首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have compared here the reversibility of phosphorylation of insulin receptors either partially purified by lectin chromatography, or highly purified by specific immunoprecipitation with anti-receptor antibodies. We found that the beta subunit of partially purified insulin receptors was rapidly dephosphorylated (t 1/2 = 15 min). In contrast, the level of phosphorylation of immunoprecipitated receptors remained unchanged for up to 4 hours at 37 degrees C. However, cytosolic phosphatases, which are inhibited by vanadate, were able to induce a complete dephosphorylation of immunoprecipitated receptors. These results show that 1. phosphorylation of insulin receptors is reversible; and 2. no phosphatase activity is contained in the insulin receptor structure itself.  相似文献   

2.
Prior studies have detected biochemical and immunological differences between insulin receptors in plasma membranes and isolated nuclei. To further investigate these receptors, they were solubilized in Triton X-100 and partially purified by wheat germ agglutinin-agarose chromatography. In these preparations, the nuclear and plasma membrane receptors had very similar pH optima (pH 8.0) and reactivities to a group of polyclonal antireceptor antibodies. Further, both membrane preparations had identical binding activities when labeled insulin was competed for by unlabeled insulin (50% inhibition at 800 pM). Next, nuclear and plasma membranes were solubilized and purified to homogeneity by wheat germ agglutinin-agarose and insulin-agarose chromatography. In both receptors, labeled insulin was covalently cross-linked to a protein of 130 kilodaltons representing the insulin receptor alpha subunit. When preparations of both receptors were incubated with insulin and then adenosine 5'-[gamma-32P]triphosphate, a protein of 95 kilodaltons representing the insulin receptor beta subunit was phosphorylated in a dose-dependent manner. These studies indicate, therefore, that solubilized plasma membrane and nuclear insulin receptors have similar structures and biochemical properties, and they suggest that they are the same (or very similar) proteins.  相似文献   

3.
Trypsin and alpha-chymotrypsin effects on masked insulin receptors were studied. Phospholipase C treatment, incubation in a high ionic strength buffer or solubilization were used as alternative procedures for the unmasking of insulin receptors. These three methods expose receptor structures which are inaccessible to insulin in the current experimental conditions of binding assays without any significant change in binding affinity. Both exposed and masked receptors proved to be equally sensitive to trypsin and alpha-chymotrypsin degradation. At 25 degrees C, about 5 micrograms trypsin/ml for 50 min or 80 micrograms alpha-chymotrypsin/ml for 200 min were necessary in each case to cause a 50% inhibition of the binding of 125I-iodo insulin to microsomes. The results suggest that masked receptors are only nonfunctional to bind insulin but they are not located in compartments inaccessible to molecules present in the medium.  相似文献   

4.
Expression in Xenopus oocytes of cloned nicotinic acetylcholine receptors (alpha, beta, gamma and delta subunits of BC3H1 receptor), produced more than one sort of functional receptor. This heterogeneity was detectable neither as heterogeneity in single channel conductance, nor as heterogeneity in the burst length. It was seen most obviously as differences from patch to patch in the maximum fraction of time for which the channels are held open at high acetylcholine concentrations, and it was also detectable as differences in the shut time distributions at low acetylcholine concentrations.  相似文献   

5.
Collagenase preparations (a mixture of enzymes including collagenase, clostripain, and a casein-degrading protease) degraded the beta subunit (Mr = 95,000) of the purified insulin receptor into fragments of Mr less than 15,000, without degrading the alpha subunit. The resulting beta-digested insulin receptor preparations were found to bind insulin as well as control insulin receptor, as assessed by either cross-linking of 125I-insulin to the digested receptor or by separating insulin bound to receptor from free insulin by high performance liquid chromatography. Moreover, the beta-digested insulin receptor preparations were still precipitated by a monoclonal antibody directed against the insulin-binding site. In contrast, the beta-digested insulin receptor lacked protein kinase activity since it no longer phosphorylated either itself, or an exogenous substrate, calf thymus histone. These results support the identification of the beta subunit of the insulin receptor as a protein kinase.  相似文献   

