首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The phase behavior of bovine rod outer segment disk lipids has been investigated using freeze-fracture and 31P nuclear magnetic resonance (NMR) techniques. 31P-NMR spectra of isolated disk membranes were taken as a function of temperature between 25°C and 45°C. The 31P-NMR spectrum characteristic of phospholipid bilayers was observed at all temperatures both in the absence of Ca2+ and in the presence of 10 mM and 50 mM Ca2+. A similar study was performed on lipids isolated from the disk membranes. In the absence of Ca2+ only lamellar phase behavior was observed. In the presence of less than 10 mM Ca2+, however, there was a change in morphology to non-lamellar structures. Removal of the Ca2+ caused the system to reassume the lamellar form.  相似文献   

4.
1. 1. The 31P-NMR characteristics of intact rat liver mitochondria, mitoplasts and isolated inner mitochondrial membranes, as well as mitochondrial phosphatidylethanolamine and phosphatidylcholine, have been examined.
2. 2. Rat liver mitochondrial phosphatidylethanolamine hydrated in excess aqueous buffer undergoes a bilayer-to-hexagonal (HII) polymorphic phase transition as the temperature is increased through 10°C, and thus prefers the HII) arrangement at 37°C. Rat liver mitochondrial phosphatidylcholine, on the other hand, adopts the bilayer phase at 37°C.
3. 3. Total inner mitochondrial membrane lipids, dispersed in an excess of aqueous buffer, exhibit 31P-NMR spectra consistent with a bilayer arrangement for the majority of the endogeneous phospholipids; the remainder exhibit spectra consistent with structure allowing isotropic motional averaging. Addition of Ca2+ results in hexagonal (HII) phase formation for a portion of the phospholipids, as well as formation of ‘lipidic particles’ as detected by freeze-fracture techniques.
4. 4. Preparations of inner mitochondrial membrane at 4 and 37°C exhibit 31P-NMR spectra consistent with a bilayer arrangement of the large majority of the endogenous phospholipids which are detected. Approx. 10% of the signal intensity has characteristics indicating isotropic motional averaging processes. Addition of Ca2+ results in an increase in the size of this component, which can become the dominant spectral feature.
5. 5. Intact mitochondria, at 4°C, exhibit 31P-NMR spectra arising from both phospholipid and small water-soluble molecules (ADP, Pi, etc.). The phospholipid spectrum is characteristic of a bilayer arrangement. At 37°C the phospholipids again give spectra consistent with a bilayer; however, the labile nature of these systems is reflected by increased isotropic motion at longer (at least 30 min) incubation times.
6. 6. It is suggested that the uncoupling action of high Ca2+ concentrations on intact mitochondria may be related to a Ca2+-induced disruption of the integrity of the inner mitochondrial phospholipid bilayer. Further, the possibility that non-bilayer lipid structures such as inverted micelles occur in the inner mitochondrial membrane cannot be excluded.
Keywords: 31P-NMR; Inner mitochondrial membrane; Phosphatidylethanolamine; Ca2+; Hexagonal (HII) phase; Lipidic particle  相似文献   

5.
A series of phosphatidylcholines and phosphatidylethanolamines was synthesized containing two acyl chains of the following polyunsaturated fatty acids: linoleic acid (18:2), linolenic acid (18:3), arachidonic acid (20:4) and docosahexaenoic acid (22:6). In addition two phospholipids with mixed acid composition were synthesized: 16:0/18:1c phosphatidylcholine and 16:0/18:1c phosphatidylethanolamine. The structural properties of these lipids in aqueous dispersions in the absence and in the presence of equimolar cholesterol were studied using 31P-NMR, freeze fracturing and differential scanning calorimetry (DSC).The phosphatidylcholines adopt a bilayer configuration above 0°C. Incorporation of 50 mol% of cholesterol in polyunsaturated species induces a transition at elevated temperatures into structures with 31P-NMR characteristics typical of non-bilayer organizations. When the acyl chains contain three or more double bonds, this non-bilayer organization is most likely the hexagonal HII phase, 16:0/15:1c phosphatidylethanolamine shows a bilayer to hexagonal transition temperature of 75°C. The polyunsaturated phosphatidylethanolamines exhibit a bilayer to hexagonal transition temperature below 0°C which decreases with increasing unsaturation and which is lowered by approximately 10°C upon incorporation of 50 mol% of cholesterol. Finally, it was found that small amounts of polyunsaturated fatty acyl chains in a phosphatidylethanolamine disproportionally lower its bilayer to hexagonal transition temperature.  相似文献   

