首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(1) Treatment of (Na+ + K+)-ATPase from rabbit kidney outer medulla with the γ-35S labeled thio-analogue of ATP in the presence of Na+ + Mg2+ and the absence of K+ leads to thiophosphorylation of the enzyme. The Km value for [γ-S]ATP is 2.2 μM and for Na+ 4.2 mM at 22°C. Thiophosphorylation is a sigmoidal function of the Na+ concentration, yielding a Hill coefficient nH = 2.6. (2) The thio-analogue (Km = 35 μM) can also support overall (Na+ + K+)-ATPase activity, but Vmax at 37°C is only 1.3 γmol · (mg protein)? · h?1 or 0.09% of the specific activity for ATP (Km = 0.43 mM). (3) The thiophosphoenzyme intermediate, like the natural phosphoenzyme, is sensitive to hydroxylamine, indicating that it also is an acylphosphate. However, the thiophosphoenzyme, unlike the phosphoenzyme, is acid labile at temperatures as low as 0°C. The acid-denatured thiophosphoenzyme has optimal stability at pH 5–6. (4) The thiophosphorylation capacity of the enzyme is equal to its phosphorylation capacity, indicating the same number of sites. Phosphorylation by ATP excludes thiophosphorylation, suggesting that the two substrates compete for the same phosphorylation site. (5) The (apparent) rate constants of thiophosphorylation (0.4 s?1 vs. 180 s?1), spontaneous dethiophosphorylation (0.04 s?1 vs. 0.5 s?1) and K+-stimulated dethiophosphorylation (0.54 s?1 vs. 230 s?1) are much lower than those for the corresponding reactions based on ATP. (6) In contrast to the phosphoenzyme, the thiophosphoenzyme is ADP-sensitive (with an apparent rate constant in ADP-induced dethiophosphorylation of 0.35 s?1, KmADP = 48 μM at 0.1 mM ATP) and is relatively K+-insensitve. The Km for K+ in dethiophosphorylation is 0.9 mM and in dephosphorylation 0.09 mM. The thiophosphoenzyme appears to be for 75–90% in the ADP-sensitive E1-conformation.  相似文献   

2.
The technique of laser Doppler electrophoresis was applied for the study of the surface charge properties of (Na+,+)-ATPase containing microsomal vesicles derived from guinea-pig kidney. The influence of pH, the screening and binding of uni- and divalent cations and the binding of ATP show: (1) one net negative charge per protein unit with a pK = 3.9; (2) deviation from the Debye relation between surface potential and ionic strength for univalent cations, with no difference in the effect of Na+ and K+; (3) Mg2+ binds with an association constant of Ka = 1.1 · 102M?1 while ATP binds with an apparent Ka = 1.1 · 104M?2 for 1 mM Nacl, 0.2 mM KCI, 0.1 mM MgCl2, 0.1 mM Tris-HCI (pH 7.3). The binding is weaker at higher Mg2+ concentrations. There is no ATP binding in the absence of Mg2+. In addition, the average vesicle size derived from the linewidth of the quasi-elastic light scattering spectrum is 203.7 ± 15.2 nm. In the presence of ATP a reduction in size is observed.  相似文献   

3.
Extensive formation of two-dimensional crystals of the proteins of the pure membrane-bound (Na+ + K+)-ATPase is induced during prolonged incubation with vanadate and magnesium. Some membrane crystals are formed in medium containing magnesium and phosphate. Computer-averaged images of the two-dimensional crystals show that the unit cell in vanadate-induced crystals contains a protomeric αβ-unit of the enzyme protein. In phosphate-induced crystals an (αβ)2-unit occupies one unit cell suggesting that interactions between αβ-units can be of importance in the function of the Na+, K+ pump.  相似文献   

4.
Four patients with an unusual form of spondyloepiphyseal dysplasia excreted in the urine undersulfated chondroitin 6-sulfate (Biochem. Med. 7, 415–423, 1973). The sera of these patients show a low activity of PAPS — chondroitin sulfate sulfotransferase, while the undersulfated chondroitin sulfate present in their urine is a much better acceptor of 35SO4 than standard chondroitin sulfate when they are incubated with [35S]PAPS and normal sulfotransferases. These results suggest that in these patients the skeletal lesions are secondary to a defect in the synthesis of chondroitin sulfate involving specifically the sulfotransferase activity.  相似文献   

