首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of the tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA) and the plant lectin concanavalin A (Con A) on glucose uptake in murine thymocytes were studied. TPA induces a rapid dose-dependent increase in the uptake of 2-deoxyglucose and in the transport of 3-0-methylglucose. Con A also elicits a time- and dose-dependent enhancement of 2-deoxyglucose uptake. The effect of Con A, however, is less pronounced. The effect of combined treatment of thymocytes with Con A and TPA is not additive. Cytochalasin B completely inhibits the basal, as well as TPA- and Con A-enhanced, 2-deoxyglucose uptake. Dexamethasone markedly inhibits basal 2-deoxyglucose uptake, but is less inhibitory to enhanced 2-deoxyglucose uptake induced by TPA and Con A. The effect of TPA on 2-deoxyglucose uptake and 3-0-methylglucose transport is refractory to inhibition by isobutyl methyl xanthine, dibutyryl cyclic AMP, and ethyleneglycol tetraacetic acid. These agents markedly inhibit the enhancement of 2-deoxyglucose (2-DOG) uptake by Con A. p-Bromophenacyl bromide, an inhibitor of phospholipase A2, also selectively inhibits Con A enhancement of 2-DOG uptake. Taken together, the results suggest that Con A and TPA exert their stimulatory effect on glucose uptake by different activating mechanisms, but they may share a final common transport pathway.  相似文献   

2.
Levamisole enhances[3H]thymidine uptake of murine thymocytes stimulated by concanavalin A (Con A). The proliferative response of thymocytes to Con A can also be enhanced by addition of mercaptans. Six different mercaptans were examined for this effect; three of them, 2-mercaptoethanol, cysteamine, and l-cysteine, stimulated the Con A response. Addition of levamisole to an optimal stimulatory dose of 2-mercaptoethanol or cysteamine resulted in complete inhibition of cell proliferation. Three other mercaptans, penicillamine, d-cysteine, and glutathione, failed to enhance the Con A response and, in fact, were mildly inhibitory. Levamisole gave only slightly less than normal stimulation in the presence of these mercaptans. In the absence of Con A neither levamisole nor the mercaptans stimulated cell proliferation. Oxidized 2-mercaptoethanol reacted analogously to reduced 2-mercaptoethanol both in the presence and absence of levamisole. We have interpreted these results as suggesting that the effect of levamisole is dependent upon the state of activation of the lymphocyte.  相似文献   

3.
The interaction of glutamine availability and glucose homeostasis during and after exercise was investigated, measuring whole body glucose kinetics with [3-3H]glucose and net organ balances of glucose and amino acids (AA) during basal, exercise, and postexercise hyperinsulinemic-euglycemic clamp periods in six multicatheterized dogs. Dogs were studied twice in random treatment order: once with glutamine (12 micromol.kg(-1).min(-1); Gln) and once with saline (Con) infused intravenously during and after exercise. Plasma glucose fell by 7 mg/dl with exercise in Con (P < 0.05), but it did not fall with Gln. Gln further stimulated whole body glucose production and utilization an additional 24% above a normal exercise response (P < 0.05). Net hepatic uptake of glutamine and alanine was greater with Gln than Con during exercise (P < 0.05). Net hepatic glucose output was increased sevenfold during exercise with Gln (P < 0.05) but not with Con. Net hindlimb glucose uptake was increased similarly during exercise in both groups (P < 0.05). During the postexercise hyperinsulinemic-euglycemic period, glucose production decreased to near zero with Con, but it did not decrease below basal levels with Gln. Gln increased glucose utilization by 16% compared with Con after exercise (P < 0.05). Furthermore, net hindlimb glucose uptake in the postexercise period was increased approximately twofold vs. basal with Gln (P < 0.05) but not with Con. Net hepatic uptake of glutamine during the postexercise period was threefold greater for Gln than Con (P < 0.05). In conclusion, glutamine availability modulates glucose homeostasis during and after exercise, which may have implications for postexercise recovery.  相似文献   

