首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Improper eating habits such as high-fat or high-carbohydrate diets are responsible for metabolic changes resulting in impaired glucose tolerance, hyperinsulinemia, insulin resistance, and ultimately diabetes. Although the essentiality of trivalent chromium for humans has been recently questioned by researchers, pharmacological dosages of this element can improve insulin sensitivity in experimental animals and diabetic subjects. The aim of the study was to assess the preventive potential of the supplementary chromium(III) propionate complex (CrProp) in rats fed a high-fat diet. The experiment was conducted on 32 male Wistar rats divided into four groups and fed the following diets: the control (C, AIN-93G), high-fat diets (HF, 40 % energy from fat), and a high-fat diet supplemented with CrProp at dosages of 10 and 50 mg Cr/kg diet (HF?+?Cr10 and HF?+?Cr50, respectively). After 8 weeks, high-fat feeding led to an increased body mass, hyperinsulinemia, insulin resistance, a decreased serum urea concentration, accumulation of lipid droplets in hepatocytes, and increased renal Fe and splenic Cu contents. Supplementary CrProp in both dosages did not alleviate these changes but increased renal Cr content and normalized splenic Cu content in high-fat-fed rats. Supplementary CrProp does not prevent the development of insulin resistance in rats fed a high-fat diet.  相似文献   

2.
Infrared thermography is becoming popular to measure animal surface temperature non-invasively. However, its application in quantitative mammal research is restricted by a paucity of pelage emissivity measurements, which are necessary to acquire accurate temperature readings. Furthermore, the factors influencing pelage emissivity remain largely unknown. We therefore examined the putative links between diet (fat content), hair length, hair diameter, and pelage emissivity in laboratory mice. Individuals maintained on high-fat diets had higher pelage emissivity values than those on standard diets, which may be due to fur being oily and/or the fact that the fur clumped together, exposing the skin underneath. Alternatively, the chemical composition of the fur of individuals on a high-fat diet may vary from those on a standard diet. We found no significant relationships between various hair metrics and emissivity. This study highlights that aspects of an animal's life history (e.g. age, sex, diet) may contribute to the emissivity of its pelage. As such, a single emissivity value may be inappropriate for use in infrared thermography across all species or individuals; other aspects of an animal's biology, which may affect emissivity, should also be considered. Best practice should involve measuring emissivity for every individual animal used in thermography studies.  相似文献   

3.
Aging-associated microbial dysbiosis exacerbates various disorders and dysfunctions, and is a major contributor to morbidity and mortality in the elderly, but the underlying cause of this aging-related syndrome is confusing. SIRT6 knockout (SIRT6 KO) mice undergo premature aging and succumb to death by 4 weeks, and are therefore useful as a premature aging research model. Here, fecal microbiota transplantation from SIRT6 KO mice into wild-type (WT) mice phenocopies the gut dysbiosis and premature aging observed in SIRT6 KO mice. Conversely, an expanded lifespan was observed in SIRT6 KO mice when transplanted with microbiota from WT mice. Antibiotic cocktail treatment attenuated inflammation and cell senescence in KO mice, directly suggesting that gut dysbiosis contributes to the premature aging of SIRT6 KO mice. Increased Enterobacteriaceae translocation, driven by the overgrowth of Escherichia coli, is the likely mechanism for the premature aging effects of microbiome dysregulation, which could be reversed by a high-fat diet. Our results provide a mechanism for the causal link between gut dysbiosis and aging, and support a beneficial effect of a high-fat diet for correcting gut dysbiosis and alleviating premature aging. This study provides a rationale for the integration of microbiome-based high-fat diets into therapeutic interventions against aging-associated diseases.  相似文献   

4.
High-fat diets have been associated with neurodegenerative diseases, which are also largely related to the type and amount of dietary proteins. However, to our knowledge, it is little known how dietary proteins affect neurodegenerative changes. In this study, we investigated the effects of dietary proteins in a high-fat diet on hippocampus functions related to enteric glial cells (EGCs) in Wistar rats that were fed either 40% or 20% (calorie) casein, chicken protein or pork protein for 12 weeks (n=10 each group). Inflammatory factors, glutamatergic system, EGCs, astrocytes and nutrient transporters were measured. A high-chicken-protein diet significantly increased the levels of systemic inflammatory factors, Tau protein and amyloid precursor protein mRNA level in the rat hippocampus. The type and level of dietary proteins in high-fat diets did not affect the gene expression of glial fibrillary acidic protein and α-synuclein (P>.05), indicating a negligible effect on astrocyte activity. However, the high-protein diets up-regulated glutamate transporters compared with the low-protein diets (P<.05), while they reduced the γ-aminobutyric acid content in high-chicken and -pork-protein diets (P<.05). Thus, compared with a low-protein diet (20%), a high-chicken or -pork-protein diet (40%) under a high-fat background could alter the balance between glutamatergic system and neurotransmitter and have a stronger effect on the interactions between hippocampal glutamatergic system and EGCs.  相似文献   