5.
Na+, K+ and Cl? concentrations (cji) and activities (aji), and mucosal membrane potentials (Em) were measured in epithelial cells of isolated bullfrog (Rana catesbeiana) small intestine. Segments of intestine were stripped of their external muscle layers, and bathed (at 25°C and pH 7.2) in oxygenated Ringer solutions containing 105 mM Na+ and Cl? and 5.4 mM K+. Na+ and K+ concentrations were determined by atomic absorption spectrometry and Cl? concentrations by conductometric titration following extraction of the dried tissue with 0.1 M HNO3. 14C-labelled inulin was used to determine extracellular volume. Em was measured with conventional open tip microelectrodes, aCli with solid-state Cl?-selective silver microelectrodes and aNai and aKi with Na+- and K+-selective liquid ion-exchanger microelectrodes. The average Em recorded was ?34 mV. cNai, cKi and cCli were 51, 105 and 52 mM. The corresponding values for aNai, aKi and aCli were 18, 80 and 33 mM. These results suggest that a large fraction of the cytoplasmic Na+ is ‘bound’ or sequestered in an osmotically inactive form, that all, or virtually all the cytoplasmic K+ behaves as if in free solution, and that there is probably some binding of cytoplasmic Cl?. aCli significantly exceeds the level corresponding to electrochemical equilibrium across the mucosal and baso-lateral cell membranes. Earlier studies showed that coupled mucosal entry of Na+ and Cl? is implicated in intracellular Cl? accumulation in this tissue. This study permitted estimation of the steady-state transapical Na+ and Cl? electrochemical potential differences (Δμ̄Na and Δμ̄Cl). Δμ̄Na (?7000 J · mol?1; cell minus mucosal medium) was energetically more than sufficient to account for Δμ̄Cl (1000–2000 J · mol?1).  相似文献   

6.
Thermotropic properties of purified cytochrome c1 and cytochrome c have been studied by differential scanning calorimetry under various conditions. Both cytochromes exhibit a single endothermodenaturation peak in the differential scanning calorimetric thermogram. Thermodenaturation temperatures are ionic strength, pH, and redox state dependent. The ferrocytochromes are more stable toward thermodenaturation than the ferricytochromes. The enthalpy changes of thermodenaturation of ferro- and ferricytochrome c1 are markedly dependent on the ionic strength of the solution. The effect of the ionic strength of solution on the enthalpy change of thermodenaturation of cytochrome c is rather insignificant. The formation of a complex between cytochromes c and c1 at lower ionic strength causes a significant destabilization of the former and a slight stabilization of the latter. The destabilization of cytochrome c upon mixing with cytochrome c1 was also observed at high ionic strength, under which conditions no stable complex was detected by physical separation. This suggests formation of a transient complex between these two cytochromes. When cytochrome c was complexed with phospholipids, no change in the thermodenaturation temperature was observed, but a great increase in the enthalpy change of thermodenaturation resulted.  相似文献   

7.
Calcium uptake by adipocyte endoplasmic reticulum was studied in a rapidly obtained microsomal fraction. The kinetics and ionic requirements of Ca2+ transport in this preparation were characterized and compared to those of (Ca2+ + Mg2+)-ATPase activity. The time course of Ca2+ uptake in the presence of 5 mM oxalate was nonlinear, approaching a steady-state level of 10.8–11.5 nmol Ca2+/mg protein after 3–4 min of incubation. The rate of Ca2+ transport was increased by higher oxalate concentrations with a near linear rate of uptake at 20 mM oxalate. The calculated initial rate of calcium uptake was 18.5 nmol Ca2+/mg protein per min. The double reciprocal plot of ATP concentration against transport rate was nonlinear, with apparent Km values of 100 μM and 7 μM for ATP concentration ranges above and below 50 μM, respectively. The apparent Km values for Mg2+ and Ca2+ were 132 μM and 0.36–0.67 μM, respectively. The energy of activation was 23.4 kcal/mol. These kinetic properties were strikingly similar to those of the microsomal (Ca2+ + Mg2+)-ATPase. The presence of potassium was required for maximum Ca2+ transport activity. The order of effectiveness of monovalent cations in stimulating both Ca2+ transport and (Ca2+ + Mg2+-ATPase activity was K+ >Na+ = NH4+ >Li+ . Ca2+ transport and (Ca2+ + Mg2+)-ATPase activity were both inhibited 10–20% by 6 mM procaine and less than 10% by 10 mM sodium azide. Both processes were completely inhibited by 3 mM dibucaine or 50 μM p-chloromercuribenzene sulfonate. The results indicate that Ca2+ transport in adipocyte endoplasmic reticulum is mediated by a (Ca2+ + Mg2+)-ATPase and suggest an important role for endoplasmic reticulum in control of intracellular Ca2+ distribution.  相似文献   