6.
31P-NMR studies of intact functional rat liver mitochondria at 37°C demonstrate that the large majority (?95%) of endogenous phospholipids exhibit motional properties consistent with bilayer structure. This property is unaffected by oxidative phosphorylation processes or the presence of Ca2+.  相似文献   

7.
Ca2+-induced phase separation in phosphatidylserine/phosphatidylethanolamine and phosphatidylserine/phosphatidylethanolamine/phosphatidylcholine model membranes was studied using spin-labeled phosphatidylethanolamine and phosphatidylcholine and compared with that in phosphatidylserine/phosphatidylcholine model membranes studied previously. The phosphatidyl-ethanolamine-containing membranes behaved in qualitatively the same way as did phosphatidylserine/phosphatidylcholine model membranes. There were some quantitative differences between them. The degree of phase separation was higher in the phosphatidylethanolamine-containing membranes. For example, the degree of phase separation in phosphatidylserine/phosphatidylethanolamine membranes containing various mole fractions of phosphatidylserine was 94–100% at 23°C and 84–88% at 40°C, while the corresponding value for phosphatidylserine/phosphatidylcholine membranes was 74–85% at 23°C and 61–79% at 40°C. Ca2+ concentration required for the phase separation was lower for phosphatidylserine/phosphatidylethanolamine than that for phosphatidylserine/phosphatidylcholine membranes; concentration to cause a half-maximal phase separation was 1.4 · 10?7 M for phosphatidylserine-phosphatidylethanolamine and 1.2 · 10?6 M for phosphatidylserine/phosphatidylcholine membranes. The phase diagram of phosphatidylserine/phosphatidylethanolamine membranes in the presence of Ca2+ was also qualitatively the same as that of phosphatidylserine/phosphatidylcholine except for the different phase transition temperatures of phosphatidylethanolamine (17°C) and phosphatidylcholine (?15°C). These differences were explained in terms of a greater tendency for phosphatidylethanolamine, compared to phosphatidylcholine, to form its own fluid phase separated from the Ca2+-chelated solid-phase phosphatidylserine domain.  相似文献   

8.
(1) Dipalmitoyl- and dioleoylthionphosphatidylcholine, which are phosphatidylcholine analogues in which the double bonded oxygen of the phosphate group is replaced by a sulfur atom, have been synthesized in 50–60% yields by condensation of diacylglycerol with phosphorus thionchloride in the presence of choline toluene-sulfonate. Dioleoylthionphosphatidylethanolamine has been prepared by the phospholipase D-catalyzed base exchange reaction. (2) Freeze-fracturing of aqueous dispersions of the thionphospholipids reveals that the thionphosphatidylcholines are organized in extended bilayers whereas dioleoylthionphosphatidylethanolamine above 0°C forms the hexagonal HII phase similar to dioleoylphosphatidylethanolamine. The gel → liquid crystalline phase transition of the dipalmitoylthionphosphatidylcholine occurs at 44°C which is only slightly higher than the transition temperature of dipalmitoylphosphatidylcholine which together with other data demonstrates that the thionphospholipids closely resemble the natural phospholipids in physicochemical behaviour. (3) Proton decoupled 31P-NMR spectra of aqueous dispersions of thionphosphatidylcholines have the characteristic asymmetrical line-shape with a low-field shoulder and a high-field peak typical of phospholipids organized in extended bilayers in which the phosphate group can undergo fast axial rotation. The 31P-NMR spectrum of the thionphosphatidylethanolamine in the hexagonal HII phase has a line-shape with a reversed asymmetry and an effective chemical shift anisotropy half of that of thionphospholipids organized in bilayers which is caused by fast lateral diffusion of the lipids around the cylinders of the hexagonal HII phase as has been observed for the corresponding phosphatidylethanolamines. (4) Since the 31P-NMR resonance of the thionphospholipids is completely separated from that of natural phospholipids, these lipids can be used to study by 31P-NMR the motional and structural properties of individual lipids in mixed systems. This is demonstrated for various lipid mixtures in which non-bilayer lipid structures have been induced by variations in composition, temperature and presence of divalent cations. It is shown that bilayer → non-bilayer transitions can be modulated by gel → liquid crystalline phase transitions and that typical bilayer forming lipids can be incorporated into non-bilayer structures such as the hexagonal HII phase.  相似文献   