4.
Macrophages which play a central role in the injury, infection and sepsis, use glucose as their primary source of metabolic energy. Increased glucose uptake in inflammatory cells is well known to be one of the responsible processes that cause inflammatory response and cytotoxicity. We have shown recently that the inhibition of aldose reductase (AR) prevents bacterial endotoxin, lipopolysaccharide (LPS)-induced cytotoxicity and inflammatory response in macrophages. However, it is not known how AR inhibition prevents LPS-induced inflammation. Here in, we examined the effect of AR inhibition on LPS-induced glucose uptake and the expression of glucose transporter 3 (GLUT-3) in RAW264.7 murine macrophages. Stimulation of macrophages with LPS-increased glucose uptake as measured by using C14 labeled methyl-d-glucose and inhibition of AR prevented it. Similarly, ablation of AR by using AR-siRNA also prevented the LPS-induced glucose uptake in macrophages. Further, AR inhibition also prevented the LPS-induced up-regulation of GLUT-3 expression, cyclic adenosine monophosphate (cAMP) accumulation and protein kinase A (PKA) activation in RAW264.7 cells. Moreover, LPS-induced down-regulation of cAMP response element modulator (CREM), phosphorylation of cAMP response element-binding protein (CREB) and DNA-binding of CREB were also prevented by AR inhibition. Further, inhibition of AR or PKA also prevented the LPS-induced levels of GLUT-3 protein as well as mRNA in macrophages. These results indicate that AR mediates LPS-induced glucose uptake and expression of glucose transporter-3 via cAMP/PKA/CREB pathway and thus represents a novel mechanism by which AR regulates LPS-induced inflammation.  相似文献   

5.
Binding and mitogenicity of a lectin from Lens culinaris (LcH) were studied in mouse lymphocytes. Both continuous and pulse treatment of lymphocytes with LcH induced a mitogenic response selectively in T cells. LcH and Con A, which have similar binding specificities, exhibited binding inhibition both in unfixed cells and glutaraldehype-fixed cells, with native Con A and succinyl Con A and at 37 °C as well as 0 °C. On the other hand, reciprocal binding inhibition by a third T-cell mitogen, phytohemagglutinin-P (PHA-P), was found only in unfixed cells at 37 °C and with native Con A, indicating that the inhibition is a secondary effect as opposed to direct competition for receptors. The inhibition of mitogenic responses to LcH and PHA-P by pretreatment of cells with Con A was studied in relation to the two different types of binding inhibition. Only the type of binding inhibition caused by a secondary effect correlated with interference with the mitogenic response.  相似文献   

6.
Brewer's yeast preparations influence glucose metabolism in vivo and in isolated tissues. We have studied the effect of a brewer's yeast extract on glucose metabolism and grwoth of rat hepatoma and human embryonic cells. Growth of the rat hepatoma cells was very much stimulated by the extract in a concentration-dependent manner. Glucose uptake was, on the other hand, appreciably inhibited, and lactate uptake completely abolished by the extract. Insulin stimulated cell growth and inhibited lactate uptake but did not affect the glucose level. Insulin and the extract had additive effects on growth and lactate uptake of the hepatoma cells. The inhibition by the brewer's yeast extract of glucose uptake was, however, antagonized by insulin. Niacin or Cr3+, which are suggested to be components of a “glucose tolerance factor” of brewer's yeast, did not affect growth or glucose and lactate uptake. The glucose uptake of the human embryonic cells was strongly inhibited by the brewer's yeast extract. Cell growth and lactate production were not influenced by the extract or by insulin; however, when both insulin and extract were present simultaneously, a slight stimulation of growth and inhibition of lactate production was observed. The results indicate that brewer's yeast can have appreciable direct effects on cells and that not all of these effects are “insulin-like”.  相似文献   