6.
The internalization of the insulin receptor in the isolated rat adipose cell and the spatial orientation of the alpha (Mr = 135,000) and beta (Mr = 95,000) subunits of the receptor in the plasma membrane have been examined. The receptor subunits were labeled by lactoperoxidase/Na125I iodination, a technique which side-specifically labels membrane proteins in intact cells and impermeable membrane vesicles. Internalization was induced by incubating cells for 30 min at 37 degrees C in the presence of saturating insulin. Plasma, high density microsomal (endoplasmic reticulum-enriched), and low density microsomal (Golgi-enriched) membrane fractions were prepared by differential ultracentrifugation. Receptor subunit iodination was analyzed by immunoprecipitation with anti-receptor antibodies, sodium dodecyl sulfate/polyacrylamide gel electrophoresis, and autoradiography. When intact cells were surface-labeled and incubated in the absence of insulin, the alpha and beta receptor subunits were clearly observed in the plasma membrane fraction and their quantities in the microsomal membrane fractions paralleled plasma membrane contamination. Following receptor internalization, however, both subunits were decreased in the plasma membrane fraction by 20-30% and concomitantly and stoichiometrically increased in the high and low density microsomal membrane fractions, without alterations in either their apparent molecular size or proportion. In contrast, when the isolated particulate membrane fractions were directly iodinated, both subunits were labeled in the plasma membrane fraction whereas only the beta subunit was prominently labeled in the two microsomal membrane fractions. Iodination of the subcellular fractions following their solubilization in Triton X-100 again clearly labeled both subunits in all three membrane fractions in identical proportions. These results suggest that 1) insulin receptor internalization comprises the translocation of both major receptor subunits from the plasma membrane into at least two different intracellular membrane compartments associated, respectively, with the endoplasmic reticulum and Golgi-enriched membrane fractions, 2) this translocation occurs without receptor loss or alterations in receptor subunit structure, and 3) the alpha receptor subunit is primarily, if not exclusively, exposed on the extracellular surface of the plasma membrane while the beta receptor subunit traverses the membrane, and this vectorial disposition is inverted during internalization.  相似文献   

7.
Insulin receptor activities, i.e., insulin binding and tyrosine kinase activation depend on the lipid environment of the receptor. As detergent may disrupt or interfere with this environment, we investigated the effect of various common detergents on insulin receptor properties. Experiments were carried out (i) on solubilized and partially purified insulin receptor and (ii) on the receptor reconstituted into phosphatidylcholine vesicles. The detergents tested, Triton X-100, octyl-beta-D-glucopyranoside, octyl-beta-D-thioglucopyranoside, 3[(3-cholamidopropyl)dimethylammonio]propanesulfonic acid (Chaps), and Na deoxycholate affected the insulin receptor properties differently when compared with the control receptor in the absence of detergent. On the partially purified insulin receptor, Na deoxycholate inhibited both insulin receptor activities; octyl-beta-D-glucopyranoside and octyl-beta-D-thioglucopyranoside decreased insulin binding and kinase activation as their concentration increased, particularly above their respective critical micellar concentration (CMC). Triton X-100 was the only detergent which allowed an increase of insulin binding and kinase activation throughout the whole range of concentrations assayed. Reconstitution of the receptor into phosphatidylcholine vesicles protected the receptor from the direct effects of the detergents, for both the stimulation observed with Triton X-100 and the inhibition produced by the other detergents. In order to determine the effect of detergents on the oligomeric forms of the soluble insulin receptor, we investigated a new rapid sucrose gradient centrifugation technique. Insulin receptors were detected on the gradient by 125I insulin binding. For low concentrations of detergent, i.e., near the CMC, octylglucoside, Chaps, and Triton X-100 favored the (alpha 2 beta 2)2 oligomeric form of the receptor. Higher concentrations of Triton X-100 did not modify the polymeric state of the receptor. In contrast, octylglucoside and Chaps induced an increase in the sedimentation coefficient of the receptor which appeared as (alpha 2 beta 2)3 and (alpha 2 beta 2)4 forms. These alterations in the oligomerization status of the insulin receptor may explain the deleterious effects observed with both Chaps and octylglucoside at higher concentrations.  相似文献   