8.
Quercetin inhibited a dog kidney (Na+ + K+)-ATPase preparation without affecting Km for ATP or K0.5 for cation activators, attributable to the slowly-reversible nature of its inhibition. Dimethyl sulfoxide, a selector of E2 enzyme conformations, blocked this inhibition, while the K+-phosphatase activity was at least as sensitive to quercetin as the (Na+ + K+)-ATPase activity, all consistent with quercetin favoring E1 conformations of the enzyme. Oligomycin, a rapidly-reversible inhibitor, decreased the Km for ATP and the K0.5 for cation activators, and its inhibition was also diminished by dimethyl sulfoxide. Although oligomycin did not inhibit the K+-phosphatase activity under standard assay conditions, a reaction presumably catalyzed by E2 conformations, its effects are nevertheless accommodated by a quantitative model for that reaction depicting oligomycin as favoring E1 conformations. The model also accounts quantitatively for effects of both dimethyl sulfoxide and oligomycin on Vmax, Km for substrate, and K0.5 for K+, as well as for stimulation of phosphatase activity by both these reagents at low K+ but high Na+ concentrations.  相似文献   

9.
(1) A membrane fraction enriched in (Na+ + K+)-ATPase (EC 3.6.1.3) was obtained from optic ganglia of the squid (Loligo pealei) by density gradient fractionation of membranes followed by treatment with either SDS or Brij-58. The resulting membrane had an (Na+ + K+)-ATPase specific activity of approx. 2 units/mg and was >95% ouabain-sensitive. (2) The (Na+ + K+)-ATPase had a Km for ATP of 0.42 ± 0.04 mM and a pH optimum of 7.0. It was inhibited by ouabain with a Ki of 0.32 ± 0.04 μM. (3) Optimum monovalent cation concentrations were: 240 mM NaCl, 60 mM KCl, tested with NaCl + KCl = 300 mM. (4) The Mg2+ dependence of hydrolysis varied with the absolute ATP concentration. At 3 mM ATP, theKm for Mg2+ was 0.86 ± 0.10 mM, and at 6 mM ATP, the Km was 1.86 ± 0.44 mM. High levels of Mg2+ caused inhibition of hydrolysis. (5) The interactions of Na+ and K+ were examined over a range of conditions. K+ levels caused modulations in the Na+ dependence in the range of 1–150 mM. (6) The (Na+ + K+)-ATPase prepared from squid optic ganglion displays properties similar to those of the sodium pump in injected nerves.  相似文献   

10.
Infinite cis uptake of cyclic AMP into red blood cell ghosts has been measured. The Kicoi is calculated from two different integrated rate equations that are applicable when the substrate concentration is unsufficient to cause volume changes. Values of 0.69 mM and 0.66 mM are obtained for the infinite cisKm at 30°C using these procedures. These values are only slightly higher than that predicted from zero trans net flux experiments.Lowering the temperature reduces Kicoi from 0.69 mM at 30°C to 0.478 mM at 20°C, 0.108 mM at 10°C and 0.072 mM at 4°C (Q10 = 2.4). The Q10 for activation of influx permeability of 10?5 M cyclic AMP is 1.55.  相似文献   