7.
Lines of Chinese hamster ovary cells resistant to the lectins concanavalin A (Con A) and phytohemagglutinin-P (PHA-P) have been isolated and characterized. Lines were isolated by a stepwise, a single-step, or a cycling single-step procedure, from both mutagen-treated and untreated cultures. The resistant lines showed a higher efficiency of colony formation in the presence of the appropriate lectin than did the wild-type parental line. The cell lines resistant to Con A did not exhibit any detectable cross resistance to PHA-P, nor did the PHA-resistant cells exhibit cross resistance to Con A. The toxicity of Con A from the wild-type and Con A-resistant lines was reduced in the presence of methyl α-D-glucopyranoside; this effect was not seen with the PHA-resistant line. Using 125I-labeled Con A, it was found that Con A was bound preferentially to the surface of intact cells, and that the amount of labeled Con A bound to intact cells was similar for the wild-type and lectin-resistant lines. The Con A-resistant lines were found to be more susceptible to the toxic effects of a number of different compounds, including cyclic AMP and its dibutyryl derivative, sodium butyrate, high concentrations of glucose, phenethyl alcohol, phenol, ouabain, and testosterone. It appears that, in these lines, acquisition of resistance to Con A gave rise to pleiotropic effects which were detected by changes in the sensitivity of the cells to a variety of agents.  相似文献   

8.
Exercise training increases insulin sensitivity. Over the past decades, considerable progress has been made in understanding the molecular basis for this important effect of physical exercise. However, the underlying mechanism is still not fully described. Recent studies have revealed that the stress responsive protein family Sestrins (SESNs) may play an important role in improving insulin sensitivity of skeletal muscle under exercise training. In this study, we aim to better understand the relationship between SESNs and AMPK in response to exercise training and the possible mechanism by which SESNs mediate glucose metabolism. We used wild type, AMPKα2+/? and AMPKα2?/? C57BL/6 mice to reveal the pathway by which 6?weeks of exercise training induced SESNs. We explored the mechanism through which SESNs regulated glucose metabolism in vitro by overexpressing or inhibiting SESNs, and inhibiting AMPK or autophagy in myotubes. We found that a 6-week exercise training regime improved oxidative metabolism, activated the insulin signaling pathway and increased the level of SESN2 and SESN3 in an AMPKα2-dependent manner. Overexpression of SESN3 or SESN2 and SESN3 together increased glucose uptake, activated the insulin signaling pathway, and promoted GLUT4 translocation in myotubes. Although inhibition of SESNs had no effect on glucose uptake, SESNs could reverse reduced glucose uptake following autophagy inhibition, and may be downstream effectors of AMPK responses in myotubes. Taken together our data show that SESNs are induced by AMPKα2 after exercise training, and SESNs, specifically SESN3, play a key role in exercise training-mediated glucose metabolism in skeletal muscle.  相似文献   

9.
10.
We investigated the effects of ketamine on the type 3 facilitative glucose transporter (GLUT3), which plays a major role in glucose transport across the plasma membrane of neurons. Human-cloned GLUT3 was expressed in Xenopus oocytes by injection of GLUT3 mRNA. GLUT3-mediated glucose uptake was examined by measuring oocyte radioactivity following incubation with 2-deoxy-d-[1,2-3H]glucose. While ketamine and S(+)-ketamine significantly increased GLUT3-mediated glucose uptake, this effect was biphasic such that higher concentrations of ketamine inhibited glucose uptake. Ketamine (10 μM) significantly increased Vmax but not Km of GLUT3 for 2-deoxy-d-glucose. Although staurosporine (a protein kinase C inhibitor) increased glucose uptake, no additive or synergistic interactions were observed between staurosporine and racemic ketamine or S(+)-ketamine. Treatment with ketamine or S(+)-ketamine partially prevented GLUT3 inhibition by the protein kinase C activator phorbol-12-myrisate-13-acetate. Our results indicate that ketamine increases GLUT3 activity at clinically relevant doses through a mechanism involving PKC inhibition.  相似文献   