8.
Under conditions that limit proteolytic degradation, the detergent-solubilized purified receptor protein from Torpedo californica exists in monomeric and dimeric forms. The purified receptor complex is composed of four different polypeptide subunits of apparent molecular weights 40 000, 50 000, 60 000, and 65 000. The individual polypeptides have been purified and their amino acid compositions have shown them to be relatively hydrophobic. In addition, the carbohydrate composition of the intact receptor complex and of the individual polypeptides has been determined. Amino acid analysis provided evidence for the occurrence of a component with chromatographic properties similar to those of phosphoserine. Treatment of receptor with CH3NH2 in base, a condition which provided quantitative modification of O-phosphoserine residues in beta-casein, completely eliminated the peak corresponding to phosphoserine following mild acid hydrolysis. We conclude that the receptor contains O-phosphoserine residues to the extent of approximately seven residues per molecule and these residues occur in all constituent polypeptides. Other forms of O-substituted serine and threonine were also shown to occur, most likely as glycosylated residues.  相似文献   

9.
Purified human placental insulin receptors were incorporated into small unilamellar phospholipid vesicles by the addition of n-octyl beta-glucopyranoside solubilized phospholipids, followed by removal of the detergent on a Sephadex G-50 gel filtration column and extensive dialysis. The vesicles have an average diameter of 142 +/- 24 nm by Sephacryl S-1000 gel filtration chromatography and 119 +/- 20 nm by transmission electron microscopy. These vesicles are impermeant to small molecules as indicated by their ability to retain [gamma-32P]ATP, which could be released by the addition of 0.05% Triton X-100. Detergent permeabilization or freeze-thawing of the insulin receptor containing vesicles in the presence of 125I-insulin indicated that approximately 75% of the insulin binding sites were oriented right side out (extravesicularly). Sucrose gradient centrifugation of insulin receptors incorporated at various protein to phospholipid mole ratios demonstrated that the insulin receptors were inserted into the phospholipid bilayer structure in a concentration-dependent manner. Addition of [gamma-32P]ATP to the insulin receptor containing vesicles was relatively ineffective in promoting the autophosphorylation of the beta subunit in the absence or presence of insulin. Permeabilization of the vesicles with low detergent concentrations, however, stimulated the beta-subunit autophosphorylation approximately 2-fold in the absence and 10-fold in the presence of insulin. Insulin-stimulated beta-subunit autophosphorylation was also observed under conditions such that 94% of those vesicles containing insulin receptors had a single receptor per vesicle, suggesting that the initial beta-subunit autophosphorylating activity is intramolecular. Phospho amino acid analysis of the vesicle-incorporated insulin receptors demonstrated that the basal and insulin-stimulated beta-subunit autophosphorylation occurs exclusively on tyrosine residues. It is concluded that when purified insulin receptors are incorporated into a phospholipid bilayer, they insert into the vesicles primarily in the same orientation as occurs in the plasma membrane of intact cells and retain insulin binding as well as insulin-stimulated beta-subunit autophosphorylating activities.  相似文献   

10.
11.
Insulin receptor kinase, affinity-purified by adsorption and elution from immobilized insulin, is stimulated 2-3-fold by insulin in detergent solution. Reconstitution of the receptor kinase into leaky vesicles containing phosphatidylcholine and phosphatidylethanolamine (1:1, w/w) by detergent removal on Sephadex G-50 results in the complete loss of receptor kinase sensitivity to activation by insulin. Insulin receptors in these vesicles also exhibit an increase in their apparent affinity for 125I-insulin (Kd = 0.12 nM versus 0.76 nM). Inclusion of 8.3-16.7% phosphatidylserine into the reconstituted vesicles restores 40-50% of the insulin-sensitivity to the receptor kinase. An elevated apparent affinity for 125I-insulin of insulin receptors in vesicles containing phosphatidylcholine and phosphatidylethanolamine is also restored to the value observed in detergent solution by the inclusion of phosphatidylserine in the reconstituted system. The effect of phosphatidylserine on insulin receptor kinase appears specific, because cholesterol, phosphatidylinositol and phosphatidic acid are all unable to restore insulin-sensitivity to the receptor kinase. Autophosphorylation sites on the insulin receptor as analysed by h.p.l.c. of tryptic 32P-labelled receptor phosphopeptides are not different for insulin receptors autophosphorylated in detergent solution or for the reconstituted vesicles in the presence or absence of phosphatidylserine. These data indicate that the phospholipid environment of insulin receptors can modulate its binding and kinase activity, and phosphatidylserine acts to restore insulin-sensitivity to the receptor kinase incorporated into phosphatidylcholine/phosphatidylethanolamine vesicles.  相似文献   