5.
Obesity, liver steatosis and type 2 diabetes are major diseases partly imputed to energy-dense diets rich in long chain triglycerides (LCT). The search for bioactive nutrients that help to overcome metabolic diseases is a growing field. In this regard, medium chain triglycerides (MCT) were shown to promote lipid catabolism and to stimulate brown adipose tissue thermogenesis. The objective of our study was to evaluate if the replacement of LCT by MCT in high-fat diets could prevent and/or reduce metabolic disorders. For this purpose, two cohorts of C57BL/6 mice were fed during 10 weeks with three isocaloric high-fat diets with variable MCT content. Cohort A was composed of lean mice while cohort B was composed of obese, insulin resistant mice. In cohort A, replacement of LCT by MCT preserved metabolic health, in part by triggering hepatic thermogenesis. We further found that medium chain fatty acids promote thermogenesis markers within cultured hepatocytes in a FFAR1/GPR40-dependent manner. In cohort B, high-fat diets enriched in MCT promoted body fat depletion and caused metabolic health improvement, together with the induction of thermogenesis markers in the liver as well as in subcutaneous white adipose tissue. Our study supports that replacement of LCT by MCT in high-fat diets improves the metabolic features associated with obesity.  相似文献   

6.
Hepatic fat deposition with hepatocellular damage, a feature of non-alcoholic fatty liver disease, is mediated by several putative factors including prostaglandins. In the present study, we examined whether group IVA phospholipase A2 (IVA-PLA2), which catalyzes the first step in prostanoid biosynthesis, is involved in the development of fatty liver, using IVA-PLA2-knockout mice. Male wild-type mice on high-fat diets (20% fat and 1.25% cholesterol) developed hepatocellular vacuolation and liver hypertrophy with an increase in the serum levels of liver damage marker aminotransferases when compared with wild-type mice fed normal diets. These high-fat diet-induced alterations were markedly decreased in IVA-PLA2-knockout mice. Hepatic triacylglycerol content was lower in IVA-PLA2-knockout mice than in wild-type mice under normal dietary conditions. Although high-fat diets increased hepatic triacylglycerol content in both genotypes, the degree was lower in IVA-PLA2-knockout mice than in wild-type mice. Under the high-fat dietary conditions, IVA-PLA2-knockout mice had lower epididymal fat pad weight and smaller adipocytes than wild-type mice. The serum level of prostaglandin E2, which has a fat storage effect, was lower in IVA-PLA2-knockout mice than in wild-type mice, irrespective of the kind of diet. In both genotypes, high-fat diets increased serum leptin levels equally between the two groups, but did not affect the serum levels of adiponectin, resistin, free fatty acid, triacylglycerol, glucose, or insulin. Our findings suggest that a deficiency of IVA-PLA2 alleviates fatty liver damage caused by high-fat diets, probably because of the lower generation of IVA-PLA2 metabolites, such as prostaglandin E2. IVA-PLA2 could be a promising therapeutic target for obesity-related diseases including non-alcoholic fatty liver disease.  相似文献   

7.
The fatty liver syndrome caused by nutritional factors is a common cause of hepatic dysfunction globally. This research was designed to study the shielding effect of boron in rats fed a diet having high fat. Overall, 40 Wistar albino male rats were placed into one control and four treatment groups, that is, each having eight rats. Group I was provided with a standard rat diet while group II was only provided a high-fat diet for 60 days. Groups III, IV, and V were provided with 5, 10, and 20 mg/kg/day boron, respectively, by gastric gavage besides a high-fat diet for 60 days. Malondialdehyde was increased significantly in rats' blood and tissue because of high-fat diets. Glutathione was decreased significantly in blood and tissues because of a high-fat diet. Moreover, the activities of superoxide dismutase (SOD) and catalase (CAT) were decreased in the blood and tissues of the high-fat-fed rats. The genes expression for C-reactive protein, interleukin-1β, leptin, and tumor necrosis factor-α were increased while gene expression for peroxisome proliferator-activated receptors was decreased in the liver of rats fed with a high-fat diet. Contrariwise, boron supplementation improves antioxidative response in terms of increased SOD and CAT activities, gene expression regulation, and improved anti-inflammatory activities. In a nutshell, boron has dose-dependent shielding antioxidative and tissue regenerative effects in rats.  相似文献   

