首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Selenium deficiency causes a fall in rat cardiac glutathione peroxidase activity. As a consequence, isolated perfused selenium-deficient heart does not release increased amounts of GSSG when hydroperoxide is infused. However, the total amount of glutathione measured as intracellular GSH, intracellular GSSG and GSSG released from the heart when hydroperoxide is infused does not equal the total glutathione measured in these pools in untreated hearts (Xia, Y., Hill, K.E. and Burk, R.F. (1985) J. Nutr. 115, 733-742). GSSG can react with protein sulfhydryl groups to form glutathione-protein mixed disulfides (PrS-SG). PrS-SG were measured in perfused selenium-deficient and control hearts infused with t-butylhydroperoxide and were found to account for the previously unmeasured glutathione. The ability of the selenium-deficient heart to transport GSSG was also examined. GSSG was produced non-enzymatically by infusing diamide. The diamide-treated selenium-deficient heart formed GSSG and released it at the same rate as similarly-treated control heart. Thus although selenium deficiency decreases GSSG formation by glutathione peroxidase, it does not affect cardiac GSSG transport.  相似文献   

5.
6.
7.
Selenium (Se) deficiency in rats produced significant increases in the activity of hepatic glutathione S-transferase (GST) with 1-chloro-2,4-dinitrobenzene as substrate and in various GST isoenzymes when determined by radioimmunoassay. These changes is GST activity and concentration were associated with Se deficiency that was severe enough to provoke decreases of over 98% in hepatic Se-containing glutathione peroxidase activity (Se-GSHpx). However, decreases in hepatic Se-GSHpx of 60% induced by copper (Cu) deficiency had no effect on GST activity or concentration. Increased GST activity in Se deficiency has previously been postulated to be a compensatory response to loss of Se-GSHpx, since some GSTs have a non-Se-glutathione peroxidase (non-Se-GSHpx) activity. However, the GST isoenzymes determined in this study, GST Yb1Yb1, GST YcYc and GST YaYa, are known to have up to 30-fold differences in non-Se-GSHpx activity, but they were all significantly increased to a similar extent in the Se-deficient rats.  相似文献   

8.
To determine the effect of Se status on the level of mRNA for Se-dependent glutathione peroxidase (EC 1.11.1.9), rats were fed either a Se-deficient torula yeast diet (less than 0.02 mg Se/kg diet) or a Se-adequate diet (+0.2 mg Se/kg as Na2SeO3) for greater than 135 d. Liver glutathione peroxidase activity was 0.025 for Se-deficient versus 0.615 EU/mg protein for Se-adequate rats. Total liver RNA and polyadenylated RNA were isolated and subjected to Northern blot analysis using a 700 bp DNA probe from cloned murine glutathione peroxidase. Autoradiography showed that Se-deficient liver had 7-17% of the mRNA for glutathione peroxidase present in Se-adequate liver, suggesting that Se status may regulate the level of mRNA for this selenoenzyme.  相似文献   

9.
10.
Selenium-dependent glutathione peroxidase (Se-GSH-Px, GSH-H2O2 oxidoreductase EC 1.11.1.9) is the best characterized selenoprotein in higher animals, but the mechanism whereby selenium becomes incorporated into the enzyme protein remains under investigation. To elucidate the mechanism of insertion of selenium into Ge-GSH-Px further, we have systematically analyzed and compared the results of Western blot, in vitro translation immunoprecipitation, and Northern blot experiments conducted with liver proteins and RNAs obtained from rats fed on selenium-deficient and selenium-supplemented diets. The anti-serum employed in this study was raised against an electrophoretically pure Se-GSH-Px preparation obtained from rat livers by a simplified purification procedure involving separation by high performance liquid chromatography on a hydrophobic interaction column. Different forms of Se-GSH-Px, including apo-protein, cross-reacted with this antiserum and Western blot analysis found no Se-GSH-Px protein present in livers from rats fed on selenium-deficient diets. By contrast, a distinct protein band corresponding to purified Se-GSH-Px was detected in livers from selenium-supplemented animals, a result consistent with the finding that the Se-GSH-Px activity was reduced to undetectable levels in livers of selenium-deficient rats. The in vitro translation experiments, however, indicated not only that mRNA for Se-GSH-Px was present during selenium deficiency but also that its translation products contained 2-3-fold as much immunoprecipitable protein as the products of poly(A) RNA from livers of selenium-supplemented rats. This result suggests that the Se-GSH-Px mRNA may be increased in the selenium-deficient state. Elevated levels of Se-GSH-Px mRNA were directly demonstrated in Northern blot experiments employing cDNA clone pGPX1211 as a probe. A similar increase in Se-GSH-Px mRNA was observed in such other tissues as kidney, testis, brain, and lung tissue, in selenium-deficient states. The present data support the co-translational mechanism for the incorporation of selenium into Se-GSH-Px in rat liver.  相似文献   