11.
In isolated phloem segments of celery (Apium graveolens L.), a tissue highly specific for sucrose and mannitol uptake, glucose uptake occurs at very low rates and exhibits biphasic kinetics. Nonpenetrating inhibitors such as parachloromercuribenzene sulfonic acid did not inhibit glucose uptake. However, uptake was greatly inhibited by penetrating inhibitors such as N-ethylmaleimide and carbonylcyanide-m-chlorophenyl hydrazone. Carbonylcyanide-m-chlorophenyl hydrazone inhibition of uptake was reversed by washing and addition of thiol reagents to uptake solutions. Phlorizin, a competitive inhibitor of glucose caused moderate inhibition of uptake only after 3 hours of tissue exposure. Low pH, fusicoccin, and low turgor which enhance H+-sugar cotransport did not alter uptake rates. Furthermore, glucose did not induce alkalinization of the uptake media. Efflux analysis indicated that the presence of 50 millimolar unlabeled glucose in the wash media enhanced exchange of the labeled glucose across the tonoplast. Results indicate that the glucose carrier is not located at the plasmalemma but appears to be present at the membrane of an intracellular compartment, most likely the tonoplast. Carrier-mediated glucose transport in this tissue is proposed to be a facilitated diffusion.  相似文献   

12.
The mechanism of glucose and sucrose transport and the influence of various concentrations of sulfite on its activity was studied in mesophyll protoplasts (etioprotoplasts, semi-etioprotoplasts and green protoplasts) isolated from oat (Avena sativa L.) seedlings. Kinetic analysis of [14C] glucose loading (in darkness) revealed in each kind of protoplasts the presence of two transport components. At low exogenous glucose concentrations a saturable system was the main mode of transport. At concentrations higher than 20 mM the loading of glucose in all types of protoplasts was dominated by a non-saturable, linear diffusion-like component. The rate of glucose uptake was greatest in etioprotoplasts and lowest in green protoplasts. In contrast to the above we have not found saturable components of sucrose transport in any kind of protoplasts. The rate of its uptake was greatest in semi-etioprotoplasts. Sulfite, at a concentration of < 1.0 mM stimulated and at ≥ 1.0 mM inhibited the uptake of glucose to etioprotoplasts and semi-etioprotoplasts and inhibited that to green protoplasts at any concentration. The transport of sucrose underwent a significant inhibition in the various types of protoplasts only under the influence of 10.0 mM of sulfite ions. Inhibition of glucose uptake by sulfite was of the non-competitive type. Sulfite also affected the level of adenylic nucleotides and lowered the energy charge and ATP/ADP ratio. Intensity of sulfite uptake was significantly higher in green protoplasts than in etioprotoplasts.  相似文献   

13.
Net glucose uptake in a perfusion system including erythrocytes and isolated livers from fed rats was inhibited by N-acetylglucosamine (GlcNAc), a competitive inhibitor of glucokinase. Net glucose uptake also occurred in the system incorporating livers from 48-h fasted rats, but its inhibition by GlcNAc did not. This distinction could not be explained on the basis of a different sensitivity of glucokinase from fasted compared with fed rats to inhibition by GlcNAc. Nor could it be rationalized based on several other hepatic enzymes possibly involved in glucose utilization or production. Because erythrocytes were included in our system, other explanations were sought related to the total enzymic environment. The involvement of an indirect pathway including glycolysis of glucose to lactate in erythrocytes followed by conversion of this lactate to glucose-6-P and then glycogen in liver was considered. This pathway contributed no more than 17% to total net glucose uptake in the system incorporating livers from fed rats. This per cent contribution increased when hepatic glucokinase was reduced by fasting or through inhibition by GlcNAc. However, it was too small to explain observed overall rates of net glucose uptake. We propose that the presence of erythrocytes may also promote a greater net glucose uptake by the direct hepatic pathway. An enhanced inhibition of hepatic glucose-6-P hydrolysis by some intermediate metabolite generated in the presence of lactate infusion from erythrocytes may promote net glucose uptake independently of the mechanism of residual hepatic glucose phosphorylation. This may explain why we and others who have employed liver perfusion systems including erythrocytes have seen greater net glucose uptake than have workers using systems devoid of erythrocytes.  相似文献   