9.
The interaction of La3+ with phosphatidylserine vesicles is studied by differential scanning calorimetry, 140La binding, 31P-NMR chemical shifts and relaxation rates, carboxyfluorescein and [14C]sucrose release, X-ray diffraction and freeze-fracture electron microscopy. In the presence of La3+ concentrations above 1 mM and an incubation temperature of 38°C, i.e., at the phase transition temperature of the complex La/phosphatidylserine, the binding ratio of La/lipid exceeds a 13 ratio, reaching saturation at a 12 ratio. Analysis, employing a modified Gouy-Chapman equation, indicates a significant increase in the intrinsic binding constant of La/phosphatidylserine when the La3+ concentration exceeds the threshold concentration for leakage. The analysis illustrates that at the molecular level the binding of La3+ can be comparable to or even weaker than that of Ca2+, but that even when present at smaller concentrations La3+ competes with and partially displaces Ca2+ from membranes or other negatively charged surfaces. The results suggest that the sequence La3+>Ca2+>Mg2+ reflects both the binding strength of these cations to phosphatidylserine as well as their ability to induce leakage, enhancement of 31P spin-lattice relaxation rates, fusion and other structural changes. The leakage, fusion, and other structural changes are more pronounced at the phase transition temperature of the La/lipid complex.  相似文献   

10.
11.
Properties of the aqueous dispersions of n-octadecylphosphocholine are examined by differential scanning calorimetry, fluorescence depolarization, light scattering, 31P-NMR, pig pancreatic phospholipase A2 binding, and X-ray diffraction. On heating, these dispersions exhibit a sharp lamellar to micelle transition at 20.5°C. The lamellar phase consists of frozen (gel-state) alkyl chains which do not bind phospholipase A2. The kinetics of the transition are asymmetric: the micelle to lamellar transition is very slow and the lamellar to micelle transition is fast. It is suggested that the lamellar phase is a frozen chain bilayer in which the chains interdigitate.  相似文献   

12.
The major lipids of Tetrahymena membranes have been purified by thin-layer and high pressure liquid chromatography and the phosphatidylethanolamine and aminoethylphosphonate lipids were examined in detail. 31P-NMR, X-ray diffraction and freeze-fracture electron microscopy were employed to describe the phase behavior of these lipids. The phosphatidylethanolamine was found to form a hexagonal phase above 10°C. The aminoethylphosphonate formed a lamellar phase up to 20°C, but converted to a hexagonal phase structure at 40°C. Small amounts of phosphatidylcholine stabilized the lamellar phase for the aminoethylphosphonate. 31P-NMR spectra of the intact ciliary membranes were consistent with a phospholipid bilayer at 30°C, suggesting that phosphatidylcholine in the membrane stabilized the lamellar form, even though most of the lipid of that membrane prefers a hexagonal phase in pure form at 30°C. 31P-NMR spectra also showed a distinctive difference in the chemical shift tensor of the aminoethylphosphonolipid, when compared to that of phosphatidylethanolamine, due to the difference in chemical structure of the polar headgroups of the two lipids.  相似文献   

13.
The thermotropic phase transitions were determined for a variety of phospholipids including dimyristoyl (DMPC) and distearoyl phosphatidylcholine (DSPC); dimyristoyl (DMPE), dioleoyl (DOPE) and egg phospatidylethanolamine (PE); egg and bovine brain sphingomyelin (SM) and bovine brain phosphatidylserine (PS) in the presence and absence of calcium or magnesium. The gel to liquid crystal phase transition is accompanied by a 2–4% increase in volume for a variety of phospholipids. This transition can be readily detected by scanning densitometry with multilamellar suspensions of phospholipids. In contrast, the liquid crystal to hexagonal phase transition does not involve any detectable change in volume. In addition, the volume coefficient of expansion for the hexagonal phase is similar to that found for several other bilayer systems. PS in the presence of Ca2+, SMs and DMPC at 50°C all have lower values of the volume coefficient of expansion. This property may be correlated with the resistance of these systems to the formation of additional gauche isomers in the hydrocarbon chains with increasing temperatures resulting in lowered permeability.  相似文献   

14.
The phase behavior of isolated photoreceptor membrane lipids is further investigated by 31P-NMR, in view of earlier discrepant results [(1979) Biochim. Biophys. Acta 558, 330–337; (1982) FEBS Lett. 124, 93–99]. We present evidence that the discrepancy is due to bivalent cations. When resuspended in aqueous media at neutral pH in the absence of bivalent cations, the isolated photoreceptor membrane lipids largely adopt the bilayer configuration. However, upon addition of such cations (Ca2+ Mg2+) or when resuspended in their presence, the formation of other phases (hexagonal HII, lipidic particles) results. The rate of this transition depends on cation concentration and temperature. The transition is not easily reversed by addition of EDTA. Implications with regard to photoreceptor membrane structure and function need further study.  相似文献   