12.
The insulin receptor purified from human placenta by sequential affinity chromatography on wheat germ agglutinin- and insulin-Sepharose to near homogeneity retained tyrosine-specific protein kinase activity. This purified insulin receptor kinase specifically catalyzed the incorporation of 32P from [gamma-32P]ATP into not only the beta-subunit of the insulin receptor but also histone H2B, a synthetic peptide which is sequentially similar to the site of tyrosine phosphorylation in pp60src (a gene product of the Rous sarcoma virus) and antibodies to pp60src present in the sera obtained from three rabbits bearing tumors induced by the Rous sarcoma virus. In each case, phosphorylation occurred exclusively on tyrosine residues. Insulin stimulated phosphorylation of these substrates 3- to 5-fold. Kinetic analysis using the synthetic peptide indicated that insulin acted by increasing the Vmax of peptide phosphorylation from about 3.1 to 9.5 nmol X mg-1 of protein X min-1, whereas the value of the Km for the peptide, about 1.5 mM, was not significantly changed. This kinase acted weakly on casein, alpha-S-casein, actin, and a tyrosine-containing peptide analogue of a serine-containing peptide used commonly as a substrate for the cyclic AMP-dependent protein kinases. These data show that the insulin receptor kinase displays specificity toward exogenous substrates similar to the substrate specificity observed for pp60src and the protein kinase activity associated with the receptor for epidermal growth factor. The data suggest that the catalytic sites of these three tyrosine kinases are similar and that insulin activates its receptor kinase by increasing the Vmax.  相似文献   

13.
14.
The kinetics of insulin binding and kinase activity of soluble, partially purified insulin receptors from human skeletal muscle are considered. An equilibrium for insulin binding was obtained within 2 h at 37 degrees C. At lower temperatures the equilibrium for insulin binding was less clearly defined. Dissociation of 125I-labelled insulin was incomplete unless an excess amount of unlabelled insulin was added. Insulin-stimulatable autophosphorylation of the 95 kDa subunit was verified by gel electrophoresis. The kinase activity was measured with the synthetic polypeptide poly(Glu-Tyr(4:1] as a phosphoacceptor. The insulin receptor kinase activity correlated significantly (r = 0.92, P less than 0.0001) to the concentration of high-affinity insulin binding sites in the eluate. Autophosphorylation of the insulin receptor was necessary for the activation of the receptor kinase. When activated the receptor kinase activity was stable for at least 60 min at 21 degrees C with a pH optimum of approx. 7.8, similar to the pH optimum for insulin binding. The non-ionic detergent Triton X-100 inhibited the sensitivity of the receptor kinase to insulin. Insulin stimulated the Vmax of the kinase reaction about 3-fold, decreased the Km for ATP from 35 +/- 5 microM (mean +/- S.E.) to 8 +/- 1 microM (P less than 0.02) and induced a positive cooperativity to ATP with an increase in the Hill coefficient from 1.00 +/- 0.02 to 1.37 +/- 0.07 (P less than 0.05). According to the Hill plots, insulin itself showed no cooperativity with respect to receptor binding or kinase activation.  相似文献   

15.
16.
17.
Specific insulin receptor proteins of plasma membrane preparations from various tissues of the rat were identified using a photoreactive insulin derivative, NεB29-mono(azidobenzoyl)insulin. Except for the brain, all tissues examined showed the specific photolabeling of two proteins of Mr~130K and ~90K. In brain tissue, only one protein, Mr~115K, was specifically labeled. Liver and adipocyte membranes of the genetic obese (obob) mice showed decreased labeling of both 130K and 90K proteins when compared to those of lean littermates. Labeling of these proteins in liver plasma membranes was abolished by trypsin, whereas neuraminidase increased their electrophoretic mobility in SDS-polyacrylamide gel. The labeling of these two proteins was inhibited by a human anti-receptor serum which also formed an immunocomplex with both proteins. The labeling of the 115K protein in brain tissue was, however, not affected by the antiserum.  相似文献   