11.
12.
The effect of cellular hypoxia on glutathione levels in rat hearts was determined. Hearts perfused with 95% N2–5% CO2 demonstrated a significant decrease in tissue reduced glutathione content when compared to control hearts perfused with 95% O2–5% CO2. The hypoxic perfusate contained reduced glutathione and its release was time dependent over a period of 60 minutes. The cellular depletion of oxidized glutathione and its release into coronary effluent were less evident with respect to reduced glutathione. Moreover during hypoxic perfusion we have observed a decrease of cytosol glutathione peroxidase activity. These results suggest that severe oxygen-deprivation causes in myocardial cells a significant perturbation of glutathione metabolism.  相似文献   

13.
14.
The effect of dietary selenium (Se) and vitamin E supplementation on tissue reduced glutathione (GSH) and glutathione peroxidase activity has been studied in the rat. Increasing Se intake by 0.4 ppm gave significantly higher enzyme levels in all tissues studied, an effect not influenced by vitamin E intake. Further increasing Se to 4 ppm gave higher enzyme levels in red blood cells only, while in liver was there was a significant decrease in enzyme activity probably reflecting Se hepatotoxicity. In the absence of Se supplements increasing dietary vitamin E to 100 mg/kg diet significantly increased enzyme activity but this effect was modified by simultaneous Se supplementation.Se intake had no effect on GSH levels. Rats on high vitamin E intake 500 mg/kg had a significantly higher tissue GSH level. Dietary Se had a sparing effect on vitamin E, rats supplemented with Se having significantly raised plasma vitamin E levels.These results confirm the role of selenium in glutathione peroxidase and also show that vitamin E influences the activity of the enzyme.  相似文献   

15.
In rats given a minimal damaging dose of 109CdCl2 (0.011 mmole/kg, s.c.), a visible hemorrhagic response was evident after 48 h when testicular Cd uptake exceeded a level of approx. 150 ng/g. Glutathione peroxidase (GSH-Px) activity was elevated in homogenates of these damaged testes. In rats whose testes were not damaged, the Cd levels were below 150 ng/g and the GSH-Px activity was similar to that of control animals injected with sodium acetate. Rat testis cytosol was found to contain two different GSH-Px activities when assayed with cumene hydroperoxide. These could be separated by gel filtration chromatography. The larger species (GSH-Px A) was eluted in the void volume on Sephadex G-150 and incorporated 75Se from Na275SeO3 given 4 weeks earlier. The smaller species, of approx. 42 000 molecular weight (MW) (GSH-Px B), did not incorporate 75Se and could be distinguished from GSH-Px A by its insensitivity to cyanide (10 mM). CdCl2 (1 mM) did not inhibit GSH-Px activity when added in vitro to GSH-Px A or B from testicular cytosol, or to purified GSH-Px isolated from ovine erythrocytes. When 109CdCl2 was given in vivo to rats injected 4 weeks previously with a tracer dose of Na275SeO3 or added in vitro to cytosol prepared from similarly labeled rats, Sephadex G-150 chromatography of cytosol showed that most of the 109Cd was eluted in a major peak of 34 000 MW. Little or no 109Cd was found in association with 75Se (major peak 140 000 MW) or GSH-Px activity. When 109CdCl2 was injected into rats given an equimolar dose of Na275SeO3 30 min previously, 109Cd uptake in cytosol was increased and both 109Cd and 75Se was shifted into a peak of 110 000 MW.The 109Cd-binding peak of approx. 30 000–34 000 MW was the major Cd-binding fraction in cytosol of 7-week-old rats but was not detectable in 4-week-old rats. Susceptibility of the testes to Cd did not correlate with the presence of this peak, however, since 4-week-old rats were occassionally damaged by CdCl2.  相似文献   

16.
17.
18.
The cDNA for rat glutathione peroxidase mRNA was isolated from liver cDNA library in lambda gt11 by cross-hybridization using the mouse cDNA, and it's nucleotide sequence was determined. The selenocysteine which constitutes an active center of this enzyme was encoded by TGA, a nonsense codon in general, as was the cases with mouse and human glutathione peroxidase. Northern blot analysis elucidated that the mRNA for glutathione peroxidase was markedly diminished in selenium deficient rat liver as compared with that of normal rat livers. The result suggested that the de novo synthesis of the mRNA would be regulated by selenium.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号