15.
The lipid distribution in binary mixed membranes containing charged and uncharged lipids and the effect of Ca2+ and polylysine on the lipid organization was studied by the spin label technique. Dipalmitoyl phosphatidic acid was the charged, and spin labelled dipalmitoyl lecithin was the uncharged (zwitterionic) component. The ESR spectra were analyzed in terms of the spin exchange frequency, Wex. By measuring Wex as a function of the molar percentage of labelled lecithin a distinction between a random and a heterogeneous lipid distribution could be made. It is established that mixed lecithinphosphatidic acid membranes exhibit lipid segregation (or a miscibility gap) in the fluid state. Comparative experiments with bilayer and monolayer membranes strongly suggest a lateral lipid segregation. At low lecithin concentration, aggregates containing between 25% and 40% lecithin are formed in the fluid phosphatidic acid membrane. This phase separation in membranes containing charged lipids is understandable on the basis of the Gouy-Chapman theory of electric double layers.In dipalmitoyl lecithin and in dimyristoyl phosphatidylethanolamine membranes the labelled lecithin is randomly distributed above the phase transition and has a coefficient of lateral diffusion of D = 2.8·10?8 cm2/s at 59°C.Addition of Ca2+ dramatically increases the extent of phase separation in lecithin-phosphatidic acid membranes. This chemically (and isothermally) induced phase separation is caused by the formation of crystalline patches of the Ca2+-bound phosphatidic acid. Lecithin is squeezed out from these patches of rigid lipid. The observed dependence of Wex on the Ca2+ concentration could be interpreted quantitatively on the basis of a two-cluster model. At low lecithin and Ca2+ concentration clusters containing about 30 mol% lecithin are formed. At high lecithin or Ca2+ concentrations a second type of precipitation containing 100% lecithin starts to form in addition. A one-to-one binding of divalent ions and phosphatidic acid at pH 9 was assumed. Such a one-to-one binding at pH 9 was established for the case of Mn2+ using ESR spectroscopy.Polylysine leads to the same strong increase in the lecithin segregation as Ca2+. The transition of the phosphatidic acid bound by the polypeptide is shifted from Tt = 47.5° to Tt = 62°C. This finding suggests the possibility of cooperative conformational changes in the lipid matrix and in the surface proteins in biological membranes.  相似文献   

16.
The structural preferences of soya phosphatidylinositol in isolation and in mixtures with soya phosphatidylethanolamine, and the influence of Ca2+ and Mg2+ on these preferences, have been examined employing 31P-NMR and freeze-fracture techniques. It is shown that phosphatidylinositol assumes the bilayer organization on hydration both in the presence and absence of Ca2+ and Mg2+. In mixed systems with HII phase) phosphatidylethanolamine, phosphatidylinositol induces lipidic particle structure at low (<10 mol%) concentrations and bilayer structure at higher levels. In systems containing 15 or 20 mol% phosphatidylinositol, Ca2+ (but not Mg2+) can induce HII phase structure. The results indicate that phosphatidylinositol is a more effective agent than other acidic phospholipids for stabilizing bilayer structure, particularly when high levels of divalent cations are present. These findings are discussed in terms of functional roles of phosphatidylinositol and mechanisms whereby Ca2+ induces structural reorganization in mixed systems containing acidic phospholipids and phosphatidylethanolamine.  相似文献   