11.
Activity levels of sulfotransferases, requisite for the sulfation of chondroitin sulfate proteoglycan, were measured in cell-free homogenates prepared from neonatal epiphyseal cartilage of normal C57B1/6J or homozygous brachymorphic mice. In the presence of [35S]-PAPS only or [35S]-PAPS plus an exogenous sulfate acceptor, comparable amounts of 35SO42? were incorporated into chondroitin sulfate by the normal and mutant types of cartilage. In contrast, the mutant cartilage catalyzed the conversion of only 30% of the 35SO42? into chondroitin sulfate as compared to normal mouse cartilage when synthesis was initiated from ATP and H235SO4. These results suggest that the production of an undersulfated proteoglycan which has previously been reported in brachymorphic mice (Orkin, R.W. etal. (1976) Devel. Biol. 50, 82–94) may result from a defect in the synthesis of the sulfate donor PAPS.  相似文献   

12.
13.
DNA-dependent RNA polymerase has been studied in adult mouse liver and mouse blastocysts. The enzyme from mouse liver was resolved into three enzyme forms by DEAE-Sephadex chromatography. Two of the forms, IA and IB, are insensitive to α-amanitin, have low Mn2+Mg2+ activity ratios, and are optimally active at low ionic strength. Form II is inhibited by α-amanitin, has a higher Mn2+Mg2+ activity ratio, and is most active at high ionic strength. An optimal reaction temperature of 37 ° C was found for all enzyme forms. All of the isolated enzyme forms are inhibited by the exotoxin from Bacillus thuringiensis and the inhibition can be partially reversed by increased ATP levels. Forms IA and IB are most active with native template while form II prefers denatured DNA.The blastocyst RNA polymerase activity exhibits similar requirements for divalent metal ions and ionic strength to the purified liver enzymes. The maximum inhibition of blastocyst RNA polymerase obtained with α-amanitin and exotoxin differs from that observed for purified liver enzymes but is similar to the inhibition of liver homogenate. However, the concentrations of inhibitor required for maximum inhibition by α-amanitin and exotoxin is different for the blastocyst and liver homogenate enzymes.  相似文献   

14.
Unidirectional fluxes of [14C]lactose by whole cells of Escherichia coli under highly energized and partially de-energized (in the presence of CN?) conditions are analyzed kinetically.When the cells are energized, the value for V influx is 0.45 ± 0.01 mM internal concentration increment/s and Kt is 0.26 ± 0.03 mM. At an external concentration of 0.61 mM the steady-state internal concentration is 0.25 M, reached after about 1h. The maximum steady-state concentration ratio is 2 · 103.The efflux process under these conditions is non-saturable, being linearly dependent upon internal concentration over the range 25–250 mM with a first-order rate constant of 8.8 ± 0.2 · 10?4 s?1.The transport in the presence of CN? is active, with a maximum concentration ratio (internal concentration/external concentration) of 104, and the uptake is mimicked by anoxia (< 70 ppm O2).The effects of CN? are to lower the V for influx and to change the efflux from a non-saturable to a saturable process with a value for Kt (60 mM) intermediate between that for energized efflux (> 250 mM) and influxe (0.3–0.6 mM), the latter value not changing appreciably. Partial de-energization thus affects both the influx and efflux processes.  相似文献   

15.
A potent inhibitor of (Na+ + K+)-ATPase activity was purified from Sigma equine muscle ATP by cation- and anion-exchange chromatography. The isolated inhibitor was identified by atomic absorption spectroscopy and proton resonance spectroscopy to be an inorganic vanadate. The isolated vanadate and a solution of V2O5 inhibit sarcolemma (Na+ + K+)-ATPase with an I50 of 1 μM in the presence of 1 mM ethyleneglycol-bis-(β-aminoethylether)-N,N′-tetraacetic acid (EGTA), 145 mM NaCl, 6mM MgCl2, 15 mM KCl and 2 mM synthetic ATP. The potency of the isolated vanadate in increased by free Mg2+. The inhibition is half maximally reversed by 250 μM epinephrine. Equine muscle ATP was also found to contain a second (Na+ + K+)-ATPase inhibitor which depends on the sulfhydryl-reducing agent dithioerythritol for inhibition. This unknown inhibitor does not depend on free Mg2+ and is half maximally reversed by 2 μM epinephrine. Prolonged storage or freeze-thawing of enzyme preparations decreases the susceptibility of the (Na+ + K+)-ATPase to this inhibitor. The adrenergic blocking agents, propranolol and phentolamine, do not block the catecholamine reactivation. The inhibitors in equine muscle ATP also inhibit highly purified (Na+ + K+)-ATPase from shark rectal gland and eel electroplax. The inhibitors in equine muscle ATP have no effect on the other sarcolemmal ATPases, Mg2+-ATPase, Ca2+-ATPase and (Ca2+ + Mg2+)-ATPase.  相似文献   