18.
The insulin receptor is a homodimer composed of two alphabeta half receptors. Scanning mutagenesis studies have identified key residues important for insulin binding in the L1 domain (amino acids 1-150) and C-terminal region (amino acids 704-719) of the alpha subunit. However, it has not been shown whether insulin interacts with these two sites within the same alpha chain or whether it cross-links a site from each alpha subunit in the dimer to achieve high affinity binding. Here we have tested the contralateral binding mechanism by analyzing truncated insulin receptor dimers (midi-hIRs) that contain complementary mutations in each alpha subunit. Midi-hIRs containing Ala(14), Ala(64), or Gly(714) mutations were fused with Myc or FLAG epitopes at the C terminus and were expressed separately by transient transfection. Immunoblots showed that R14A+FLAG, F64A+FLAG, and F714G+Myc mutant midi-hIRs were expressed in the medium but insulin binding activity was not detected. However, after co-transfection with R14A+FLAG/F714G+Myc or F64A+FLAG/F714G+Myc, hybrid dimers were obtained with a marked increase in insulin binding activity. Competitive displacement assays revealed that the hybrid mutant receptors bound insulin with the same affinity as wild type and also displayed curvilinear Scatchard plots. In addition, when hybrid mutant midi-hIR was covalently cross-linked with (125)I(A14)-insulin and reduced, radiolabeled monomer was immunoprecipitated only with anti-FLAG, demonstrating that insulin was bound asymmetrically. These results demonstrate that a single insulin molecule can contact both alpha subunits in the insulin receptor dimer during high affinity binding and this property may be an important feature for receptor signaling.  相似文献   

19.
The insulin receptor, a glycoprotein consisting of two extracellular alpha- and two transmembrane beta-subunits, is thought to mediate hormone action by means of its tyrosine-specific protein kinase activity. To explore the mechanism of insulin receptor phosphorylation we have used NIH3T3 cells transfected with two receptor constructs: one encoding a chimeric receptor composed of the extracellular domain of the human EGF receptor and the cytosolic domain of the human insulin receptor beta-subunit, and a second construct encoding a kinase-defiecient human insulin receptor. Stimulation of these cells with EGF induced tyrosine autophosphorylation of the EGF-insulin receptor chimera (150 kd) and tyrosine phosphorylation of the beta-subunit of the kinase-deficient insulin receptor (95 kd). The phosphopeptides of the autophosphorylated cytoplasmic domain of the EGF-insulin receptor chimera were comparable to those of the transphosphorylated beta-subunit of the kinase-deficient insulin receptor and of the wild-type human insulin receptor. When immunoaffinity purified EGF-insulin receptor hybrids and kinase-deficient insulin receptors were used in a cell lysate phosphorylation assay, it was found that addition of EGF produced 32P-labeling of both receptor species. We conclude that EGF acting directly through the EGF-insulin receptor chimera causes transphosphorylation of the kinase-deficient insulin receptor. These data support the notion that autophosphorylation of the insulin receptor may proceed by an intermolecular mechanism.  相似文献   

20.
The insulin-like growth factors (insulin-like growth factor I [IGF-I] and IGF-II) exert important effects on growth, development, and differentiation through the IGF-I receptor (IGF-IR) transmembrane tyrosine kinase. The insulin receptor (IR) is structurally related to the IGF-IR, and at high concentrations, the IGFs can also activate the IR, in spite of their generally low affinity for the latter. Two mechanisms that facilitate cross talk between the IGF ligands and the IR at physiological concentrations have been described. The first of these is the existence of an alternatively spliced IR variant that exhibits high affinity for IGF-II as well as for insulin. A second phenomenon is the ability of hybrid receptors comprised of IGF-IR and IR hemireceptors to bind IGFs, but not insulin. To date, however, direct activation of an IR holoreceptor by IGF-I at physiological levels has not been demonstrated. We have now found that IGF-I can function through both splice variants of the IR, in spite of low affinity, to specifically activate IRS-2 to levels similar to those seen with equivalent concentrations of insulin or IGF-II. The specific activation of IRS-2 by IGF-I through the IR does not result in activation of the extracellular signal-regulated kinase pathway but does induce delayed low-level activation of the phosphatidylinositol 3-kinase pathway and biological effects such as enhanced cell viability and protection from apoptosis. These findings suggest that IGF-I can function directly through the IR and that the observed effects of IGF-I on insulin sensitivity may be the result of direct facilitation of insulin action by IGF-I costimulation of the IR in insulin target tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号