8.
Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid oxidation may also contribute to the physiological activity of gamma-linolenic acid in decreasing body fat mass.  相似文献   

9.
Fat-rich diets not only induce obesity in humans but also make animals obese. Therefore, animals that accumulate body fat in response to a high-fat diet (especially rodents) are commonly used in obesity research. The effect of dietary fat on body fat accumulation is not fully understood in zebrafish, an excellent model of vertebrate lipid metabolism. Here, we explored the effects of dietary fat and green tea extract, which has anti-obesity properties, on body fat accumulation in zebrafish. Adult zebrafish were allocated to four diet groups and over 6 weeks were fed a high-fat diet containing basal diet plus two types of fat or a low-fat diet containing basal diet plus carbohydrate or protein. Another group of adult zebrafish was fed a high-fat diet with or without 5% green tea extract supplementation. Zebrafish fed the high-fat diets had nearly twice the body fat (visceral, subcutaneous, and total fat) volume and body fat volume ratio (body fat volume/body weight) of those fed low-fat diets. There were no differences in body fat accumulation between the two high-fat groups, nor were there any differences between the two low-fat groups. Adding green tea extract to the high-fat diet significantly suppressed body weight, body fat volume, and body fat volume ratio compared with the same diet lacking green tea extract. 3-Hydroxyacyl-coenzyme A dehydrogenase and citrate synthase activity in the liver and skeletal muscle were significantly higher in fish fed the diet supplemented with green tea extract than in those fed the unsupplemented diet. Our results suggest that a diet rich in fat, instead of protein or carbohydrate, induced body fat accumulation in zebrafish with mechanisms that might be similar to those in mammals. Consequently, zebrafish might serve as a good animal model for research into obesity induced by high-fat diets.  相似文献   

10.
11.
Excess energy intake correlates with the development of metabolic disorders. However, different energy-dense foods have different effects on metabolism. To compare the effects of a high-fat diet, a high-fructose diet and a combination high-fat/high-fructose diet on glucose and lipid metabolism, male C57BL/6 mice were fed with one of four different diets for 3 months: standard chow; standard diet and access to fructose water; a high fat diet; and a high fat diet with fructose water. After 3 months of feeding, the high-fat and the combined high-fat/high-fructose groups showed significantly increased body weights, accompanied by hyperglycemia and insulin resistance; however, the high-fructose group was not different from the control group. All three energy-dense groups showed significantly higher visceral fat weights, total cholesterol concentrations, and low-density lipoprotein cholesterol concentrations compared with the control group. Assays of basal metabolism showed that the respiratory quotient of the high-fat, the high-fructose, and the high-fat/high-fructose groups decreased compared with the control group. The present study confirmed the deleterious effect of high energy diets on body weight and metabolism, but suggested that the energy efficiency of the high-fructose diet was much lower than that of the high-fat diet. In addition, fructose supplementation did not worsen the detrimental effects of high-fat feeding alone on metabolism in C57BL/6 mice.  相似文献   

12.
Recent research has explored the relationship between facial masculinity, human male behaviour and males'' perceived features (i.e. attractiveness). The methods of measurement of facial masculinity employed in the literature are quite diverse. In the present paper, we use several methods of measuring facial masculinity to study the effect of this feature on risk attitudes and trustworthiness. We employ two strategic interactions to measure these two traits, a first-price auction and a trust game. We find that facial width-to-height ratio is the best predictor of trustworthiness, and that measures of masculinity which use Geometric Morphometrics are the best suited to link masculinity and bidding behaviour. However, we observe that the link between masculinity and bidding in the first-price auction might be driven by competitiveness and not by risk aversion only. Finally, we test the relationship between facial measures of masculinity and perceived masculinity. As a conclusion, we suggest that researchers in the field should measure masculinity using one of these methods in order to obtain comparable results. We also encourage researchers to revise the existing literature on this topic following these measurement methods.  相似文献   