14.
The relative amounts of Concanavalin A (Con A) bound by gamete and vegetative flagella of both mating types (mt + and mt -) of Chlamydomonas eugametos were determined using 125I-Con A. Con A agglutinated all cell types by cross-linking their flagella in a random manner. No correlation was found between the extent of Con A-binding and Con A-mediated isoagglutination. Con A inhibited the sexual interaction between gametes at various levels. In mt + gametes it blocked sexual agglutination, whereas in mt - gametes it prevented papillar fusion. By SDS-gel electrophoresis nine Con A-binding components were found to be present in flagella. However, it was not possible to allocate a role in sexual agglutination to any of these components since they were present in all cell types, including vegetative cells which are not able to sexually agglutinate.Abbreviations Con A concanavalin A - SDS sodium dodecyl sulphate - TB Tris buffer - PBS phosphate buffered saline - HRP horse radish peroxidase - SEM scanning electron microscope - PAS periodic acid Schiff  相似文献   

15.
The affinity of concanavalin A (Con A) for simple saccharides has been known for over 50 years. However, the specificity of binding of Con A with cell-surface related carbohydrates has only recently been examined in detail. Brewer and coworkers [J Biol Chem (1986) 261:7306–10; J Biol Chem (1987) 262:1288–93; J Biol Chem (1987) 262:1294–99] have recently studied the binding interactions of a series of oligomannose and bisected hybrid type glycopeptides and complex type glycopeptides and oligosaccharides with Con A. The relative affinities of the carbohydrates were determined using hemagglutination inhibition measurements, and their modes of binding to the lectin examined by nuclear magnetic relaxation dispersion (NMRD) spectroscopy and quantitative precipitation analyses. The equivalence zones (regions of maximum precipitation) of the precipitin curves of Con A and the carbohydrates indicate that certain oligomannose and bisected hybrid type glycopeptides are bivalent for lectin binding. From the NMRD and precipitation data, two protein binding sites on each glycopeptide have been identified and characterized. Certain bisected complex type oligosaccharides also bind and precipitate Con A, while the corresponding nonbisected analogs bind but do not precipitate the protein. The precipitation data indicate that the bisected complex type oligosaccharides are also bivalent for lectin binding, while the nonbisected analogs are univalent. The NMRD and precipitation data are consistent with different mechanisms of binding of nonbisected and bisected complex type carbohydrates to Con A, including different conformations of the bound saccharides.Abbreviations Con A Concanavalin A with unspecified metal ion content - CMPL Con A with Mn2+ and Ca2+ at the S1 and S2 sites respectively, in the locked conformation [12]; trisaccharide1, 3,6-di-O-(-d-mannopyranosyl)-d-mannose - -MDM methyl -d-mannopyranoside - NMRD nuclear magnetic relaxation dispersion, the magnetic field dependence of nuclear magnetic relaxation rates, in the present case, the longitudinal relaxation rate, 1/T1, of solvent protons  相似文献   

16.
Signaling and insulin secretion in β cells have been reported to demonstrate oscillatory modes, with abnormal oscillations associated with type 2 diabetes. We investigated cellular glucose influx in β cells with a self-referencing (SR) microbiosensor based on nanomaterials with enhanced performance. Dose–response analyses with glucose and metabolic inhibition studies were used to study oscillatory patterns and transporter kinetics. For the first time, we report a stable and regular oscillatory uptake of glucose (averaged period 2.9 ± 0.6 min), which corresponds well with an oscillator model. This oscillatory behavior is part of the feedback control pathway involving oxygen, cytosolic Ca2+/ATP, and insulin secretion (periodicity approximately 3 min). Glucose stimulation experiments show that the net Michaelis–Menten constant (6.1 ± 1.5 mM) is in between GLUT2 and GLUT9. Phloretin inhibition experiments show an EC50 value of 28 ± 1.6 μM phloretin for class I GLUT proteins and a concentration of 40 ± 0.6 μM phloretin caused maximum inhibition with residual nonoscillating flux, suggesting that the transporters not inhibited by phloretin are likely responsible for the remaining nonoscillatory uptake, and that impaired uptake via GLUT2 may be the cause of the oscillation loss in type 2 diabetes. Transporter studies using the SR microbiosensor will contribute to diabetes research and therapy development by exploring the nature of oscillatory transport mechanisms.  相似文献   