17.
(1) The effects of the anti-tumor drug adriamycin on lipid polymorphism in cardiolipin-containing model membranes and in isolated inner mitochondrial membranes has been examined by 31P-NMR. (2) Adriamycin binding does not affect the macroscopic structure or local order in the phosphate region of cardiolipin liposomes. (3) In cardiolipin liposomes and in cardiolipin-phosphatidylcholine (1:1) liposomes, the drug inhibits the ability of Ca2+ to induce the hexagonal HII phase. (4) Adriamycin interaction with both dioleoylphosphatidylethanolamine-cardiolipin (2:1) and dioleoylphosphatidylethanolamine-phosphatidylserine (1:1) liposomes results in structural phase separation into a liquid-crystalline hexagonal HII phase for the phosphatidylethanolamine and a liquid-crystalline lamellar phase for the negatively charged phospholipid. (5) Combined high-resolution 31P-NMR, electron microscopy and light scattering studies reveal the prominent fusion capacity of adriamycin towards cardiolipin-phosphatidylcholine small unilamellar vesicles. (6) Addition of Ca2+ to total rat liver inner mitochondrial membrane lipids, dispersed in excess buffer, results in hexagonal HII formation for part of the phospholipids. By contrast, the original bilayer structure is completely conserved when the above experiment is performed in the presence of adriamycin. (7) 31P-NMR spectra of isolated inner mitochondrial membranes are indicative of a bilayer organization for the majority of the phospholipids. Approximately 15% of the signal intensity originates from phospholipids which experience isotropic motion. Adriamycin addition almost completely eliminates the latter spectral component. In the absence of adriamycin, Ca2+ addition greatly increases the percentage of the phospholipids giving rise to an isotropic signal possibly indicating the formation of non-lamellar lipid structures. Adriamycin which specifically binds to cardiolipin (K. Nicolay et al. (1984) Biochim. Biophys. Acta 778, 359–371) completely blocks the Ca2+-induced structural reorganization of the lipids in this membrane.  相似文献   

18.
(1) The effect of glycophorin, a major intrinsic glycoprotein of the human erythrocyte membrane, on lipid polymorphism has been investigated by 31P-NMR (at 36.4 MHz) and by freeze-fracture electron microscopy. (2) Incorporation of glycophorin into vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) results in the formation of unilamellar vesicles (1000–5000 Å diameter) which exhibit 31P-NMR bilayer spectra over a wide range of temperature. A reduction in the chemical shift anisotropy (Δσcsaeff) and an increase in spectral linewidth in comparison to dioleoylphosphatidylcholine liposomes may suggest a decrease in phospholipid headgroup order. (3) 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), in the presence of excess water, undergoes a bilayer to hexagonal (HII) phospholipid arrangement as the temperature is increased above 0°C. Incorporation of glycophorin into this system stabilizes the bilayer configuration, prohibiting the formation of the HII phase. (4) Cosonication of glycophorin with DOPE in aqueous solution (pH 7.4) produces small, stable unilamellar vesicles (300–1000 Å diameter), unlike DOPE alone which is unstable and precipitates from solution. (5) The current study demonstrates the bilayer stabilizing capacity of an intrinsic membrane protein, glycophorin, most likely by means of a strong hydrophobic interaction between the membrane spanning portion of glycophorin and the hydrophobic region of the phospholipid.  相似文献   

19.
20.
The binding of polymyxin-B to lipid bilayer vesicles of synthesis phosphatidic acid was studied using fluorescence, ESR spectroscopy and electron microscopy. 1,6-Diphenylhexatriene (which exhibits polarized fluorescence) and pyrene decanoic acid (which forms excimers) were used as fluorescene probes to study the lipid phase transition.The polymyxin binds strongly to negatively charged lipid layers. As a result of lipid/polymyxin chain-chain interactions, the transition temperature of the lipid. This can be explained in terms of a slight expansion of the crystalline lipid lattice (Lindeman's rule). Upon addition of polymyxin to phosphatidic acid vesicles two rather sharp phase transitions (with ΔT = 5°C) are observed. The upper transition (at Tu) is that of the pure lipid and the lower transition (at T1) concerns the lipids bound to the peptide. The sharpness of these transitions strongly indicates that the bilayer is characterized by a heterogeneous lateral distribution of free and bound lipid regions, one in the crystalline and the other in the fluid state. Such a domain structure was directly observed by electron microscopy (freeze etching technique). In (1:1) mixtures of dipalmitoyl phosphatidic acid and egg lecithin, polymyxin induces the formation of domains of charged lipid within the fluid regions of egg lecithin.With both fluorescence methods the fraction of lipid bound to polymxin-B as a function of the peptide concentration was determined. S-shaped binding curves were obtained. The same type of binding curve is obtained for the interaction action of Ca2+ with phosphatidic acid lamellae, while the binding of polylysine to such membranes is characterized by a linear or Langmuir type binding curve. The S-shaped binding curve can be explained in terms of a cooperative lipid-ligand (Ca2+, polymyxin) interaction.A model is proposed which explains the association of polymyxing within the membrane plane in terms of elastic forces caused by the elastic distortion of the (liquid crystalline) lipid layer by this highly asymmetric peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号