cell.  相似文献   

7.
Bisphosphoglycerate synthase (glycerate-1,3-P2 yields glycerate-2,3-P2) and phosphoglycerate mutase (glycerate-3-P formed from glycerate-2-P) are both phosphorylated by substrates at a histidine residue forming covalent intermediates which have been shown to function in the phosphoryl transfer reactions catalyzed by these enzymes (Rose, Z. B., and Dube, S. (1976) J. Biol. Chem. 251, 4817--4822). We have phosphorylated bisphosphoglycerate synthase from horse red blood cells with [U-32P]glycerate-2,3-P2, digested with trypsin, and purified the phosphopeptide. The amino acid sequence of the phosphohistidine peptide has been determined to be: His-Gly-Gln-Gly-Ala-Trp-Asn-Lys. In like manner, a phosphohistidyl peptide has now been purified from yeast phosphoglycerate mutase, for which the amino acid sequence is known (Winn, S. I., Watson, H. C., Fothergill, L. A., and Harkins, R. N. (1977) Biochem. Soc. Trans. 5, 657-659). The amino acid composition of the phosphopeptide indicates that histidine-8 was phosphorylated. The sequence of this peptide is closely homologous with the active site peptide from bisphosphoglycerate synthase. In yeast phosphoglycerate mutase, the denatured phosphoenzyme hydrolyzes with a single rate constant of 2.02 X 10(-4) s-1 at pH 3, 45 degrees C. The relevance of these observations to the enzymatic mechanism is discussed.  相似文献   

8.
Phosphoglycerate mutase and bisphosphoglycerate synthase (mutase) can both be phosphorylated by either glycerate-1,3-P2 or glycerate-2,3-P2 to form phosphohistidine enzymes. The present study uses a rapid quench procedure to determine if, for each enzyme, the formation of the phosphorylated enzyme and phosphate transfer from the enzyme can occur at rates consistent with the overall reactions. With bisphosphoglycerate synthase from horse red blood cells (glycerate-1,3-P2 leads to glycerate-2,3-P2) at pH 7.5, 25 degrees, phosphorylation of the enzyme appears rate-limiting, k = 13.5 s-1, compared with kcat = 12.5 s-1 for the overall synthase rate. Phosphoryl transfer from the enzyme to phosphoglycerate occurs at 38 s-1 at 4 degrees and was too fast to measure at 25 degrees. With chicken muscle phosphoglycerate mutase the half-times were too short to measure under optimal conditions. The rate of enzyme phosphorylation by glycerate-2,3-P2 at pH 5.5, 4 degrees, could account for the overall reaction rate of 170 s-1. The rate of phosphoryl transfer from the enzyme to glycerate-3-P was too rapid to measure under the same conditions. It is concluded that the phosphorylated enzymes have kinetic properties consistent with their participation as intermediates in the reactions catalyzed by these enzymes.  相似文献   

9.
1. The three phosphoglycerate mutase isozymes from mammals (types M, B and MB isozymes) differ in their sensitivity to the - SH group reagents. 2. Rabbit muscle phosphoglycerate mutase (type M isozyme) is reversibly inactivated by tetrathionate, rho-chloromercuribenzoate and Hg2+. 3. Titration with rho-chloromercuribenzoate shows the existence of two sulfhydryl groups per enzyme subunit, the modification of which produces a progressive decline in enzyme activity. 4. The apparent Km values for substrate and cofactor are not affected by tetrathionate treatment. 5. Phosphoglycerate mutase inactivated by tetrathionate and by rho-chloromercuribenzoate is unable to form the functionally active phosphorylenzyme when mixed with glycerate-2,3-P2, and is not protected by the cofactor against heating. 6. Glycerate-2,3-P2 protects against tetrathionate treatment, but fails to protect against Hg2+ and rho-chloromercuribenzoate inactivation.  相似文献   

10.
Previous reports have suggested the possibility of extensive structural homology between human erythrocyte bisphosphoglycerate synthase (glycerate-1,3-P2 leads to glycerate-2,3-P2) and phosphoglycerate mutase (glycerate-3-P in equilibrium glycerate-2-P). This study lends credence to that conjecture through comparative physicochemical investigations involving peptide mapping, circular dichroism, and immunological techniques. The data indicate that despite differences in function, both enzymes apparently manifest a high degree of similarity in primary, secondary, and tertiary structure. Mapping data also indicate that each protein is comprised of two apparently identical subunits.  相似文献   

11.
Liver phosphoglucomutase was found to catalyze also the reaction of Glc-1,6-P2 formation from Glc-1-P and Fru-1,6-Pz or Glc-1-P and glycerate-1,3-P2. The specific activity of Glc-1,6-P2 formation from Glc-1-P and Fru-1,6-P2 was 1/9200 of that of the mutase activity. The activity of Glc-1,6-P2 formation from Glc-1-P and glycerate-1,3-P2 was 1/122,000 of the mutase activity. From the results of the kinetics and the thermal inactivation experiments, the reaction of the mutase and Glc-1,6-P2 synthesis were strongly suggested to occur at the same active site of liver phosphoglucomutase.