17.
The processes of N-methyl-d-aspartate (NMDA) receptor subunits expression were examined in cortical neurons and rat brain in order to investigate how the concanavalin A (Con A) modulates neuronal cells. Con A modulated the expression of NMDA receptor subunits in cultured cortical cells. Con A augmented the level of intracellular Ca2+ by α-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA). We determined whether activation of AMPA receptors was involved in the regulation of NMDA receptor expression with Con A by blocking the desensitization of AMPA receptors. The results showed that AMPA receptor antagonists suppressed NMDA receptor subunits expression in Con A-treated cortical neuronal cells. PMA elevated the expression of NMDA receptor subunits, while PKC inhibitor and tyrosine kinases inhibitor suppressed the expression of NMDA receptor subunits. Furthermore, it was shown that NMDA receptor subunits expression was modulated in a region-specific manner after the sustained microinfusion of Con A into the cerebroventricle of the rat brain. Collectively, it could be presumed that the AMPA receptor activation was involved in Con A-induced modulation of NMDA receptor subunits expression.  相似文献   

18.
Concanavalin A (Con A) affected sperm-egg interactions of Arbacia punctulata and Strongylocentrotus purpuratus by inhibiting insemination at minimally saturating sperm concentrations. However, this inhibition was overcome by increasing the sperm density. Sperm concentrations (106/ml) yielding 100% fertilization of control preparations resulted in only 72% insemination of Con A-treated ova (104/ml). Although a cortical granule reaction occurred in fertilized, Con A-treated eggs, the distance the fertilization membrane separated from the zygote's surface was not as great as observed in controls. These results may be the basis for previous reports of Con A inhibiting fertilization in sea urchins.  相似文献   

19.
We have previously shown that endothelin-1 increases glucose uptake in astrocytes. In the present work we investigate the mechanism through which endothelin-1 (ET-1) increases glucose uptake. Our results show that ET-1 activates a short-term and a long-term mechanism. Thus, ET-1 induced a rapid change in the localization of both GLUT-1 and type I hexokinase. These changes are probably aimed at rapidly increasing the entry and phosphorylation of glucose. In addition, ET-1 upregulated GLUT-1 and type I hexokinase and induced the expression of isoforms not normally expressed in astrocytes, such as GLUT-3 and type II hexokinase. These changes provide astrocytes with the machinery required to sustain a high rate of glucose uptake for a longer period of time. Our previous work had suggested that the effect of ET-1 on glucose uptake was associated with the inhibition of gap junctions. In this work, we compare the effect of ET-1 with that of carbenoxolone, a classical inhibitor of gap junction communication. Carbenoxolone increased glucose uptake to the same extent as ET-1 following the same mechanisms. Thus, carbenoxolone induced a rapid change in the localization of both GLUT-1 and type I hexokinase, upregulated GLUT-1 and type I hexokinase and induced the expression of GLUT-3 and type II hexokinase. When the inhibition of gap junction was prevented by tolbutamide, neither ET-1 nor carbenoxolone were able to increase the levels of GLUT-1, GLUT-3, type I hexokinase or type II hexokinase, indicating that these events are closely related to gap junctions.  相似文献   

20.
The mechanism of enhancement of Ca2+ uptake by the T cell mitogen concanavalin A (Con A) was studied in murine thymocytes. Native Con A enhanced the rate of Ca2+ uptake as much as 9-fold, an increase being observed within five minutes after Con A addition. The effect of Con A was reversed completely by alpha-methyl mannopyranoside (alpha-MM). Increased Ca2+ uptake was observed with increasing concentrations of Con A, between 2 and 400 microgram/ml, indicating that the stimulation of Ca2+ uptake is not restricted to mitogenic lectin concentrations (0.5-2 microgram/ml). Succinyl Con A exhibits only a slight effect in the same concentration ranges as native Con A. Ca2+ uptake, both in the absence and presence of Con A, is strongly dependent on energy metabolism and is carrier mediated. The augmentation of Ca2+ uptake by native Con A is due to an enhanced Vmax. Uptake of the anion, CrO42-, by thymocytes, found to be a non-saturable process, was also enhanced by Con A. The effect of Con A on CrO42- permeability appears to be independent of its effect on Ca2+ uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号