16.
The kinetics of pyruvate transport across the isolated red blood cell membrane were studied by a simple and precise spectrophotometric method: following the oxidation of NADH via lactate dehydrogenase trapped within resealed ghosts. The initial rate of pyruvate entry was linear. Influx was limited by saturation at high pyruvate concentration. Pyruvate influx was greatly stimulated by increasing ionic strength in the outer but not the inner aqueous compartment. The Km ranged from 15.0 mM at μ = 0.05 to 3.7 mM at μ = 0.01, while the V went from 0.611 · 10-15 to 0.137 · 10-15mol · min-1 · ghost-1. Ionic strength was shown to affect the translocation step and not pyruvate binding. The energy of activation of pyruvate flux into resealed ghosts was 25 kcal/mol, similar to that found in intact red blood cells. Inhibitors of pyruvate influx included such anions as thiocyanate, chloride, bicarbonate, α-cyanocinnamate, salicylate and ketomalonate (but not acetate); noncompetitive inhibitors were phloretin, 1-fluoro-2,4-dinitrobenzene, 4-acetamido-4′-isothiocyanate-stilbene-2,2′-disulfonic acid and o-phenanthroline/CuSO4 mixtures. The last reagent, known to induce disulfide links in certain membrane proteins, blocked the ionic strength stimulation of pyruvate influx in this study.  相似文献   

17.
The ATP/ADP exchange is shown to be a partial reaction of the (H+ + K+)-ATPase by the absence of measurable nucleoside diphosphokinase activity and the insensitivity of the reaction to P1, P5 -di(adenosine-5′) pentaphosphate, a myokinase inhibitor. The exchange demonstrates an absolute requirement for Mg2+ and is optimal at an ADP/ATP ratio of 2. The high ATP concentration (K0.5 = 116 μM) required for maximal exchange is interpreted as evidence for the involvement of a low affinity form of nucleotide site. The ATP/ADP exchange is regarded as evidence for an ADP-sensitive form of the phosphoenzyme. In native enzyme, pre-steady state kinetics show that the formation of the phosphoenzyme is partially sensitive to ADP while modification of the enzyme by pretreatment with 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) in the absence of Mg2+ results in a steady-state phosphoenzyme population, a component of which is ADP sensitive. The ATP/ADP exchange reaction can be either stimulated or inhibited by the presence of K+ as a function of pH and Mg2+.  相似文献   

18.
Peter Nicholls 《BBA》1976,430(1):13-29
1. Formate inhibits cytochrome c oxidase activity both in intact mitochondria and submitochondrial particles, and in isolated cytochrome aa3. The inhibition increases with decreasing pH, indicating that HCOOH may be the inhibitory species.2. Formate induces a blue shift in the absorption spectrum of oxidized cytochrome aa3 (a3+a33+) and in the half-reduced species (a2+a33+). Comparison with cyanide-induced spectral shifts, towards the red, indicates that formate and cyanide have opposite effects on the aa3 spectrum, both in the fully oxidized and the half-reduced states. The formate spectra provide a new method of obtaining the difference spectrum of a32+ minus a33+, free of the difficulties with cyanide (which induces marked high → low spin spectral shifts in cytochrome a33+) and azide (which induces peak shifts of cytochrome a2+ towards the blue in both α- and Soret regions).3. The rate of formate dissociation from cytochrome a2+a33+-HCOOH is faster than its rate of dissociation from a3+a33+-HCOOH, especially in the presence of cytochrome c. The Ki for formate inhibition of respiration is a function of the reduction state of the system, varying from 30 mM (100% reduction) to 1 mM (100% oxidation) at pH 7.4, 30 °C.4. Succinate-cytochrome c reductase activity is also inhibited by formate, in a reaction competitive with succinate and dependent on [formate]2.5. Formate inhibition of ascorbate plus N,N,N′,N′-tetramethyl-p-phenyl-enediamine oxidation by intact rat liver mitochondria is partially released by uncoupler addition. Formate is permeable through the inner mitochondrial membrane and no differences in ‘on’ or ‘off’ inhibition rates were observed when intact mitochondria were compared with submitochondrial particles.6. NADH-cytochrome c reductase activity is unaffected by formate in submitochondrial particles, but mitochondrial oxidation of glutamate plus malate is subject both to terminal inhibition at the cytochrome aa3 level and to a slow extra inhibition by formate following uncoupler addition, indicating a third site of formate action in the intact mitochondrion.  相似文献   