Liver phosphoglucomutase exhibited the Glc-1,6-P2 phosphatase activity only in the presence of xylose 1-phosphate. The specific activity of phosphatase was only 1/154,000 of that of the mutase activity.  相似文献   

12.
1. The three isozymes of glycerate-2,3-P2 dependent phosphoglycerate mutase present in tissues of mammals and reptiles were inactivated by both treatment with diethylpyrocarbonate and photooxidation with rose bengal. 2. Inactivation of type M isozyme purified from rabbit muscle was complete when two histidine residues per enzyme subunit were carboethoxylated. Hydroxylamine removed the carboethoxy groups, with partial recovery of the enzymatic activity. The cofactor protected the enzyme against inactivation. 3. The inactivation of rabbit muscle phosphoglycerate mutase by photooxidation with methylene blue and rose bengal was sharply pH dependent. The pH profile of enzyme inactivation followed the titration curve of histidine, suggesting that this amino acid was critical for enzyme activity. Glycerate-2,3-P2 did not protect phosphoglycerate mutase against photoinactivation.  相似文献   

13.
In pig skeletal muscle exist four enzymes with 2,3-bisphosphoglycerate phosphatase activity. Two of them (forms I-A and I-C) are multi-functional enzymes which, in addition to the phosphatase activity, possess 2,3-bisphosphoglycerate synthase and phosphoglycerate mutase activities. The other two enzyme forms (II-A and II-B) only show the phosphatase activity. The four enzymes differ in substrate specificity. Form I-C is highly specific for glycerate 2,3-P2; form I-A also hydrolyzes the monophosphoglycerates and forms II-A and II-B are specific for phosphoester bonds adjacent to a C-1 carboxylic group. The enzymes possess similar Km, Kcat and optimum pH value, but they are differently inhibited by the reaction products. They are also differently affected by glycolate-2-P (their main activator) and by other modifiers. Probably form I-A, which corresponds to M-type phosphoglycerate mutase, is the main enzyme implicated in the breakdown of glycerate 2,3-P2 in pig muscle.  相似文献   

14.
Crystal structure of human bisphosphoglycerate mutase   总被引:3,自引:0,他引:3  
Bisphosphoglycerate mutase is a trifunctional enzyme of which the main function is to synthesize 2,3-bisphosphoglycerate, the allosteric effector of hemoglobin. The gene coding for bisphosphoglycerate mutase from the human cDNA library was cloned and expressed in Escherichia coli. The protein crystals were obtained and diffract to 2.5 A and produced the first crystal structure of bisphosphoglycerate mutase. The model was refined to a crystallographic R-factor of 0.200 and R(free) of 0.266 with excellent stereochemistry. The enzyme remains a dimer in the crystal. The overall structure of the enzyme resembles that of the cofactor-dependent phosphoglycerate mutase except the regions of 13-21, 98-117, 127-151, and the C-terminal tail. The conformational changes in the backbone and the side chains of some residues reveal the structural basis for the different activities between phosphoglycerate mutase and bisphosphoglycerate mutase. The bisphosphoglycerate mutase-specific residue Gly-14 may cause the most important conformational changes, which makes the side chain of Glu-13 orient toward the active site. The positions of Glu-13 and Phe-22 prevent 2,3-bisphosphoglycerate from binding in the way proposed previously. In addition, the side chain of Glu-13 would affect the Glu-89 protonation ability responsible for the low mutase activity. Other structural variations, which could be connected with functional differences, are also discussed.  相似文献   

15.
Rat bone marrow cells have been fractionated by density gradient in Percoll. Differential counting of erythroid cells, haemoglobin concentration and bisphosphoglycerate mutase and phosphoglycerate kinase activities have been determined in cellular fractions. As shown by means of a statistical approach, an increase in bisphosphoglycerate mutase activity and a slight decrease in phosphoglycerate kinase activity is found in erythroid cells as their haemoglobin content increases. Our results suggest that there is a synthesis of 2,3-bisphosphoglycerate during the erythropoietic process which parallels the synthesis of haemoglobin.  相似文献   