13.
Glucocorticoids (GCs) are often prescribed in clinics but many adverse effects are also attributed to GCs. It is important to determine the role of GCs in the development of those adverse effects. Here, we investigated the impact of GCs on trivalent chromium (Cr) distribution in animals. Cr has been proposed to be important for proper insulin sensitivity, and deficits may lead to disruption of metabolism. For comparison, the effect of a high-fat diet on Cr modulation was also evaluated. C57BL/6JNarl mice were fed regular or high-fat diets for 12 weeks and further grouped for treatment with prednisolone or saline. Cr levels in tissues were determined 12 h after the treatments. Interestingly, prednisolone treatment led to significantly reduced Cr levels in fat tissue in mice fed regular diets; compared to the high-fat diet alone, prednisolone plus the high-fat diet led to a further reduction in Cr levels in the liver, muscle, and fat. Notably, a single dose of prednisolone was linked with elevated Cr levels in the thigh bones of mice fed by either regular or high-fat diets. In conclusion, this report has provided evidence that prednisolone in combination with a high-fat diet effects modulation of Cr levels in selected tissues.  相似文献   

14.
We tested the hypothesis that a high-fat diet (75% fat; 5% carbohydrates; 20% protein), for which 15% of the fat content was substituted with n-3 fatty acids, would not exhibit the diet-induced increase in pyruvate dehydrogenase kinase (PDK) activity, which is normally observed in human skeletal muscle. The fat content was the same in both the regular high-fat diet (HF) and in the n-3-substituted diet (N3). PDK activity increased after both high-fat diets, but the increase was attenuated after the N3 diet (0.051 +/- 0.007 and 0.218 +/- 0.047 min(-1) for pre- and post-HF, respectively; vs. 0.073 +/- 0.016 and 0.133 +/- 0.032 min(-1) for pre- and post-N3, respectively). However, the active form of pyruvate dehydrogenase (PDHa) activity decreased to a similar extent in both conditions (0.93 +/- 0.17 and 0.43 +/- 0.09 mmol/kg wet wt pre- and post-HF; vs. 0.87 +/- 0.19 and 0.39 +/- 0.05 mmol/kg wet wt pre- and post-N3, respectively). This suggested that the difference in PDK activity did not affect PDHa activation in the basal state, and it was regulated by intramitochondrial effectors, primarily muscle pyruvate concentration. Muscle glycogen content was consistent throughout the study, before and after both diet conditions, whereas muscle glucose-6-phosphate, glycerol-3-phosphate, lactate, and pyruvate were decreased after the high-fat diets. Plasma triglycerides decreased after both high-fat diets but decreased to a greater extent after the N3, whereas plasma free fatty acids increased after both diets, but to a lesser extent after the N3. In summary, PDK activity is decreased after a high-fat diet that is rich in n-3 fatty acids, although PDHa activity was unaltered. In addition, our data demonstrated that the hypolipidemic effect of n-3 fatty acids occurs earlier (3 days) than previously reported and is evident even when the diet has 75% of its total energy derived from fat.  相似文献   

15.
A long-term high-fat diet may result in a fatty liver. However, whether or not high-fat diets affect the hepatic circadian clock is controversial. The objective of this study is to investigate the effects of timed high-fat diet on the hepatic circadian clock and clock-controlled peroxisome proliferator-activated receptor (PPAR) α-mediated lipogenic gene expressions. Mice were orally administered high-fat milk in the evening for 4 weeks. The results showed that some hepatic clock genes, such as Clock, brain-muscle-Arnt-like 1 (Bmal1), Period 2 (Per2), and Cryptochrome 2 (Cry2) exhibited obvious changes in rhythms and/or amplitudes. Alterations in the expression of clock genes, in turn, further altered the circadian rhythm of PPARα expression. Among the PPARα target genes, cholesterol 7α-hydroxylase (CYP7A1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase, low-density lipoprotein receptor, lipoprotein lipase, and diacylglycerol acyltransferase (DGAT) showed marked changes in rhythms and/or amplitudes. In particular, significant changes in the expressions of DGAT and CYP7A1 were observed. The effects of a high-fat diet on the expression of lipogenic genes in the liver were accompanied by increased hepatic cholesterol and triglyceride levels. These results suggest that timed high-fat diets at night could change the hepatic circadian expressions of clock genes Clock, Bmal1, Per2, and Cry2 and subsequently alter the circadian expression of PPARα-mediated lipogenic genes, resulting in hepatic lipid accumulation.  相似文献   