19.
Parathyroid hormone (PTH) and calcitonin exert well known effects on the renal tubule which are thought to involve specific hormone receptors and adenyl cyclase. In the intestine, it is not clear whether the action of PTH and calcitonin is only indirect or also direct, and their mechanisms of action are much less well established. In the present study, possibly direct effects of PTH and calcitonin on Na+ transport in isolated intestinal epithelial cells of rats were investigated. In the presence of bovine PTH (1.2 I.U./ml) in the incubation medium, the Na+ efflux rate constant (oKNa) of isolated enterocytes was significantly reduced when compared to that in control experiments with the hormone vehicle only. The mean depression of oKNa induced by bovine PTH was 26% as compared to the control (100%) and to that induced by ouabain (4.0mM) which was 44%. No depressant effect of bovine PTH on oKNa was observed when the isolated enterocytes were incubated with ouabain (4.0 mM). Thus, bovine PTH appeared to inhibit the ouabain-sensitive Na+ pump. When incubating the isolated epithelial cells in an EGTA-containing Ca2+-free medium, bovine PTH lost its capacity to inhibit (oKNa). Thus, the presence of extracellular Ca2+ appeared necessary for the inhibitory effect of bovine PTH. In contrast to its effect on oKNa, bovine PTH induced no change in net Na+ uptake by isolated enterocytes. Moreover, no significant effect on enterocyte Na+ transport could be demostrated for salmon or porcine calcitonin at two different concentrations in the incubation medium. Neither bovine PTH nor salmon calcitonin induced significant changes in enterocyte cyclic AMP or cyclic GMP concentrations. It was concluded that bovine PTH, but not calcitonin, exerted a direct inhibitory effect on the ouabain-sensitive oKNa of isolated rat enterocytes. The effect of bovine PTH occured without measurable activation of the cyclic nucleotide system but needed the presence of Ca2+ in the incubation medium to be operative.  相似文献   

20.
The partial purification of (Na+ + K+)-ATPase from pig lens has been achieved by treatment with deoxycholate followed by density gradient centrifugation. The specific activity of the final preparation, ranging from 300 to 500 nmol/h per mg protein, is increased approx. 100-fold compared to the homogenate. A parallel increase in p-nitrophenylphosphatase activity is also observed. Sodium dodecyl sulfate (SDS) gel electrophoresis reveals six major protein bands, one of which is the 93 kDa α subunit of (Na+ + K+)-ATPase which can be phosphorylated by reaction with [γ-32P]ATP. A second band contains a glycoprotein which displays an apparent molecular weight of 51 000 and thus appears to be the β subunit of the enzyme. The enzyme is sensitive to ouabain with the I50 for (Na+ + K+)-ATPase and p-nitrophenylphosphatase inhibition being 1.2 and 1.3 μM, respectively. Several agents which inhibit Na+ + K+)-ATPase from other tissues such as oligomycin, Ca2+, vanadate, N-ethylmaleimide, p-chloromercuribenzenesulfonic acid (PCMBS) and 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) also inhibit the lens enzyme. Monovalent cations other than K+ are partially effective in activating the (Na+ + K+)-ATPase and p-nitrophenylphosphatase activities. The K+ congeners were relatively more effective in supporting (Na+ + K+)-ATPase compared to p-nitrophenylphosphatase activity. Other kinetic properties of the lens enzyme are also comparable to those of the enzyme from other tissues. Utilizing the partially purified membrane bound enzyme, discontinuities in Arrhenius plots of (Na+ + K+)-ATPase activity, p-nitrophenylphosphatase activity and fluoresence polarization of the fluidity probe, 1,6-diphenyl-1,3,5-hexatriene (DPH), are observed near the physiological temperature of lens. The possible significance of these observations for the mechanism of cataract formation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号