16.
Bisphosphoglycerate mutase (EC 5.4.2.4.) is an erythrocyte-specific enzyme whose main function is to synthesize 2,3-diphosphoglycerate (glycerate-2,3-P2) an effector of the delivery of O2 in the tissues. In addition to its main synthase activity the enzyme displays phosphatase and mutase activities both involving 2,3-diphosphoglycerate in their reaction. Using a prokaryotic expression system, we have developed a recombinant system producing human bisphosphoglycerate mutase in E coli. The expressed enzyme has been extracted and purified to homogeneity by 2 chromatographic steps. Purity of this enzyme was checked with sodium dodecyl sulfate polyacrylamide gel and Cellogel electrophoresis and structural studies. The bisphosphoglycerate mutase expressed in E coli was found to be very similar to that of human erythrocytes and showed identical trifunctionality, thermostability, immunological and kinetics' properties. However, the absence of a blocking agent on the N-terminus results in a slight difference of the electrophoretic mobility of the enzyme expressed in E coli compared to that of the erythrocyte.  相似文献   

17.
The B-type cofactor-dependent phosphoglycerate mutase (dPGM-B) catalyzes the interconversion of 2-phosphoglycerate and 3-phosphoglycerate in glycolysis and gluconeogenesis pathways using 2,3-bisphosphoglycerate as the cofactor. The crystal structures of human dPGM-B bound with citrate were determined in two crystal forms. These structures reveal a dimerization mode conserved in both of dPGM and BPGM (bisphosphoglycerate mutase), based on which a dPGM/BPGM heterodimer structure is proposed. Structural comparison supports that the conformational changes of residues 13-21 and 98-117 determine PGM/BPGM activity differences. The citrate-binding mode suggests a substrate-binding model, consistent with the structure of Escherichia coli dPGM/vanadate complex. A chloride ion was found in the center of the dimer, providing explanation for the contribution of chloride ion to dPGM activities. Based on the structural information, the possible reasons for the deficient human dPGM mutations found in some patients are also discussed.  相似文献   

18.
Two enzymes which possess 2,3-bisphosphoglycerate synthase, 2,3-bisphosphoglycerate phosphatase and phosphoglycerate mutase activities have been purified from pig skeletal muscle. One of the enzymes corresponds to type M phosphoglycerate mutase. The other enzyme shows properties similar to those of the 2,3-bisphosphoglycerate synthase-phosphatase present in mammalian erythrocytes. The erythrocyte and the muscle enzyme possess the same molecular (56 000) and subunit (27 000) weights. The synthase, phosphatase and mutase activity ratio is similar in both enzymes, and they are affected by the same inhibitor (glycerate 3-P) and activators (glycolate 2-P, pyrophosphate, sulfite and bisulfite).  相似文献   

19.
1. Four enzyme fractions which may be involved in the synthesis and breakdown of glycerate-2,3-P2 have been isolated from extracted skeletal muscle by gel-filtration and ion-exchange chromatography. 2. One of the fractions, corresponding to the glycerate-2,3-P2 dependent phosphoglycerate mutase, has been purified to homogeneity. In addition to the main enzymatic activity, it shows intrinsic glycerate-2,3-P2 synthase activity and glycerate-2,3-P2 phosphatase activity stimulable by glycolate-2-P. Its synthase activity represents about 10% of the total synthase activity of the tissue, and its phosphatase activity corresponds to about 60% of the total phosphatase activity. 3. Two of the fractions have glycerate-2,3-P2 synthase, glycerate-2,3-P2 phosphatase and phosphoglycerate mutase activities in a ratio similar to that of the glycerate-2,3-P2 synthase described in mammalian skeletal muscle. Their synthase activity corresponds to about 90% of the total synthase activity, and their phosphatase activity represents about 1% of the total phosphatase activity of the tissue. 4. The fourth fraction shows only glycerate-2,3-P2 phosphatase activity and represents about 40% of the total activity of the tissue. 5. It is suggested that in chicken skeletal muscle the metabolism of the glycerate-2,3-P2 is regulated in a way similar to that described in mammalian skeletal muscle.  相似文献   

20.
Different types of enzymes from yeast and from rabbit muscle which catalyze phosphoryl transfer reactions involved in glucose metabolism differ in their sensitivity to vanadate. Phospho glucomutase and phosphoglycerate mutase are inhibited at the μM range. 2,3-Bisphosphoglycerate phosphatase is completely inhibited by 0.5 mM vanadate. 2,3-Bisphosphoglycerate synthase, hexokinase, phosphoglycerate kinase and fructose-1,6-P2 phosphatase are partially inhibited by mM vanadate. Phosphofructokinase and pyruvate kinase are not affected. The glycolytic enzymes which mechanism does not involves phosphoryl transfer step are not affected by vanadate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号