16.
17.
Previous reports implicate the orexins in eating and body weight regulation. This study investigated possible functional relationships between hypothalamic orexins and circulating hormones or metabolites. In situ hybridization and quantitative PCR were used to examine orexin expression in the perifornical hypothalamus (PF) of rats and mice on diets varying in fat content and with differential propensity toward obesity. The results showed that orexin gene expression was stimulated by a high-fat diet in close association with elevated triglyceride levels, suggesting a functional relationship between these measures. Results obtained in obesity-prone rats and mice revealed a similar increase in orexin in close relation to triglycerides. A direct test of this orexin-triglyceride link was performed with Intralipid, which increased PF orexin expression along with circulating triglycerides. Whereas PF galanin is similarly stimulated by dietary fat, double-labeling immunofluorescence studies showed that orexin and galanin neurons are anatomically distinct. This evidence suggests that the orexins, like galanin, are "fat-responsive" peptides that respond to circulating lipids.  相似文献   

18.
The present study describes the effects of several high-fat low-cholesterol antiatherogenic diets on the hepatic lipid peroxidation and hepatic antioxidant systems in apolipoprotein E-deficient mice. Eighty mice were distributed into five groups and fed with regular mouse chow or chow supplemented with coconut, palm, olive and sunflower seed oils. After ten weeks, they were sacrificed and the livers were removed so that lipid peroxidation and -tocopherol concentrations, and superoxide dismutase, glutathione peroxidase and glutathione reductase activities could be measured. The size of the atherosclerotic lesions in the aortas was also measured. Results showed that the diets supplemented with olive oil, palm oil or sunflower seed oil significantly decreased the size of the lesion. However, there was an association between those mice that were on diets supplemented with palm or coconut oils and a significant increase in hepatic lipid peroxidation. This association was not found in animals fed with olive or sunflower seed oils, the diets with the highest content of vitamin E. The dietary content of vitamin E was significantly correlated (r = 0.98; p < 0.05) with the hepatic concentration of this compound. Our study suggests that the high content of vitamin E in olive oil or sunflower seed oil may protect from the undesirable hepatotoxic effects of high-fat diets in apo E-deficient mice and that this should be taken into account when these diets are used to prevent atherosclerosis.  相似文献   

19.
Diet-induced obesity and insulin resistance have been linked to changes in bile acid (BA) profiles, which in turn are highly dependent on the dietary composition and activity of the gut microbiota. The objective of the present study was to investigate whether the type and level of fiber had an effect on cecal BA composition when included in low- and high-fat diets. Groups of rats were fed two barley varieties, which resulted in three test diets containing three levels of β-glucans and two levels of dietary fiber. BAs were preconcentrated using hollow fiber liquid-phase microextraction and quantified by gas chromatography. The amount of the secondary BAs, lithocholic-, deoxycholic- and hyodexycholic acids was generally higher in groups fed high-fat diets compared with corresponding acids in groups fed low-fat diets (P<.05). In contrast, most of the primary and the secondary BAs, ursodeoxycholic acid and β- and ω-muricholic acids, were two to five times higher (P<.05) in groups fed low-fat diets than in groups fed high-fat diets. This was particularly true for groups fed the highest level of β-glucans and in some cases also the medium level. The BA profile in the gut was strongly dependent on the amount and type of dietary fiber in the diet, which may be useful in the prevention/treatment of diseases associated with changes in BA profiles.  相似文献   

20.
Offspring of rats fed high-fat diets during pregnancy and lactation develop glucose intolerance and islet dysfunction in adulthood. Because other models of developmental programming of glucose intolerance are associated with defective islet development, we investigated whether high-fat exposure during fetal or neonatal life impairs islet development and function, thereby contributing to islet dysfunction in later life. Female rats were fed control or high-fat diets and their pups cross-fostered after birth to represent 4 groups with each combination of control and high-fat diet for the natural and foster mother. In a time course study, pups were kept with the natural mother until weaning. Pancreases were analysed for insulin content, beta cell mass, and islet number. Isolated islets were studied for insulin secretory responses and susceptibility to palmitate-induced apoptosis assessed by caspases 3/9 activity. Pancreatic insulin content and beta cell mass were increased in pups exposed to maternal high-fat diets after birth, whereas glucose-stimulated insulin secretion from islets of high-fat offspring at 5 and 11 days of age was lower than controls. Islets from control rats of 2-14 days of age were resistant to the pro-apoptotic effects of palmitate seen in older animals. The immature beta cell is therefore insensitive to toxic effects of palmitate and may compensate for the inhibitory effects on insulin secretion by increasing beta cell mass. The data suggest that susceptibility to glucose intolerance in offspring of dams fed high-fat diets may not be a consequence of deleterious effects on beta cell mass in early life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号